每种材料都不一样,而且加工工艺影响,二者没有必然的联系,根据材料和工艺不同而不同屈服强度就是材料进入屈服阶段的临界应力,材料过了屈服阶段后还会出现一个强化阶段,然后才断裂,而拉伸强度指的就是那个开始出现明显的颈缩的临界值简单的理解,一旦应力超过拉伸强度,材料就会断裂,而应力超过屈服强度,只会导致材料发生塑性变形,而不一定会断裂拉伸强度一般由材料直接决定,而屈服强度除材料外,还可以利用加工工艺做一定的提高所有二者之间是没有什么换算关系的,二者多是材料的基本性能参数,多是需要靠实验测量的
253MA可以了解下。
253MA节镍耐热奥氏体不锈钢概述:
253MA是21Cr—l1Ni不锈钢的基础上,通过稀土元素铈(ce)和氰(N)元素傲合金化而发展起来的耐热不锈钢种。通常条件下,253MA为全奥氏体组织。由于稀土元素与硅的共同作用,保证了该材料在 l150℃下仍具有良好的抗氧化性能 。而氰 、 碳以及均匀分布的稀土元素和碱金属氧化物的存在使得253MA具有与镍基 合金相当的持久强度。因此,253MA可以代替价格昂贵的镍基合金,可广泛用于工作温度在900℃以上的非承压高温部件,以及使用到900℃以下的承压场合。
253MA对应牌号:
DIN/EN 14835,ASTM S30815,UNS S30815,253MA ,1Cr21Ni11Si2NCe
253MA特性:
253MA 是一种节镍耐热奥氏体不锈钢,为需要高蠕变强度和良好抗腐蚀力的应用而设计。253MA是在合金14828的基础上,提高氮含量,并添加稀土元素进行微合金化而得到的一种合金,具有良好的抗氧化性,良好的抗高温腐蚀,良好的高温机械强度。其使用温度范围为 850~1100 ℃, 若在600至850℃范围使用,因结构性变化,将导致室温下的冲击韧性降低。
253MA的化学成分是平衡的,使得该钢在850℃-1100℃温度范围内具有最适宜的综合性能,极高的抗氧化性,起氧化皮温度高达1150℃;极高的抗蠕变型变能力和蠕变断裂强度;在大多数气体介质中具有很好的抗高温腐蚀能力和耐衡刷腐蚀能力;高温时有较高的屈服强度和抗拉强度;良好的可成型性和可焊接性,以及足够的可切削性。。
1、与310S、1Cr20Ni14Si2相比,性能更优越,节Ni,价格便宜。
2、900℃时有很高的强度。在空气中,非承受压力的条件下可以使用到1150℃,有优越的抗高温氧化性能。
3、各温度下的短时拉伸强度比通常的不锈钢(如304、310S)的强度高出20%以上。
4、具有高温长期性能(蠕变性能、持久性能)。
除了合金元素铬和镍之外,这种牌号的不锈钢还含有少量的稀土金属(Rare Earth Metals,REM),从而明显地改善了其抗氧化能力。添加了氮以改善蠕变性能并使这种钢成为完全的奥氏体。尽管铬和镍含量相对来说较低,但这种不锈钢有许多情况下具有与高合金化的合金钢和镍基合金相同的高温特性。
253MA工艺资料:
热处理
253MA固溶处理规范为:温度1050~1150℃保温5~20分钟,风冷或水淬。厚板常用固溶温度为 1070~l100℃。
成形
钢板成形应尽可能在室温下进行。如需热弯,则工件整个截面应均匀加热到 l100℃,成形终了温度应在900℃以上。
焊接
253MA适合于所有常用的焊接方法。无需焊前预热和焊后热处理。层问温度应保持较低水平,以防止出现热裂纹。
253MA使用范围:
253MA广泛应用于烧结设备、高炉设备、钢熔化、熔炉和连续浇铸设备、轧钢机(加热炉)、热处理炉和附件、矿物设备及水泥生产设备等。 253MA钢可以使用到900 ℃的承压场合及工作温度高达1150 ℃的非承压高温零部件。
253MA主要规格:
253MA无缝管、253MA钢板、253MA圆钢、253MA锻件、253MA法兰、253MA圆环、253MA焊管、253MA钢带、253MA直条、253MA丝材及配套焊材、253MA圆饼、253MA扁钢、253MA六角棒、253MA大小头、253MA弯头、253MA三通、253MA加工件、253MA螺栓螺母、253MA紧固件
篇幅有限,如需更多更详细介绍,欢迎咨询了解。
低碳钢从受拉至拉断,分为以下四个阶段。
1 弹性阶段
随着荷载的增加,应变随应力成正比增加。如卸去荷载,试件将恢复原状,表现为弹性变形,与A点相对应的应力为弹性极限。在这一范围内,应力与应变的比值为一常量,称为弹性模量,用E表示。弹性模量反映钢材的刚度,是钢材在受力条件下计算结构变形的重要指标。常用低碳钢的弹性模量E=20×105~21×105MPa,弹性极限E=180~200MPa。
2 屈服阶段
应力与应变不成比例,开始产生塑性变形,应变增加的速度大于应力增长速度,钢材抵抗外力的能力发生“屈服”了。
该阶段在材料万能试验机上表现为指针不动(即使加大送油)或来回窄幅摇动。
钢材受力达屈服点后,变形即迅速发展,尽管尚未破坏但已不能满足使用要求。故设计中一般以屈服点作为强度取值依据。
3 强化阶段
抵抗塑性变形的能力又重新提高,变形发展速度比较快,随着应力的提高而增强。
常用低碳钢的为385~520MPa。抗拉强度不能直接利用,但屈服点与抗拉强度的比值(即屈强比),能反映钢材的安全可靠程度和利用率。屈强比越小,表明材料的安全性和可靠性越高,结构越安全。但屈强比过小,则钢材有效利用率太低,造成浪费。常用碳素钢的屈强比为058~063,合金钢为065~075。
4 颈缩阶段
材料变形迅速增大,而应力反而下降。试件在拉断前,于薄弱处截面显著缩小,产生“颈缩现象”,直至断裂。
通过拉伸试验,除能检测钢材屈服强度和抗拉强度等强度指标外,还能检测出钢材的塑性。塑性表示钢材在外力作用下发生塑性变形而不破坏的能力,它是钢材的一个重要性指标。钢材塑性用伸长率或断面收缩率表示。
第一节 材料的选用
压力容器的用途极广,工作条件也千差万别,因此在容器的设计过程中正确地选择材料是一件极为复杂而又特别重要的工作。很多压力容器造成事故的重要原因之一就是选用材料不当。例如,采用焊接性差的钢材焊制压力容器时,就容易在焊接接头中产生裂缝;有些镍铬不锈钢的压力容器,常因钢号或成分选用不当,在使用中发生晶间腐蚀、应力腐蚀等形式的破坏;选用铁素体钢制造低温压力容器时,如钢的转变温度高于容器的工作温度,则容器工作时就容易发生脆性破坏。所以,在选择压力容器用钢时,必须根据容器的工作条件(如壁温、压力、介质腐蚀性、介质对材料的脆化作用及其是否易燃、易爆、有毒等)选择具有合适力学性能、物理性能和耐腐蚀性能的材料,所选用的材料还必须考虑加工工艺的影响(可焊性、是否便于加工),并考虑其经济合理性及来源等情况。
对于压力容器的设计者,充分了解各种材料的性能(物理性能、力学性能等)以及影响材料性能的各种因素是十分必要的。
一、材料的性能
1.力学性能
材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。压力容器用材料的常规力学性能指标主要包括强度、硬度、塑性和韧性等。
(1)强度 是指金属材料在外力作用下对变形或断裂的抗力。强度指标是设计中决定许用应力的重要依据,是材料抵抗外力作用能力的标志。常用的强度指标有屈服强度σs或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD,设计中许用应力都是根据这些数值决定的。另外,材料的屈强比(σs/σb)也是反映材料承载能力的一个指标,不同材料具有不同的屈强比,即使是同一种材料,其屈强比也随着材料热处理情况及工作温度的不同而有所变化。
(2)塑性 是指金属材料在断裂前发生塑性变形的能力。塑性指标主要有伸长率δ、断面收缩率φ、冲击韧性ak等。用塑性好的材料制造容器,可以缓和局部应力的不良影响,有利于压力加工,不易产生脆性断裂,对缺口、伤痕不敏感,并且在发生爆炸时不易产生碎片。作为化工容器用的钢,要求伸长率δ不低于14%,冲击韧性ak在使用温度下不低于35J/cm2。
钢材的屈服强度试验通常使用拉伸试验方法来进行。以下是一般的步骤:
样品准备:从待测试的钢材中切割出具有特定尺寸的试样。通常采用标准尺寸的圆柱形试样,长度在约50-200毫米之间,直径或宽度在约10-20毫米之间。
夹持样品:将试样夹持在拉伸试验机的夹具上。确保夹具正确固定样品,以防止样品在试验过程中滑动或变形。
开始试验:逐渐施加拉力,以使试样受到拉伸力。应以相对较慢且均匀的速度施加力,以避免过快引起冲击加载。力的应用通常是逐渐增加,直到试样发生塑性变形。
测量力和变形:试验机会同时测量施加在试样上的拉力和试样的伸长或变形。这些数据通常会被记录下来以绘制力与变形的曲线,称为应力-应变曲线。
确定屈服强度:应力-应变曲线中的屈服强度通常通过两种方法确定。一种是根据02%偏移法,屈服强度定义为应力-应变曲线与平行于初始线的02%偏移线相交的点;另一种方法是根据比例极限法,屈服强度定义为应力-应变曲线达到最大斜率的点。
完成试验:继续施加拉力,直到试样断裂。在断裂后,还可以测量和记录断口的形貌和其他特征,以进一步分析材料的性能。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
(1)抗拉性能。表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为06~065,低合金结构钢为065~075,合金结构钢为084~086。
伸长率是指金属材料在拉伸时,试样拉断后,其标距部分所增加的长度与原标距长度的百分比;断面收缩率是指金属试样拉断后,其缩颈处横截面面积的最大缩减量与原横截面面积的百分比。伸长率和断面收缩率越大,钢材的塑性越好。
(2)冷弯性能。冷弯性能是指钢材在常温下抵抗弯曲变形的能力,表示钢材在恶劣条件下的塑性。钢材按规定的弯曲角度a和弯心直径d弯曲后,通过检查弯曲处的外面和侧面有无裂纹、起层或断裂等进行评定。
通过冷弯可以揭示钢材内部的应力、杂质等缺陷,还可用于钢材焊接质量的检验,能揭示焊件在受弯面的裂纹、杂质等缺陷。
(3)冲击韧性。冲击韧性是指钢材抵抗冲击荷载作用而不破坏的能力。
工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。钢材的冲击韧性是衡量钢材质量的一项指标,特别对经常承受荷载冲击作用的构件,如重量级的吊车梁等,要经过冲击韧性的鉴定。冲击韧性越大,表明钢材的冲击韧性越好。
(4)硬度。硬度是指金属抵抗硬物体压人其表面的能力,硬度不是一个单纯的物理量,而是反映弹性、强度、塑性等的一个综合性能指标。
硬度的表示方法有布氏硬度、洛氏硬度、维氏硬度、肖氏硬度。最常用表示方法为布氏硬度,是用一定直径的球体(钢球或硬质合金球),以相应的试验力压人试样表面,经规定的保持时间后,卸除试验力,测表面压痕直径计算其硬度值。
(5)疲劳破坏。钢材在交变应力作用下,应力在远低于静荷载抗拉强度的情况下突然破坏,甚至在低于静荷载屈服强度时即发生破坏,这种破坏称为疲劳破坏。钢材疲劳破坏的应力指标用疲劳强度(或称疲劳极限)来表示,它是指试件在交变应力的作用下,不发生疲劳破坏的最大应力值。一般把钢材承受交变荷载1×107周次时不发生破坏所能承受的最大应力作为疲劳强度。设计承受交变荷载且需进行疲劳验算的结构时,应当了解所用钢材的疲劳强度。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)