骨骼肌有什么物理特性?了解这些特性有何实际意义?

骨骼肌有什么物理特性?了解这些特性有何实际意义?,第1张

  骨骼肌 又称横纹肌,肌肉中的一种。

  肌细胞呈纤维状,不分支,有明显横纹,核很多,且都位于细胞膜下方。肌细胞内有许多沿细胞长轴平行排列的细丝状肌原纤维。每一肌原纤维都有相间排列的明带(Ⅰ带)及暗带(A带)。明带染色较浅,而暗带染色较深。暗带中间有一条较明亮的线称H线。H线的中部有一M线。明带中间,有一条较暗的线称为Z线。两个z线之间的区段,叫做一个肌节,长约1.5~2.5微米。

  相邻的各肌原纤维,明带均在一个平面上,暗带也在一个平面上,因而使肌纤维显出明暗相间的横纹。骨骼肌细胞构成骨胳肌组织,每块骨骼肌主要由骨骼肌组织构成,外包结缔组织膜、内有神经血管分布。骨骼肌收缩受意识支配,故又称“随意肌”。收缩的特点是快而有力,但不持久。

  运动系统的肌肉muscle属于横纹肌,由于绝大部分附着于骨,故又名骨骼肌。每块肌肉都是具有一定形态、结构和功能的器官,有丰富的血管、淋巴分布,在躯体神经支配下收缩或舒张,进行随意运动。肌肉具有一定的弹性,被拉长后,当拉力解除时可自动恢复到原来的程度。肌肉的弹性可以减缓外力对人体的冲击。肌肉内还有感受本身体位和状态的感受器,不断将冲动传向中枢,反射性地保持肌肉的紧张度,以维持体姿和保障运动时的协调。

  1.肌的构造和形态

  人体肌肉众多,但基本结构相似。一块典型的肌肉,可分为中间部的肌腹和两端的肌腱。肌腹venter是肌的主体部分,由横纹肌纤维组成的肌束聚集构成,色红,柔软有收缩能力。肌腱tendo呈索条或扁带状,由平行的胶原纤维束构成,色白,有光泽,但无收缩能力,腱附着于骨处与骨膜牢固地编织在一起。阔肌的肌腹和肌腱都呈膜状,其肌腱叫做腱膜aponeurosis。肌腹的表面包以结缔组织性外膜,向两端则与肌腱组织融合在一起。

  肌的形态各异,有长肌、短肌、阔肌、轮匝肌等基本类型。长肌多见于四肢,主要为梭形或扁带状,肌束的排列与肌的长轴相一致,收缩的幅度大,可产生大幅度的运动,但由于其横截面肌束的数目相对较少,故收缩力也较小;另有一些肌有长的腱,肌束斜行排列于腱的两侧,酷似羽毛名为羽状肌(如股直肌),或斜行排列于腱的一侧,叫半羽状肌(如半膜肌、拇长屈肌),这些肌肉其生理横断面肌束的数量大大超过梭形或带形肌,故收缩力较大,但由于肌束短,所以运动的幅度小。短肌多见于手、足和椎间。阔肌多位于躯干,组成体腔的壁。轮匝肌则围绕于眼、口等开口部位。

  2.肌肉的命名原则

  肌肉可根据共形状、大小、位置、起止点、纤维方向和作用等命名。依形态命名的如斜方肌、菱形肌、三角肌、梨状肌等;依位置命名的如肩胛下肌、冈上肌、冈下肌、肱肌等;依位置和大小综合命名的有胸大肌、胸小肌、臀大肌等;依起止点命名的如胸锁乳突肌、肩胛舌骨肌等;依纤维方向和部位综合命名的有腹外斜肌、肋间外肌等;依作用命名的如旋后肌、咬肌等;依作用结合其它因素综合命名的如旋前圆肌、内收长肌、指浅屈肌等。了解肌的命名原则有助于对肌的理解和记忆。

  3.肌的配布规律和运动时的相互关系

  人体肌肉中,除部分止于皮肤的皮肌和止于关节囊的关节肌外,绝大部分肌肉均起于一骨,止于另一骨,中间跨过一个或几个关节。它们的排列规律是,以所跨越关节的运动轴为准,形成与该轴线相交叉的两群互相对抗的肌肉。如纵行跨越水平冠状轴前方的屈肌群和后方的伸肌群;分别从内侧和外侧与水平矢状轴交叉的内收肌群和具有外展功能的肌群;横行或斜行跨越垂直轴,从前方跨越的旋内(旋前)肌群和从后方跨越的旋外(旋后)肌群。一般讲几轴性关节就具有与几个运动轴相对应的对抗肌群,但也有个别关节,有的运动轴没有相应肌肉配布,如手的掌指关节,从关节面的形态看属于球窝关节,却只生有屈伸和收展两组对抗的肌肉,而没有与垂直轴交叉的回旋肌,所以该关节不能做主动的回旋运动,当然它有一定的被动的回旋能力。上述围绕某一个运动轴作用相反的两组肌肉叫做对抗肌,但在进行某一运动时,一组肌肉收缩的同时,与其对抗的肌群则适度放松并维持一定的紧张度,二者对立统一,相反相成。另外,在完成一个运动时,除了主要的运动肌(原动肌)收缩外,尚需其它肌肉配合共同完成,这些配合原动肌的肌肉叫协力肌。当然,肌肉彼此间的关系,往往由于运动轴的不同,它们之间的关系也是互相转化的,在沿此一轴线运动时的两个对抗肌,到沿彼一轴线运动时则转化为协力肌。如尺侧伸腕肌和尺侧屈腕肌,在桡腕关节冠状轴屈伸运动中,二者是对抗肌,而在进行矢状轴的收展运动时,它们都从矢状轴的内侧跨过而共同起内收的作用,此时二者转化为协力肌。此外,还有一些运动,在原动肌收缩时,必须另一些肌肉固定附近的关节,如握紧拳的动作,需要伸腕肌将腕关节固定在伸的位置上,屈指肌才能使手指充分屈曲将拳握紧,这种不直接参与该动作而为该动作提供先决条件的肌肉叫做共济肌。

  4.肌的辅助装置

  (一)筋膜

  筋膜fascia可分为浅、深两层。浅筋膜superficial fascia为分布于全身皮下层深部的纤维层,有人将皮下组织全层均列属于浅筋膜,它由疏松结缔组织构成。内含浅动、静脉、浅淋巴结和淋巴管、皮神经等,有些部位如面部、颈部生有皮肌,胸部的乳腺也在此层内。

  深筋膜profundal fascia又叫固有筋膜,由致密结缔组织构成,遍布全身,包裹肌肉、血管神经束和内脏器官。深筋膜除包被于肌肉的表面外,当肌肉分层时,固有筋膜也分层。在四肢,由于运动较剧烈,固有筋膜特别发达、厚而坚韧,并向内伸入直抵骨膜,形成筋膜鞘将作用不同的肌群分隔开,叫做肌间隔。在体腔肌肉的内面,也衬以固有筋膜,如胸内、腹内和盆内筋膜等,甚而包在一些器官的周围,构成脏器筋膜。一些大的血管和神经干在肌肉间穿行时,深筋膜也包绕它们,形成血管鞘。筋膜的发育与肌肉的发达程度相伴行,肌肉越发达,筋膜的发育也愈好,如大腿部股四头肌表面的阔筋膜,厚而坚韧。筋膜除对肌肉和其它器官具有保护作用外,还对肌肉起约束作用,保证肌群或单块肌的独立活动。在手腕及足踝部,固有筋膜增厚形成韧带并伸入深部分隔成若干隧道,以约束深面通过的肌腱。在筋膜分层的部位,筋膜之间的间隙充以疏松结缔组织,叫做筋膜间隙,正常情况下这种疏松的联系保证肌肉的运动,炎症时,筋膜间隙往往成为脓液的蓄积处,一方面限制了炎症的扩散,一方面浓液可顺筋膜间隙的通向蔓延。

  (二)腱鞘和滑液囊

  一些运动剧烈的部位如手和足部,长肌腱通过骨面时,其表面的深筋膜增厚,并伸向深部与骨膜连接,形成筒状的纤维鞘,其内含由滑膜构成的双层圆筒状套管,套管的内层紧包在肌腱的表面,外层则与纤维鞘相贴。两层之间含有少量滑液。因此肌腱既被固定在一定位置上,又可滑动并减少与骨面的摩擦。在发生中滑膜鞘的两层在骨面与肌腱间互相移行,叫做腱系膜,发育过程中腱系膜大部分消失,仅在一定部位上保留,以引导营养肌腱的血管通过。

  (三)滑液囊

  在一些肌肉抵止腱和骨面之间,生有结缔组织小囊,壁薄,内含滑液,叫做滑液囊synovial bursa,其功能是减缓肌腱与骨面的摩擦。滑液囊有的是独立封闭的,有的与邻近的关节腔相通,可视为关节囊滑膜层的突出物。

  骨骼肌骨骼肌细胞纵切面呈长条状; 核多,椭圆形,位于肌膜下方; 肌浆内肌原纤维沿细胞长轴平行排列,有明显横纹,染色较深的为暗带,较浅而发亮的为明带(HE染色)。肌纤维横切面呈不规则块状,肌原纤维断面呈细点状,核位于边缘(HE染色)。在特殊染色切片中,骨骼肌横纹尤其明显(PTAH染色 ,)。每条肌原纤维都有色浅的明带(I带)和色深的暗带(A带)交替排列,明带中央有一条色深的线为Z线、 暗带中部有色浅的H带,H带中央有一条色深的线为M线。相邻两个Z线之间的一段肌原纤维称为肌节,包括1/2 I带 + A带 + 1/2 I带,是骨骼肌收缩的基本结构单位。

  骨骼肌因大部分附着在躯干骨和四肢骨上而得名,它的肌纤维象个长圆柱子,如果把它切断,放在显微镜下观察,可见到许多横敛。因此又叫横敛肌。横敛肌受人的意志支配,也叫随意肌。

  骨骼肌

  大多数骨骼肌(skeletal muscle)借肌健附着在骨骼上。分布于躯干和四肢的每块肌肉均由许多平行排列的骨骼肌纤维组成,它们的周围包裹着结缔组织。包在整块肌外面的结缔组织为肌外膜(epimysium),它是一层致密结缔组织膜,含有血管和神经。肌外膜的结缔组织以及血管和神经的分支伸入肌内,分隔和包围大小不等的肌束,形成肌束膜(perimysium)。分布在每条肌纤维周围的少量结缔组织为肌内膜(endomysium),肌内膜含有丰富的毛细血管。各层结缔组织膜除有支持、连接、营养和保护肌组织的作用外,对单条肌纤维的活动、乃至对肌束和整块肌肉的肌纤维群体活动也起着调整作用。

  (一)骨骼肌纤维的光镜结构

  骨骼肌纤维为长柱形的多核细胞,长1~40mm,直径10~100μm。肌膜的外面有基膜紧密贴附。一条肌纤维内含有几十个甚至几百个细胞核,位于肌浆的周边即肌膜下方。核呈扁椭圆形,异染色质较少,染色较浅。肌浆内含许多与细胞长轴平行排列的肌原纤维,在骨骼肌纤维的横切面上,肌原纤维呈点状,聚集为许多小区,称孔海姆区(Cohnheim field)。肌原纤维之间含有大量线粒体、糖原以及少量脂滴,肌浆内还含有肌红蛋白。在骨骼肌纤维与基膜之间有一种扁平有突起的细胞,称肌卫星细胞(muscle satellite cell),排列在肌纤维的表面,当肌纤维受损伤后,此种细胞可分化形成肌纤维。

  肌原纤维(myofibril)呈细丝状,直径1~2μm,沿肌纤维长轴平行排列,每条肌原纤维上都有明暗相间、重复排列的横纹(cross striation)。由于各条肌原纤维的明暗横纹都相应地排列在同一平面上,因此肌纤维呈现出规则的明暗交替的横纹。横纹由明带和暗带组成。在偏光显微镜下,明带(light band)呈单折光,为各向同性(isotropic),又称I带;暗带(dark band)呈双折光,为各向异性(anisotropic),又称A带。在电镜下,暗带中央有一条浅色窄带称H带,H带中央还有一条深M线。明带中央则有一条深色的细线称Z线。两条相邻Z线之间的一段肌原纤维称为肌节(sarcomere)。每个肌节都由1/2I带+A带+1/2I带所组成。肌节长约2~25μm,它是骨骼肌收缩的基本结构单位。因此,肌原纤维就是由许多肌节连续排列构成的。

  (二)骨骼肌纤维的超微结构

  1.肌原纤维 肌原纤维是由上千条粗、细两种肌丝有规律地平行排列组成的,明、暗带就是这两种肌丝排布的结果。粗肌丝(thick filament)长约15μm,直径约15nm,位于肌节的A带。粗肌丝中央借M线固定,两端游离。细肌丝(thin filathent)长约1μm,直径约5nm,它的一端固定在Z线上,另一端插入粗肌丝之间,止于H带外侧。因此,I带内只有细肌丝,A带中央的H带内只有粗肌丝,而H带两侧的A带内既有粗肌丝又有细肌丝;所以在此处的横切面上可见一条粗肌丝周围有6条细肌丝;而一条细肌丝周围有3条粗肌丝。两种肌丝肌在肌节内的这种规则排列以及它们的分子结构,是肌纤维收缩功能的主要基础。

  粗肌丝的分子结构:粗肌丝是由许多肌球蛋白分子有序排列组成的。肌球蛋白(myosin)形如豆芽,分为头和杆两部分,头部如同两个豆瓣,杆部如同豆茎。在头和杆的连接点及杆上有两处类似关节,可以屈动。M线两侧的肌球蛋白对称排列,杆部均朝向粗肌丝的中段,头部则朝向粗肌丝的两端的两端并露出表面,称为横桥(cross bridge)。M线两侧的粗肌丝只有肌球蛋白杆部而没有头部,所以表面光滑。肌球蛋白头部是一种ATP酶,能与ATP结合。只有当肌球蛋白分子头部与肌动蛋白接触时,ATP酶才被激活,于是分解ATP放出能量,使横桥发生屈伸运动。

  细肌丝的分子结构:细肌丝由三种蛋白质分子组成,即肌动蛋白、原肌球蛋白和肌原蛋白。后二种属于调节蛋白,在肌收缩中起调节作用。肌动蛋白(actin)分子单体为球形,许多单体相互接连成串珠状的纤维形,肌动蛋白就是由两条纤维形肌动蛋白缠绕形成的双股螺旋链。每个球形肌动蛋白单体上都有一个可以与肌球蛋白头部相结合的位点。原肌球蛋白(tropomyosin)是由较短的双股螺旋多肽链组成,首尾相连,嵌于肌动蛋白双股螺旋链的浅沟内。肌原蛋白(troponin)由3个球形亚单位组成,分别简称为TnT、 TnI和 TnC 。肌原蛋白借TnT而附于原肌球蛋白分子上, TnI是抑制肌动蛋白和肌球蛋白相互作用的亚单位, TnC 则是能与Ca2+相结合的亚单位。

  2.横小管 它是肌膜向肌浆内凹陷形成的小管网,由于它的走行方向与肌纤维长轴垂直,故称横小管(transverse tubule,或称T小管)。人与哺乳动物的横小管位于A带与I带交界处,同一水平的横小管在细胞内分支吻合环绕在每条肌原纤维周围。横小管可将肌膜的兴奋迅速传到每个肌节。

  3.肌浆网 肌浆网(sarcoplasmic reticulum)是肌纤维内特化的滑面内质网,位于横小管之间,纵行包绕在每条肌原纤维周围,故又称纵小管。位于横小管两侧的肌浆网呈环行的扁囊,称终池(terminal cisternae),终池之间则是相互吻合的纵行小管网。每条横小管与其两侧的终池共同组成骨骼肌三联体(triad)。在横小管的肌膜和终池的肌浆网膜之间形成三联体连接,可将兴奋从肌膜传到肌浆网膜。肌浆网的膜上有丰富的钙泵(一种ATP酶),有调节肌浆中Ca2+浓度的作用。

  (三)骨骼肌纤维的收缩原理

  目前认为,骨骼肌收缩的机制是肌丝滑动原理(sliding filament mechanism)。其过程大致如下:①运动神经末梢将神经冲动传递给肌膜;②肌膜的兴奋经横小管迅速传向终池;③肌浆网膜上的钙泵活动,将大量Ca2+转运到肌浆内;④肌原蛋白TnC与Ca2+结合后,发生构型改变,进而使原肌球蛋白位置也随之变化;⑤原来被掩盖的肌动蛋白位点暴露,迅即与肌球蛋白头接触;⑥肌球蛋白头ATP酶被激活,分解了ATP并释放能量;⑦肌球蛋白的头及杆发生屈曲转动,将肌动蛋白拉向M线;⑧细肌丝向A带内滑入,I带变窄,A带长度不变,但H带因细肌丝的插入可消失,由于细肌丝在粗肌丝之间向M线滑动,肌节缩短,肌纤维收缩;⑨收缩完毕,肌浆内Ca2+被泵入肌浆网内,肌浆内Ca2+浓度降低,肌原蛋白恢复原来构型,原肌球蛋白恢复原位又掩盖肌动蛋白位点,肌球蛋白头与肌动蛋白脱离接触,肌则处于松弛状态。

  骨骼肌是体内最多的组织,约占体重的40%。在骨和关节的配合下,通过骨骼肌的收缩和舒张,完成人和高等动物的各种躯体运动。骨骼肌由大量成束的肌纤维组成,每条肌纤维就是一个肌细胞。成人肌纤维呈细长圆柱形,直径约60 μm,长可达数毫米乃至数十厘米。在大多数肌肉中,肌束和肌纤维都呈平行排列,它们两端都和由结缔组织构成的腱相融合,后者附着在骨上,通常四肢的骨骼肌在附着点之间至少要跨过一个关节,通过肌肉的收缩和舒张,就可能引起肢体的屈曲和伸直。我们的生产劳动、各种体力活动等,都是许多骨骼肌相互配合的活动的结果。每个骨骼肌纤维都是一个独立的功能和结构单位,它们至少接受一个运动神经末梢的支配,并且在体骨骼肌纤维只有在支配它们的神经纤维有神经冲动传来时,才能进行收缩。因此,人体所有的骨骼肌活动,是在中枢神经系统的控制下完成的。

  一、神经-骨骼肌接头处的兴奋传递

  运动神经纤维在到达神经末梢处时先失去髓鞘,以裸露的轴突末梢嵌入到肌细胞膜上称作终板的膜凹陷中,但轴突末梢的膜和终板膜并不直接接触,而是被充满了细胞外液的接头间隙隔开,其中尚含有成分不明的基质;有时神经末梢下方的终板膜还有规则地再向细胞内凹入,形成许多皱褶,其意义可能在于增加接头后膜的面积,使它可以容纳较多数目的蛋白质分子,它们最初被称为N-型乙酰胆碱受体,现已证明它们是一些化学门控通道,具有能与ACh特异性结合的亚单位。在轴突末梢的轴浆中,除了有许多线粒体外还含有大量直径约50nm的无特殊构造的囊泡(图2-19)。用组织化学的方法可以证明,囊泡内含有ACh;此ACh首先在轴浆中合成,然后贮存在囊泡内。据测定,每个囊泡中贮存的ACh量通常是相当恒定的,且当它们被释放时,也是通过出胞作用,以囊泡为单位“倾囊”释放,被称为量子式释放。在神经末梢处于安静状态时,一般只有少数囊泡随机地进行释放,不能对肌细胞产生显著影响。但当神经末梢处有神经冲动传来时,在动作电位造成的局部膜去极化的影响下,大量囊泡向轴突膜的内侧面靠近,通过囊泡膜与轴突膜的融合,并在融合处出现裂口,使囊泡中的ACh全部进入接头间隙。据推算,一次动作电位的到达,能使大约200~300个囊泡的内容排放,使近107个ACh分子被释放。轴突末梢处的电位变化引起囊泡排放的过程十分复杂,但首先是轴突末梢膜的去极化,引起了该处特有的电压门控式Ca2+通道开放,引起细胞间隙液中的Ca2+进入轴突末梢,触发了囊泡移动以至排放的过程。Ca2+的进入量似乎决定着囊泡释放的数目;细胞外液中低Ca2+或(和)高Mg2+,都可阻碍ACh的释放而影响神经-肌接头的正常功能。已故冯德培院士在30年代对神经-肌接头的化学性质传递进行过重要的研究。

  大多数骨骼肌(skeletal muscle)借肌健附着在骨骼上。分布于躯干和四肢的每块肌肉均由许多平行排列的骨骼肌纤维组成,它们的周围包裹着结缔组织。包在整块肌外面的结缔组织为肌外膜(epimysium),它是一层致密结缔组织膜,含有血管和神经。肌外膜的结缔组织以及血管和神经的分支伸入肌内,分隔和包围大小不等的肌束,形成肌束膜(perimysium)。分布在每条肌纤维周围的少量结缔组织为肌内膜(endomysium),肌内膜含有丰富的毛细血管(图6-1)。各层结缔组织膜除有支持、连接、营养和保护肌组织的作用外,对单条肌纤维的活动、乃至对肌束和整块肌肉的肌纤维群体活动也起着调整作用。

  (1)一块骨骼肌模式图,示肌外膜、肌束膜和肌内膜

  (2)骨骼肌纤维纵横切面

  (一)骨骼肌纤维的光镜结构

  骨骼肌纤维为长柱形的多核细胞(图6-1),长1~40mm,直径10~100μm。肌膜的外面有基膜紧密贴附。一条肌纤维内含有几十个甚至几百个细胞核,位于肌浆的周边即肌膜下方。核呈扁椭圆形,异染色质较少,染色较浅。肌浆内含许多与细胞长轴平行排列的肌原纤维,在骨骼肌纤维的横切面上,肌原纤维呈点状,聚集为许多小区,称孔海姆区(cohnheim field)。肌原纤维之间含有大量线粒体、糖原以及少量脂滴,肌浆内还含有肌红蛋白。在骨骼肌纤维与基膜之间有一种扁平有突起的细胞,称肌卫星细胞(muscle satellite cell),排列在肌纤维的表面,当肌纤维受损伤后,此种细胞可分化形成肌纤维。

  肌原纤维(myofibril)呈细丝状,直径1~2μm,沿肌纤维长轴平行排列,每条肌原纤维上都有明暗相间、重复排列的横纹(cross striation)。由于各条肌原纤维的明暗横纹都相应地排列在同一平面上,因此肌纤维呈现出规则的明暗交替的横纹。横纹由明带和暗带组成(图6-2)。在偏光显微镜下,明带(light band)呈单折光,为各向同性(isotropic),又称i带;暗带(dark band)呈双折光,为各向异性(anisotropic),又称a带。在电镜下,暗带中央有一条浅色窄带称h带,h带中央还有一条深 m线。明带中央则有一条深色的细线称z线。两条相邻z线之间的一段肌原纤维称为肌节(sarcomere)。每个肌节都由1/2i带+a带+1/2i带所组成(图6-3,6-4)。肌节长约2~25μm,它是骨骼肌收缩的基本结构单位。因此,肌原纤维就是由许多肌节连续排列构成的。

  (二)骨骼肌纤维的超微结构

  1.肌原纤维 肌原纤维是由上千条粗、细两种肌丝有规律地平行排列组成的,明、暗带就是这两种肌丝排布的结果(图6-4)。粗肌丝(thick filament)长约15μm,直径约15nm,位于肌节的a带。粗肌丝中央借m线固定,两端游离。细肌丝(thin filathent)长约1μm,直径约5nm,它的一端固定在z线上,另一端插入粗肌丝之间,止于h带外侧。因此,i带内只有细肌丝,a带中央的h带内只有粗肌丝,而h带两侧的a带内既有粗肌丝又有细肌丝(图6-4);所以在此处的横切面上可见一条粗肌丝周围有6条细肌丝;而一条细肌丝周围有3条粗肌丝(图6-4)。两种肌丝肌在肌节内的这种规则排列以及它们的分子结构,是肌纤维收缩功能的主要基础。

  粗肌丝的分子结构:粗肌丝是由许多肌球蛋白分子有序排列组成的。肌球蛋白(myosin)形如豆芽,分为头和杆两部分,头部如同两个豆瓣,杆部如同豆茎。在头和杆的连接点及杆上有两处类似关节,可以屈动。m线两侧的肌球蛋白对称排列,杆部均朝向粗肌丝的中段,头部则朝向粗肌丝的两端的两端并露出表面,称为横桥(cross bridge)(图6-4)。m线两侧的粗肌丝只有肌球蛋白杆部而没有头部,所以表面光滑。肌球蛋白头部是一种atp酶,能与atp结合。只有当肌球蛋白分子头部与肌动蛋白接触时,atp酶才被激活,于是分解atp放出能量,使横桥发生屈伸运动。

  细肌丝的分子结构:细肌丝由三种蛋白质分子组成,即肌动蛋白、原肌球蛋白和肌原蛋白。后二种属于调节蛋白,在肌收缩中起调节作用。肌动蛋白(actin)分子单体为球形,许多单体相互接连成串珠状的纤维形,肌动蛋白就是由两条纤维形肌动蛋白缠绕形成的双股螺旋链。每个球形肌动蛋白单体上都有一个可以与肌球蛋白头部相结合的位点。原肌球蛋白(tropomyosin)是由较短的双股螺旋多肽链组成,首尾相连,嵌于肌动蛋白双股螺旋链的浅沟内。肌原蛋白(troponin)由3个球形亚单位组成,分别简称为tnt、 tni和 tnc 。肌原蛋白借tnt而附于原肌球蛋白分子上, tni是抑制肌动蛋白和肌球蛋白相互作用的亚单位, tnc 则是能与ca2+相结合的亚单位

  骨骼肌肌原纤维超微结构及两种肌丝分子结构模式图(1)肌节不同部位的横切面 ,示粗肌丝与细肌丝的分布(2)一个肌节的纵切面,示两种肌丝的排列(3)粗肌丝与细肌丝的分子结构tnt肌原蛋白t,tnc肌原蛋白c,tni肌原蛋白i

  2.横小管 它是肌膜向肌浆内凹陷形成的小管网,由于它的走行方向与肌纤维长轴垂直,故称横小管(transverse tubule,或称t小管)。人与哺乳动物的横小管位于a带与i带交界处,同一水平的横小管在细胞内分支吻合环绕在每条肌原纤维周围(图6-5)。横小管可将肌膜的兴奋迅速传到每个肌节。

  3.肌浆网 肌浆网(sarcoplasmic reticulum)是肌纤维内特化的滑面内质网,位于横小管之间,纵行包绕在每条肌原纤维周围,故又称纵小管(图6-5)。位于横小管两侧的肌浆网呈环行的扁囊,称终池(terminal cisternae),终池之间则是相互吻合的纵行小管网。每条横小管与其两侧的终池共同组成骨骼肌三联体(triad)(图6-5)。在横小管的肌膜和终池的肌浆网膜之间形成三联体连接,可将兴奋从肌膜传到肌浆网膜。肌浆网的膜上有丰富的钙泵(一种atp酶),有调节肌浆中ca2+浓度的作用。

  (三)骨骼肌纤维的收缩原理

  目前认为,骨骼肌收缩的机制是肌丝滑动原理(sliding filament mechanism)。其过程大致如下:①运动神经末梢将神经冲动传递给肌膜;②肌膜的兴奋经横小管迅速传向终池;③肌浆网膜上的钙泵活动,将大量ca2+转运到肌浆内;④肌原蛋白tnc与ca2+结合后,发生构型改变,进而使原肌球蛋白位置也随之变化;⑤原来被掩盖的肌动蛋白位点暴露,迅即与肌球蛋白头接触;⑥肌球蛋白头atp酶被激活,分解了atp并释放能量;⑦肌球蛋白的头及杆发生屈曲转动,将肌动蛋白拉向m线(图6-6);⑧细肌丝向a带内滑入,i带变窄,a带长度不变,但h带因细肌丝的插入可消失(图6-7),由于细肌丝在粗肌丝之间向m线滑动,肌节缩短,肌纤维收缩;⑨收缩完毕,肌浆内ca2+被泵入肌浆网内,肌浆内ca2+浓度降低,肌原蛋白恢复原来构型,原肌球蛋白恢复原位又掩盖肌动蛋白位点,肌球蛋白头与肌动蛋白脱离接触,肌则处于松弛状态。

  (1)肌纤维未收缩时,肌球蛋白分子头部未与肌动蛋白接触

  (2)肌纤维收缩时,肌球蛋白头部与肌动蛋白位点接触,atp分解发,释放能量

  (3)肌球蛋白头部向m线方向转动,使肌动蛋白丝部向a带滑入

  (4)新的接触重新开始

biceps reflex abnormalitg (一)格林—巴利综合征(Guillian-Barre’s syndrome) 多有感染病史,主要表现四肢远端对称性无力,可波及躯干和颅神经,四肢末梢手套、袜套样的感觉减退或消失。严重的可累及肋间肌和隔肌导致呼吸肌麻痹。瘫痪为弛缓性,肌张力低,肱二头肌肌腱反射及其它腱反射减弱或消失,伴有远端肢体麻木、烧灼感、神经根性痛、感觉过敏、可有植物神经损害。口腔分泌物增多、血压升高、出汗、流涎、皮肤潮红、心律不齐及皮肤营养障碍,少数病例有括约肌功能障碍。脑脊液呈蛋白—细胞分离现象。

(二)多发性神经炎(polyneuritis) 多有感染、中毒、营养缺乏、代谢障碍等病史。急性或慢性起病,肢体远端感觉、运动障碍,轻瘫或完全瘫、肌张力减低,肱二头肌及其它肌腱反射减弱或消失。后期可出现肌萎缩、肢体挛缩与畸形。早期感觉障碍为肢体远端触痛、蚁走感、烧灼痛和感觉异常,以后可出现深、浅感觉减退或消失。感觉障碍程度可不同,典型患者呈手套、袜套状分布。皮肤光滑、干燥或菲薄、指(趾)甲松脆、多汗或无汗等植物神经症状常明显。

(三)臂丛上干型损害 表现为上肢近端损害,而手及手指的机能保留,主要是三角肌、肱二头肌、肱肌及肱桡肌瘫痪和萎缩,有时岗上肌、岗下肌和肩胛下肌亦可波及。出现上肢不能上举、不能屈肘、外展、内旋与前收。肱二头肌反射消失,桡骨膜反射也可能减弱。因感觉纤维重叠支配,所以感觉保存,也可出现上臂与前臂外侧有部分缺失。

(四)颈椎病(cervical spondylopathy) 多发于40~50岁,男性多于女性,起病较缓慢,压迫5~6颈神经根引起臂神经痛。压迫感觉神经根时产生根性神经痛,压迫运动神经根时产生肌痛性疼痛。根性为发麻或确电样疼痛,位于上肢远端,多在前臂桡侧及手指。肌痛性常在上肢近端、肩部及肩胛等区域,表现为持续性的钝痛及短暂的深部钻刺样不适感。多数肩部运动受限,病程较短者常有肩部附近肌腱的压痛。肱二、三头肌腱反射可减低或丧失。

不包括。

肌梭(muscle spindle) 分布于骨骼肌中感受牵张刺激的本体感受器。形如梭状,外面有结缔组织膜包围,有感觉神经末梢缠绕,内中一般含有2条~12条特化的细骨骼肌纤维,两端一般附着于肌腱或梭外肌纤维。

感觉神经纤维有两种:一种较粗,为快传纤维,主要传导肌肉牵张的感觉信息;另一种较细,主要与本体感觉有关。梭内肌纤维受一些较细的传出神经纤维的支配。梭内肌处于收缩状态时,肌梭感觉神经末梢的灵敏度增强。

扩展资料:

梭内肌纤维的结构:

梭内肌纤维(intrafusal muscle fiber)是细小的骨骼肌纤维。位于肌梭内。比梭外肌纤维细小得多。中间段肌浆较多,肌原纤维较少,含有许多细胞核。这些细胞核有的堆聚在一起,使中段膨大成核袋,有些则不膨大,在中间排列成链状,分别称为核袋肌纤维和核链肌纤维。

核袋肌纤维占肌梭全长,两极段有横纹,可收缩,中段膨大处是不能收缩的核袋,核袋两端与梭内肌纤维的两极段相连续。核袋肌纤维收缩时,牵拉核袋。核链肌纤维比核袋肌纤维短、细,中间核链处不能收缩,核链两端与肌纤维的两极段相续。 

-肌梭

-梭内肌纤维

脊神经支配的肌肉:1、支配头运动肌2、支配膈肌,斜方肌3、支配三角肌,肱二头肌4、支配腕伸肌

5、支配髂腰肌6、支配股四头肌7、支配胫前肌8、支配拇长伸肌9、支配腓肠肌脊神经连接于脊髓,分布在躯干、腹侧面和四肢的肌肉中,主管颈部以下的感觉和运动。脊神经由脊髓发出,主要支配身体和四肢的感觉、运动和反射。赤称脊髓神经,由脊髓发出的成对神经。人体共有31对,其中颈神经8对,胸神经12对,腰神经5对,骶神经5对,尾神经1对。每一对脊神经由前根和后根在椎间孔处合成。

前根由脊髓前角运动神经元的轴突及侧角的交感神经元或副交感神经元的轴突组成。纤维随脊神经分布到骨骼肌、心肌、平滑肌和腺体,支配控制肌肉收缩和腺体的分泌。后根上有脊神经节,是传入神经元细胞体聚集而成,后根由感觉神经元的轴突组成,其末梢分布全身各处,能感受各种刺激。

脊神经是混合神经,典型的脊神经含有四种纤维成分:躯体运动、躯体感觉、内脏运动、内脏感觉纤维。脊神经出椎间孔后即刻分为前支、后支,每支内均含传入、传出纤维。后支一般细小,分布于脊柱附近较小区域内的皮肤和肌肉。前支粗大,分布到颈部以下其余各部位的皮肤和肌肉。

其中除第2~11对胸神经前支沿肋间分布外,其余神经的前支都先交织成丛,再由此丛发出分支分布于所支配的区域。这些脊神经分别形成颈丛、臂丛、腰丛和骶丛,而且均左右成对。

扩展资料:

颈神经:

位于颈部,共有8对。第1~7对颈神经在相应颈椎椎弓上方的椎间孔出椎管;第8对颈神经在第7颈椎与第1胸椎之间的椎间孔出椎管。颈神经的前支在颈部组成颈丛和臂丛。第1~4颈神经的前支组成颈丛,第5~8颈神经的前支组成臂丛。颈神经的后支较相应的前支较粗大,为感觉性转入纤维,前支为运动纤维。经椎骨横突之间向后穿行。颈神经的分布,按照脊髓节段,呈节段性分布。颈丛神经分布于胸锁乳突肌、膈肌、胸膜及枕部、耳廓、颈前区和肩部的皮肤;臂丛神经分布于上臂的肌肉和皮肤;后支分布于枕、项、背部的肌肉和皮肤。第1、2颈神经根离开脊髓后并不通过椎间孔,而直接沿椎体进入分布区。因此第1、2神经根容易遭受直接外伤,但不存在受椎间孔压迫的可能性。-脊神经

1假性肥大型肌营养不良

(1)Duchenne型(DMD) 是肌营养不良中发病率最高、病情最为严重的一型,常早年致残并导致死亡,故称为“严重型”。几乎所有患者均为男孩,女孩患病极为罕见。患者多在3岁之后发病,可见患儿动作笨拙,跑、跳等均不及同龄小孩,因骨盆带及股四头肌无力,致使行走缓慢,易跌倒,登楼上坡困难,下蹲或跌倒后起立费劲。站立时腰椎过度前凸;步行时挺腹和骨盆摆动呈“鸭步”样步态;仰卧起立时,必须先翻身与俯卧,以双手撑地再扶撑于双膝上,然后慢慢起立,称Gower征。随病情发展累及肩带及上臂肌时,则双臂上举无力,呈翼状肩胛,萎缩无力的肌肉呈进行性加重,并可波及肋间肌。假性肌肥大最常见于双侧腓肠肌,因肌纤维被结缔组织和脂肪所取代,变得肥大而坚硬。假性肌肥大也可见于三角肌、股四头肌等其他部位的肌肉,肌腱反射减弱或消失。随肌萎缩无力的加重及关节活动的减少,可出现肌腱挛缩及关节强硬、畸形,大约在12岁左右便不能站立和行走。不少患儿伴心肌病变,心电图多有异常。部分患儿智力低下。大约在20岁,患者多因呼吸衰竭、肺部感染及心力衰竭等死亡。

(2)Becker型(BMD) 与DMD相似,区别要点主要在于病程长,发展相对缓慢,有一段正常的生活期,故称之为“良性型”。本型一般在5~20岁发病,大约在出现症状后20余年才不能行走,四肢近端肌肉萎缩无力,尤以下肢明显,腓肠肌肥大常为早期征象,心肌受损及关节挛缩畸形较少见,智力一般正常,大多可存活至40~50岁。

2Emery-Dreifuss肌营养不良

是一种少见的良性X连锁隐性遗传病,多于2~10岁发病,初期常表现上肢近端及肩胛带肌无力,数年后逐渐累及骨盆带及下肢远端肌群,一般以胫骨前肌和腓骨肌无力和萎缩最为明显,少数可伴有面肌轻度无力。本型常在早期出现颈、肘、膝、踝关节挛缩,几乎所有患者均伴有不同程度的心脏损害。

3面肩肱型肌营养不良

为常染色体显性遗传病,男女均可罹患,发病年龄差异很大,一般为5~20岁。病变主要侵犯面肌、肩胛带及上臂肌群。面肌受累时表现为面部表情淡漠、闭眼、示齿力弱,不能蹙眉、皱额、鼓气、吹哨等。由于常合并口轮匝肌的假性肥大,以致上下嘴唇增厚而微噘,同时病变会延及双侧肩胛带及臂肌群,常为不对称性,以致患者双臂不能上举,外展不能过头,出现梳头、洗脸、穿衣等困难。由于肩胛带肌无力、萎缩,表现为明显的翼状肩,有的表现为游离肩或衣架样肩胛。可见三角肌、腓肠肌假性肥大,心肌受累罕见,晚期才累及骨盆带肌群,病情进展缓慢,一般预后较好。

4肢带型肌营养不良

(1)LGMD1A型 多在青壮年期间发病。初期表现为四肢近端无力,逐渐累及肢体远端,后期见有踝关节挛缩,病情进展缓慢,最终失去行走能力。血清肌酸磷酸激酶(CPK)水平升高,肌电图(EMG)呈肌源性损害。

(2)LGMD2A 临床严重程度不一,大部分表现较轻,发病年龄4~15岁。主要表现为双下肢近端无力,呈对称性,后累及肩胛带肌群,多于30岁左右丧失行走能力。有些患者可有腓肠肌假性肥大,但程度较轻,后期可有小腿肌挛缩、脊柱强直、血清CPK水平明显升高。

(3)LGMD2C(重型儿童常染色体隐性遗传性肌营养不良,SCARMD) 病情严重,部分病例有类似DMD的病程,其他多介于DMD和BMD之间,发病年龄为3~12岁。首先侵犯骨盆带肌,以后波及胸部、颈部肌,还伴有心肌受累,一般不影响智力,多有腓肠肌假性肥大,常于10~13岁丧失行走能力,30~40岁出现呼吸衰竭,血清CPK水平明显升高。

5眼咽型肌营养不良

属常染色体显性遗传性肌病,多在40岁左右起病。首先出现对称性眼外肌无力和(或)眼睑下垂,后逐渐表现吞咽、构音困难,进展十分缓慢。少数患者以吞咽障碍作为首发症状,有些患者伴有轻度的面肌、咬肌、颞肌以及肢带肌等的无力和萎缩。

6远端型肌营养不良

目前已将该型肌营养不良分为4个亚型,即常染色体显性遗传Ⅰ型、Ⅱ型及常染色体隐性遗传Ⅰ型、Ⅱ型。该类肌病的共同特点是,肌无力主要表现在四肢的远端,以伸肌的无力和萎缩最明显;无感觉障碍及自主神经损害的表现;肌电图为肌源性损害,其中有些类型的病理学检查与遗传性包涵体肌病相似。

7强直性肌营养不良

本病为常染色体隐性遗传。本病的病理特点与其他类型的肌营养不良不同,肌纤维坏死和再生少见,而主要改变为肌纤维周边大量的肌浆块形成,内核肌纤维明显增多,纵切面可见核链形成。此外还可有选择性Ⅰ型纤维萎缩。

强直型肌营养不良为多系统损害疾病,除肌萎缩、肌无力和肌强直外,还有内分泌系统损害,如阳痿、脱发、睾丸萎缩、乳房肿大和卵巢功能下降;心脏损害,如心律失常、房室传导阻滞;神经精神损害,如精神发育迟滞、遗忘、多疑;眼部损害,如晶体浑浊和白内障,有些患者还伴有运动感觉性周围神经病。

1假肥大型

呈性连锁隐性遗传,男性患病,女性携带。在幼儿期发病,表现为走路年龄推迟,行走缓慢、易跌,跌倒后不易爬起。多数伴小腿肌的肥大,初期肥大肌肌力相对较强。臀中肌受累致骨盆左右上下摇动;跟腱挛缩而足跟不能着地;腰大肌受累致腹部前凸,脑后仰,呈鸭型步态。从蹲位只能靠两手撑着自己身体而逐步站直大腿,逐步挺起身子。骨盆带肌肉受累之后,逐步出现肩胛带肌肉萎缩、无力,两臂不能高举。菱形肌、前锯肌、肩胛肌、冈上、冈下肌萎缩使肩胛游离、肩胛骨呈翼状耸起,称翼状肩。病程逐渐发展,部分儿童由于本身生长发育的影响,出现病程的相对稳定或好转。多数患儿在10岁时丧失行走能力,依靠轮椅或坐卧不起,出现脊柱和肢体畸形。晚期,四肢挛缩,完全不能活动。常因伴发肺部感染、褥疮等疾患在20岁之前死亡。智商有不同程度减退。半数以上可伴心脏损害,心电图异常。早期呈现心肌肥大,除心悸外常无症状。

2肩-肱型

呈常染色体显性遗传,男女均可发病,病情轻重不一。轻者可无任何症状,在偶然情况或医师进行家谱分析时发现。幼年或青春期隐匿发病,发病后数年才被发现。面肌受累较早,表现为睡眠时闭眼不紧、吹气无力、苦笑脸容。逐步出现颈肌、肩胛带肌、肱肌的萎缩、无力。肩胛带和肱部肌肉萎缩,两侧肩峰明显隆突。整个肩胛部类似“衣架”。前臂肌肉正常。病程发展缓慢,躯干和骨盆带肌较晚累及。肢体远端肌肉很少萎缩。偶伴腓肠肌肥大。多数病例不影响寿命。

3肢带型

较复杂,非单一疾病,部分呈常染色体隐性遗传。两性均可发病。多数在青少年起病,个别较晚。首发症状为骨盆带肌的无力、萎缩。病情发展缓慢,逐步累及肩胛带,出现两臂上举困难、翼状肩等典型症状。晚期患者也可出现肌肉挛缩、行动不能。无智能障碍。病情严重程度和进展速度差异很大,不影响寿命。

4眼肌型

少见。部分患者是常染色体显性遗传,发病年龄不一。表现为眼睑下垂和进行性眼外肌麻痹。部分患者出现头面部、咽喉部、颈部或其他肢体肌肉无力和萎缩。少数病人可伴随脊髓、小脑和视网膜受损,智能低下和脑脊液蛋白质异常增高。

5远端型

根据发病年龄,自幼年至中年后期不等也可分为数种亚型,为常染色体显性或隐性遗传。表现为进行性远端小肌肉萎缩,逐步向近端发展,进展缓慢,不影响寿命。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/11099114.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-22
下一篇2023-11-22

发表评论

登录后才能评论

评论列表(0条)

    保存