星球到底怎么画

星球到底怎么画,第1张

由各种物质组成的巨型球状天体,叫做星球。星球有一定的形状,有自己的运行轨道。

中文名 星球 外文名 Planet 分 类 行星,恒星,矮行星 组 成 各种物质 类 型 天体 形 状 球状 位 置 银河系 行星分类 固态行星与气态行星

目录

1 基本介绍

2 行星定义

基本介绍编辑

由各种物质组成的巨型球状天体,叫做星球

恒星定义

恒星

恒星

a恒星由炽热气体组成的,能自己发光的球状或类球状天体。

离地球最近的恒星是太阳,其次是半人马座比邻星。

行星定义编辑

星球

星球 [1]

a天体;b围绕恒星运转;c自身引力足以克服其刚体力而使天体呈圆球状;d能够清除其轨道附近的其它物体。

符合这一新定义的包括:

2000年能观测到的有八颗:水星、金星、地球

、火星、木星、土星、天王星、海王星。

矮行星的定义

不能够清除其轨道附近的其它物体;e不是卫星。符合这一定义的包括:

谷神星、冥王星、阋神星(原齐娜)、鸟神星、塞德娜,总计五颗。

太阳系小天体的定义

a天体;b围绕太阳运转;c不符合行星和矮行星的定义。

原来的小行星、彗星等全部归入太阳系小天体的范畴。

中子星怎么画如下:

1、首先画出星球上半部分的半圆形轮廓,再来将星球环带的内侧轮廓边线画出来。

2、补充画出星球环带的外侧轮廓边线后,再将星球的下半部分弧形轮廓画出来。

3、接着在画好的圆形星球的上方右侧位置画出两个大小不同的圆圈后,下方左侧也画一个圆圈出来。

4、最后将星球用土**和浅**涂上,星球带图上红色,星球就画好啦。

由各种物质组成的巨型球状天体,叫做星球。星球有一定的形状,有自己的运行轨道。恒星由炽热气体组成的,能自己发光的球状或类球状天体。离地球最近的恒星是太阳,其次是半人马座比邻星。

星球有:地球、金星、天王星、火星、木星、土星、海王星、水星、卫律四、土卫六、太阳、月亮、冥王星、天狼星、北斗星、土卫一行星、土卫二行星、织女星、哈雷彗星、掠日彗星、中子星、中子双星、褐矮星、红超巨星、超新星、角宿七等。

地球是太阳系由内及外的第三颗行星,也是太阳系中直径、质量和密度最大的类地行星,距离太阳约1496亿千米。地球自西向东自转,同时围绕太阳公转。现有455亿岁,有一个天然卫星——月球,二者组成一个天体系统——地月系统。

金星。

据新华社得知金星是地球的近邻,我国古代称之为太白,即太白星。当它早晨出现时,人们称它为启明或晨星当它黄昏出现时,人们称它为长庚。

星球有一定的形状,有自己的运行轨道,由各种物质组成的巨型球状天体,叫做星球。

宇宙中的星球总数大约为1万亿亿颗。我们所在的银河系大约有400亿颗星球, 由于许许多多星球距离我们非常遥远,我们无法看到,只能看到它们所在的星系。这就如同我们能看到数公里以外的树林,但是看不清树叶。 宇宙中有成千上万亿个星系,每个星系由几百亿颗星球组成。

整个可见宇宙空间大约有700万亿亿颗恒星,并表示这是“目前为止最为精确的观测数据”。澳大利亚国立大学天文学和天体物理学研究学院博士西蒙·德赖弗报告说,他的研究小组使用国际上功能最强大的天文望远镜,在地球附近空间选择一个区域的星系进行局部观测,进而推算出了这一数字。如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”。

扩展资料:

层次结构

当代天文学研究成果表明,宇宙是有层次结构的、不断膨胀、物质形态多样的、不断运动发展的天体系统。

行星、小行星、彗星和流星体都围绕中心天体太阳运转,构成太阳系。

太阳系外也存在其他行星系统。约2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。银河系的直径约10万光年,太阳位于银河系的一个旋臂中,距银心约26万光年。

银河系外还有许多类似的天体系统,称为河外星系,常简称星系。目前观测到1000亿个星系,科学家估计宇宙中至少有2万亿个星系。

星系聚集成大大小小的集团,叫星系团。平均而言,每个星系团约有百余个星系,直径达上千万光年。现已发现上万个星系团。包括银河系在内约40个星系构成的一个小星系团叫本星系群。

若干星系团集聚在一起构成的更高一层次的天体系统叫超星系团。超星系团往往具有扁长的外形,其长径可达数亿光年。通常超星系团内只含有几个星系团,只有少数超星系团拥有几十个星系团。

本星系群和其附近的约50个星系团构成的超星系团叫做本超星系团。

星系分类

根据可反映星系发展状态的序列号对星系进行了分类,可以粗略地将星系划分出椭圆星系、透镜星系、漩涡星系、棒旋星系和不规则星系等五种。

-宇宙

仙女星系(英语:Andromeda Galaxy;M31;NGC 224;曾被称为仙女座大星云) ,位于仙女座方位的拥有巨大盘状结构的旋涡星系,在梅西耶星表编号为M31,星云星团新总表编号位NGC 224,直径22万光年,距离地球有254万光年,是距银河系最近的大星系。

仙女星系在东北方向的天空中看起来是纺锤状的椭圆光斑,是肉眼可见的最遥远的天体之一。

仙女星系和银河系同处于本星系群,算上暗物质的话,仙女星系质量小于银河系,直径至少是银河系的16倍。 仙女星系是本星系群中最大的星系,正以每秒300公里的速度朝向银河系运动,在30-40亿年后可能会撞上银河系,最后并合成椭圆星系。

中文名

仙女座大星系

外文名

Andromeda Galaxy,M31

别称

NGC 224, UGC 454, PGC 2557,仙女座大星云

分类

螺旋星系

星座

仙女座

赤经

00h 42m 443s

赤纬

+41 16′9″

距地距离

254 011百万光年(778 33千秒差距)

视星等

436(一说344)

视直径

190'

质量

83542 10^41kg(15 10^12太阳质量)

半径

110,000光年

发现者

西门·马里乌斯/阿尔苏飞

发现时间

1612年

红位移

-301 1 km/s

可视面积

190′ 60′

可分辨星系

M31/M32/M110

星系类型

SA(s)b

编号日期

1764年8月3日

日心视向速度

301 1km/s

绝对星等

-215

恒星数目

1 10^12

梅西耶编号

M31

仙女星系仙女座星系白矮星冥王星三角座星系银河系大麦哲伦星云仙女星系为什么叫星系杀手比邻星银河系和仙女星系谁大

观测 历史

最早的仙女座星系观测纪录可能出自波斯的天文学家阿尔苏飞,他描述它是"小云",星图上的标记在那个时代也是"小云"。第一个以望远镜进行观测和记录是西门·马里乌斯,时为1612年。

1764年梅西耶将他编目为M31,并相信西门·马里乌斯为发现者,未察觉阿尔苏飞在更加早期的工作。

1785年,天文学家威廉·赫歇尔注意到在星系的核心区域有偏红色的杂色,使他相信这是所有星云中最靠近的"大星云",并依据星云的颜色和亮度估计(并不正确)距离应在天狼星的2,000倍之内。

1786年,F·W·赫歇耳第一个将它列入能分解为恒星的星云。

1864年,威廉·哈金斯观察仙女座星系的光谱,注意到仙女座星系的光谱是在频率上连续的连续光谱上叠加上了暗线,与气体星云不同,很像是单独的一颗恒星,因此他推论仙女座星系具有恒星的本质。

1885年,一颗超新星仙女座星系(是仙女座S),这是第一次看见如此遥远星系中的恒星。在当时,他的亮度被低估了,只被认为是一颗新星,因此称为1885新星。

1914年皮斯探知M31有自转运动。

1917年,希伯·柯蒂斯观测到M31内的一颗新星,搜寻照相的记录又找到了11颗。柯蒂斯注意到这些新星的平均光度约为10等,远低于发生在银河系内的星等。这一结果使估计的距离提高至500,000光年,也是他成为"岛宇宙"假说的拥护者。此一假说认为螺旋星云也是独立的星系。

1920年,发生了哈洛·夏普利和希伯·柯蒂斯之间的大辩论,就银河系、螺旋星云、和宇宙的尺度进行辩论。为了支持他所声称的M31是外在的星系,柯蒂斯提出我们自己的银河系也有尘埃云造成类似的黑色小道,并且有明显的多普勒位移。

1924~1925年,哈勃在照相底片上证认出仙女座星系旋臂上的造父变星,并根据周光关系算出距离,确认它是银河系之外的恒星系统,辩论便平息了。使用25米(100 英寸)反射望远镜拍摄的照片,M31的距离得以被确认。哈勃的测量决定性的证实这些恒星和气体不在我们的银河系之内,而整体都是离我们银河系有极大距离的一个星系。

1939年经巴布科克等人的研究,测出从中心到边缘的自转速度曲线,并由此得知星系的质量。据估计,M31的质量不小于 31 10个太阳质量,比银河系大一倍以上,是本星系群中质量最大的一个。M31的中心有一个类星核心,直径只有25光年,质量相当于10太阳质量,即一立方秒差距内聚集1500个恒星。类星核心的红外辐射很强,约等于银河系整个核心区的辐射。但那里的射电却只有银心射电的1/20。射电观测指出,中性氢多集中在半径为10千秒差距的宽环带中。氢的含量为总质量的1%,这个比值较之银河系的(14~7%)要小。由此可以认为,M31的气体大部分已形成恒星。

1943~1944年,沃尔特·巴德分辨出仙女座星系核心部分的天体,证认出其中的星团和恒星。基于他对这个星系的观测,他分辨出两种不同星族的恒星,他称呼在星系盘中年轻的、高速运动的恒星为第一星族,在核球年老的、偏红色的是第二星族,这个命名的原则随后也被引用在我们的银河系内,以及其他的各种场合。(恒星分为二个星族的现象欧特在此之前就注意到了)并指明星族的空间分布与银河系相。巴德博士也发现造父变星有两种不同的型态,使得对M31的距离估计又增加了一倍,也对其余的宇宙产生影响。M31旋臂上是极端星族Ⅰ,其中有O-B型星、亮超巨星、OB星协、电离氢区。在星系盘上观测到经典造父变星、新星、红巨星、行星状星云等盘族天体。中心区则有星族Ⅱ造父变星。晕星族成员的球状星团离星系主平面可达30千秒差距以外。还发现,M31成员的重元素含量,从外围向中心逐渐增加。这种现象表明,恒星抛射物质致使星际物质重元素增多的过程,在星系中心区域比外围部分频繁得多。

仙女座星系

19世纪50年代,仙女座星系的第一张无线电图是由约翰·鲍德温和剑桥无线电天文小组合作共同完成的。在2C星表无线电天文目录上,仙女座星系的核心被编目为2C 56。

仙女座星系

2006年,发现了9个星系沿着横越过仙女座星系核心的平面延伸著,而不是随意的散布在周围。这也许可以说明这些卫星星系有共同的起源。

M31在天文学史上有着重要的地位,在星系的研究中扮演着一个重要的角色,因为它虽然不是最近的星系,却是距离最近的一个巨大螺旋星系。

研究成果

早在18世纪,伊曼努埃尔·康德(Immanuel Kant)就认为,这类星云可能是银河系之外的巨大恒星系统,这一见解甚至到了20世纪初仍未得到证实。另一个颇有市场的观点是,星云乃银河系内部气体尘埃云形成恒星的区域。这个问题在上世纪20年代,埃德温·哈勃使用威尔逊山天文台新造的100英寸(254米)望远镜,在仙女座星云的外区证认出了个别的恒星,才获得解决。

仙女座星系结构

这些恒星中有些是造父变星。由于造父变星的变化与它们的绝对星等有关,所以哈勃得以从它们的视亮度计算出到仙女座星系的距离,由此证明它确实是另外一个独立的星系。

哈勃估计的距离,后来主要通过沃尔特·巴德(Walter Baade)的研究,几经修正而有所增大。哈勃的工作证实了银河系不过是许许多多星系中的一个而已,宇宙远远伸展到了银河系边界以外。在700千秒差距距离上,仙女座星系的直径将是50千秒差距,大致比我们的银河系大一倍,约含4000亿颗恒星。

一般认为银河系的外观与仙女座大星系十分相像,两者共同主宰着本星系群。仙女座大星系弥漫的光线是由数千亿颗恒星成员共同贡献而成的。几颗围绕在仙女座大星系影像旁的亮星,其实是我们银河系里的星星,比起背景物体要近得多了。仙女座大星系又名为M31,因为它是著名的梅西耶星团星云表中的第31号弥漫天体。星云中的恒星可以划分成约20个群落,这意味着它们可能来自仙女座星系"吞噬"的较小星系,

仙女座星系的直径至少是50千秒差距(16万光年),为银河系直径的15倍(银河系直径为十万光年),是本星系群中最大的一个星系。仙女座星系和银河系有很多的相似,对二者的对比研究,能为了解银河系的运动、结构和演化提供重要的线索。

仙女座大星云是秋夜星空中最美丽的天体,也是第一个被证明是河外星系的天体,还是肉眼可以看见的最遥远的天体。暗物质,可能是在这个集团中质量最大的。斯皮策太空望远镜观测显示仙女座星系有将近一兆(一万亿)颗恒星,数量远比我们的银河系多。在2006年重新估计银河系的质量大约是仙女座星系的50%,大约是71 10^12太阳质量(符号:M )。

仙女座星系在适度黑暗的天空环境下很容易用肉眼看见,但是如此的天空仅存在于小镇、被隔绝的区域、和离人口集中区域很远的地方,只受到轻度光污染的环境下。肉眼看见的仙女座星系非常小,因为它只有中心一小块的区域有足够的亮度,但是这个星系完整的角直径有满月的七倍大。

卫星星系

依据现有的证据,似乎在不久前的过去M31曾经与M32遭遇过。M32原本可能是一个大星系,但核心被M31从星盘内移除,并且在核心区域经历恒星形成的暴增。 (即星暴)

在1900年前发现的仙女座大星系的卫星星系

名称

类型

距日距离

(百万光年)

星等

发现者

发现年

椭圆星系M32

cE2

265 010

+90

Guillaume Le Gentil

1749

椭圆星系M110

E6 pec

29

+89

梅西尔

1773

星系特征

仙女座星系以大约每秒300公里(180 英里/秒)的速度靠近太阳,所以它是少数蓝移的星系之一。将太阳系在银河内的速度考量进去,将会发现仙女座星系以100~140公里/秒(62–87 英里/秒)的速度接近银河系。即使如此,这并不意味着未来会和银河系发生碰撞,不过根据2015年最新观测数据认为,银河系可能正在以每秒200公里的速度靠近M31。即使会发生碰撞,也是30亿( 10)年后的事情。在这种情况下,两个星系会合并成一个更巨大的星系。在星系群中这种事件是经常发生的。

在1953年发现有一种光度较暗的造父变星,使仙女座大星系的距离增加了一倍。1990年代,使用依巴谷卫星利用标准的红巨星和红丛集测量的距离,为造父变星测量的距离校准。

估计距离

至少有三种方法被用来测量M31的距离。在2004年,使用造父变星法,估计的距离是251 13万光年(770 40千秒差距)

2005年,包括Ignasi Ribas(西班牙研究委员会,CSIC、卡塔龙尼亚的太空研究学院)和他的同事在内的一群天文学家,宣布在仙女座星系发现了食双星。这对双星的名称(编号)是 M31VJ00443799+4129236 ,两颗星分别是明亮且热的O型星和B型星。研究得知食的周期是354969日,这让天文学家可以测量它们的大小。知道恒星的大小和温度,就能测量出绝对星等。而知道了视星等和绝对星等,距离就能测量出来了。这对恒星的距离经测定为252万 14万光年,而仙女座星系的整体的距离是250万光年。这新的数值被认为比早先单独使用造父变星测量的距离更为精准。

仙女座星系的距离近到足以利用红巨星分支技术(Tip of the Red Giant Branch ,TRGB)的方法来估计距离。在2005年,用这种方法测出的距离是256 8万光年(785 25千秒差距)。

平均上述的值,这些测量给的距离估计是253 7万光年(775 22千秒差距)。

基于上述的距离,M31的直径最宽处估计是220,000 4000光年。

估计质量

估计仙女座星系的质量(包括暗物质)大约是123 10M (或123兆太阳质量),相当于银河系质量(58 10M )的212倍。虽然误差的范围仍然太大以至于难以完全确认,但这样的结果将已经可确认M31的质量比银河系大,而且M31比银河系尺寸更大、包含更多恒星。

M31看上去有比银河系更多的普通恒星,而且估计的亮度是银河系的两倍。但是恒星形成速率在银河系高了许多,M31每年只能制造出1个太阳质量的恒星,而银河系是3-5个太阳质量。新星出现的比率银河系也高于M31一倍。这显示M31已经经历了恒星形成的阶段,而银河系正在恒星形成的阶段中。而这意味着在将来,银河系中恒星将会与在M31观察到的数量相当。

星系结构

以可见光下看见的形状为依据,仙女座星系在de Vaucouleurs-Sandage延伸与扩张的分类系统下被分类为SA(s)b的螺旋星系。然而,在2MASS巡天的资料中,M31的核球呈现箱状的形状,这暗示著M31实际上是棒旋星系,而我们几乎是正对着长轴的方向观察这个星系。仙女座星系也是一个LINRER星系(低游离核辐射线区),在分类上是一种很普通的活跃星系核。

2005年,天文学家使用凯克望远镜观察到细微的像被喷洒而向外延伸的恒星,实际上也是主星盘本体的一部分。这意味着仙女座星系的螺旋盘面比早先估计的大三倍。这个证据显示仙女座星系盘的直径超过220,000光年,是一张巨大且延展的星盘。早先估计的直径是70,000至120,000光年。

星系相对于地球的倾斜估计是77 (90 是直接从侧面观看),分析星系横断面的形状像是字母S的形状,而不是一个平坦的平面。造成这种形状翘曲的一个可能是与邻近M31的卫星星系引力的交互作用。 分光镜的观测对星系的自转速度在距离核心不同的半径上提供了详细的测量。在邻近核心的地区,旋转的速度达到225公里/秒(140英里/秒)的峰值;在半径1,300光年处开始下降,在7,000光年处达到最低的50公里/秒(31英里/秒)。然后,速度在平稳得上升,在半径33,000光年的距离上达到的丰值是250公里/秒(155英里/秒)。在这距离之外的速度又慢慢的下降,在80,000光年处降至200公里/秒(124英里/秒)。这些速度的测量暗示集中在核心的质量大约是6 10M ,总质量成线性的增加至半径45,000光年处,然后随半径的增加而逐渐减缓。

仙女座星系的螺旋臂向外延伸出一连串的电离氢区,巴德描述成"一串珍珠"。它们看似紧紧的缠绕着,但在我们的银河系却是被远远的分隔着。矫正过的星系图很明确的显示有顺时针方向旋转的螺旋臂缠绕在螺旋星系内。从距离核心大约1,600光年处有两条连续的螺旋臂向外拖曳著,彼此间最近的距离大约是13,000光年。螺旋的样式很可能肇因于与M32的交互作用。这些置换可以由来自于恒星的中性氢云观察到。

在1998年,来自欧洲空间局的红外线太空天文台的影像显示出仙女座星系的整体形象可能是会被转换成圆环星系。在仙女座星系内的气体含尘埃形成了几个重叠的圆环,其中最突出的一个圆环在距离核心32,000光年的半径上。这个环由冰冷的尘土组成,因此在可见光的影像中这个环是看不见。

更周详的观察显示内部还有更小的尘埃环,相信是在200万年前与M32的交互作用造成的。模拟显示,这个较小的星系沿着极轴方向穿越了仙女座星系的盘面。这次碰撞从较小的M32剥离了超过一半的质量,并且创造了仙女座星系内的环结构。

对M31扩展开来的晕的研究显示,大致上是可以和银河系做比较的,在允中的恒星同样是属于金属贫乏的,并且随着距离的增加更形贫乏。这些证据显示这两个星系走着相似的演化路线,在过去的120亿年中,它们可能各自都吞噬了1-2百个低质量的星系。在M31扩展的晕中的恒星和银河系中的恒星可能近到只有两星系间三分之一的距离。

星系核心

长久以来M31就被知道在核心有一个密集和紧凑的星团。在大望远镜下,感觉有许多模糊的星点环绕着核心。核心的亮度也远超过最亮的球状星团。

1991年,Tod R Lauer使用哈勃太空望远镜上的WFPC拍到了仙女座星系内核的影像。有两个相距15秒差距的核心,较亮的核被标示为P1,看起来像是一个巨球状星团,位置偏离了星系的中心;稍暗的标示为P2,位置在星系真正的动力学中心,更像是叠加在一个致密紫外辐射星团之下的一个扩展盘,被认为是质量相对较大同时也较古老的核。两个核的运动暗示,其都与核心处一个质量更大的物体处于相互作用中,这个物体推测为一个质量为3300万太阳质量的黑洞,这可以非常好的解释所观察到的运动。

随后地基的观测也证实了两个核心的存在,并且推测两著在相对的移动,其中一个是被M31吞噬,正在潮汐裂解中的小星系。包括M31在内,许多星系的核心,都是充满了相当狂野的、剧烈变动的的区域,并且经常都以有超级黑洞存在其中来解释。

Scott Tremaine提出了以下的说明来解释双核心: P1是在盘面上以异常轨道环绕中心黑洞的恒星投影。这异常的离心率使恒星长期逗留在轨道的远心点上,造成了恒星的集中。P2也包含了盘面上高热的、光谱A型星。在红色的滤光镜下,A型恒星是不明显的,但是在蓝色和紫外线下,它们会比主要的核心更为明亮,造成P2看上去比P1更为突出。

星系外形

使用欧洲空间局的XMM-牛顿轨道天文台发现M31有数个X射线源。罗宾·巴纳德博士等人假设这些都是黑洞或中子星的候选者,将接踵而至的气体加热至数千万K所辐射出的X射线。中子星和假设中的黑洞,光谱是一样的,但是可以从质量上的差异区别出来。

仙女座大星系

仙女座星系大约有460个球状星团,这些星团中质量最大的,被命名为马亚尔Ⅱ的,绰号是G1(Gloup one),是本星系群中最明亮的球状星团之一。它拥有数百万颗的恒星,亮度大约是半人马座ω-银河系内所知最明亮的球状星团的两倍。 G1有几种不同的星族,而且以一般的球状星团来看结构也太巨大了。因此,有些人认为G1是以前被M31吞噬的矮星系残骸。

另一个巨大且明显的球状星团是位于西南旋臂东侧一半位置上的G76。

M31旋臂上散布着200个左右的星协,与银河系的星协相比,两者包含着同类的明亮蓝色恒星,但前者最多可比后者大10倍。M31中的星协跨度约达1500光年,而银河系中的猎户星协及天狼星协跨度为150光年。

在2005年,天文学家在M31又发现一种全新型态的星团。新发现的星团拥有成千上万的恒星,在数量上与球状星团相似。不同的是体积非常庞大,直径达到数百光年,密度也低了数百倍;恒星之间的距离也远了许多。

答:胆固醇在动物体内最重要的固醇,通常是以游离的或脂化的形式存在于动物组织或体液中,脑、皮脂、胆汁中含量最多其溶解性与脂肪类似,不溶于水,易溶于乙醚、氯仿等溶剂,因此胆固醇不能直接在血液中运输,同时也不能直接进入组织细胞中它们必须与血液中的载脂蛋白和极性类脂(如磷脂)一起组成一个亲水性的球状巨分子脂蛋白,才能在血液中被运输,并进入组织细胞胆固醇的主要功能是用于合成细胞浆膜、类固醇激素和胆汁酸

综合胆固醇的理化性质以及功能的分析,我们并没有发现胆固醇具有运输脂质的功能,那么为什么有人却支持这种说法呢

许多资料将胆固醇分为“好胆固醇”和“坏胆固醇”,两者实质上指的是高密度脂蛋白和低密度脂蛋白改临床上多通过测定脂蛋白中的胆固醇来测定脂蛋白中的胆固醇来了解血浆中该类脂蛋白的多少因为低密度脂蛋白和高密度脂蛋白是含有多种成分的复合体,医学上要测定其所有成分的含量比较困难,故使用它所含的胆固醇成分为代表来反映血液中脂蛋白的浓度属于“好胆固醇”的高密度脂蛋白,最大的功能是负责把血液中或血管壁上的胆固醇等脂质垃圾运送到肝脏,经分解处理后排出体外,高水平的“好胆固醇”能显著降低心脑血管病的危险属于“坏胆固醇”的低密度脂蛋白,如果水平过高,它可能慢慢阻塞向以及和大脑输送血液的动脉血管内壁低密度脂蛋白胆固醇还可能与其他物质一起形成脂斑,这种坚硬厚实的沉积物可能使动脉血管变窄,柔韧性降低,称为动脉粥样硬化如果形成血栓并阻塞变窄的动脉血管,可能引起心脏病发作或中风由此可见,支持者是将“好胆固醇”与向密度脂蛋白两个概念术语弄混淆了胆固醇本身并不具备运输脂质的功能,反而是被运输的对象,而且是以可溶性的脂蛋白质形式运输的

脂质在血浆中运输,必须溶解在血浆中脂肪酸的水溶性相对较强,主要通过血浆蛋白来运输甘油三脂和胆固醇都是疏水性物质,不能直接在血液中被转运,同时也不能进入到组织细胞中,它们必须与血液中的特殊蛋白质(载脂蛋白)和极性类脂(如磷脂)一起组成一个亲水性的球状巨分子,才能在血液中被运输,并进入组织细胞这种球状巨分子复合物就称作脂蛋白

脂蛋白是由蛋白质、胆固醇、三酰甘油和磷脂组成的一种大分子复合体一般认为血浆脂蛋白都具有类似的结构,呈再教育状一般以不溶于水的甘油三本乡本土胆固醇作核心,其表面则是少量蛋白质、极性磷脂和游离胆固醇,它们的亲水基团突入周围水相中,从而使脂蛋白能够稳定并溶于水相,磷脂和胆固醇对于维系脂蛋白的构型均具有重要作用脂蛋白中的蛋白质部分是一种特殊的球蛋白,因可以与脂质结合,担负在血浆中转运脂质的功能,故称为载脂蛋白载脂蛋白除了可以与脂持结合担负在血浆中转运脂质的功能,还参与某些酶活动的调节,以及参与者脂蛋白与细胞膜受体的识别和结合的反应过程载脂蛋白是脂蛋白结构、功能和代谢的核心部分

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/11801433.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-01-03
下一篇2024-01-03

发表评论

登录后才能评论

评论列表(0条)

    保存