情侣吵架要不分胜负、但分对错。
我觉得很多人在谈恋爱的时候会退化回婴儿时期,把恋人当成父母那样索取关爱,认为对方必须全心全意不求回报地爱自己。现实中的男追女,通常是男孩先喜欢了女孩,一个劲儿地对她好,然后感动女孩子,两个人走在一起成为男女朋友。这真的是有点本末倒置了,好感不是感动来的,爱情也不是一方跪着求来的,而应该是两个人彼此吸引、爱慕,超越人性的自私爱对方。
也许我说的过于理想,或者现实中婚恋女方比较吃亏,导致前者所说的情况还是主流。最常见的一些鸡汤文就是,不要和女朋友争对错一律都说宝贝我错了,哄着就完了,这是谈恋爱连智商脑子都不需要了?
我认为两个人会吵架,是出现了分歧,比如对一件事的看法,比如小到袜子几天洗一次,大到三观价值观思想层面的不同,人们都说互补,可真正相处起来,还是对方与自己三观趋同,这样不会累,不会动不动想要对方认可自己、或改造伴侣改造得很累。
然而,吵架就没有性别之分了,大家都想证明自己是对的,都想压住对方,这根本上是涉及到人性的博弈层面,丛林之争,不过是借着恋爱的面纱相爱相杀而已。
所以,寻找一个不爹的伴侣很难,但很重要,毕竟求同存异太难了。
吵架是为了沟通不是为了胜负
正常,你们本来就是两个个体,从小在两个不一样的环境中长大,不可能有一样的心理,所以经常吵架是正常的,没有两个人天生就能合得来,都需要慢慢磨合,到最后接受对方的全部包括缺点,只有这样的感情的才能长长久久。
经常会疑问,到底什么样的爱情才能走到最后?后来我才知道是!会吵架但不会冷战的感情,以前总是听别人说特别羡慕那种重来都没有矛盾的情侣,从来没有矛盾的情侣总是把想说的话憋着,如果有一天攒够了失望就再也不可能回头了。两个人在一起难免有各种各样矛盾,那些经常拌嘴,有任何不满都会脱口而出,不会冷战的情侣才让我羡慕,因为他们每次吵架都能解决一个问题。聪明的姑娘永远不会随便发脾气,一旦发了必有所图。
三观相同,互相理解彼此,也许你会因为一个人长得好看而喜欢上她,因为长时间的接触而爱上她,可是最终决定你们因为新鲜感而滋生的感情能维持多久俱的是你们的相处模式。对的人不会让你觉得他飘忽不定,他也会和你规划未来,而且主人公必须是你,他会让你相信他能够给你个家,你就是他想共度余生的那个人。
感情要相互付出,两个人谈恋爱不是单方面付出,而是相互救赎与陪伴,太计较的人往往过的不快乐,两个人能不能走的很远,就要看他们会不会真的把对方规划进自己未来的生活中,并且愿不愿意为了对方而变得努力,真正会走远的是那些默默把对方放进自己的生活,并且为了彼此更好的生活去努力的人。爱从来不是博弈,是坚定是坦诚相待。
摘要:用一句俗话说:人在江湖,身不由己。当我们面临纷杂的社会生活,面临着诸多的选择,我们都不可避免的要卷入到一场场“博弈之战”中去,无论你愿不愿意,都无法逃避。在学习了选修课的“博弈论”基础的知识后,竟然会很容易的发现,博弈如同空气般,围绕在我们身边,无处不在。
关键字:博弈;实例;运用
一、博弈的概论
什么是博弈?古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法…
面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯•诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡•摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对於每一个二人零和博弈,都能够找到一个“最小最大解” 。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在於,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。
二、生活中博弈论的实例
在生活中博弈的现象比比皆是,或许你很难想象,自己一天24小时,甚至包括睡觉的时间在内,你都无法逃避博弈这个问题。生活中的大小事怎么个博弈法,下面的内容将娓娓道来。而说到睡觉,难道也有博弈在作祟?当然!一定程度上,你大脑有意识无意识地选择做不做梦,这可能就是一个混沌的博弈问题了。大到美日贸易战,小到今天早上你突然生病,都有博弈在其中。可能有人会疑问,贸易争端用博弈论来分析是可以的,但对自己生病也可以用博弈论来理解就有点不可思议,因为自己就一个人,和谁进行游戏?
实际上,并非只有一个人,还有一个叫做“自然”(Nature)的参与者。“自然”可以理解为无所不能的上帝,上帝现在有两种策略,让人生病或不生病。人一旦生病,就不得不根据生病的信息判断上帝的策略,然后采取对应的策略。上帝采取让人生病的策略,人就采取吃药的策略来对付;上帝采取不让人生病的策略,人就采取不予理睬的策略。这正是一场人和上帝进行博弈的游戏。
“自然”是研究单人博弈的重要假定 然而,生活中更多的游戏不是单人博弈,而是双人或多人的博弈。比如,某一天你觉得应该是你太太的生日,但又不能肯定:如果是太太的生日的话,你可以送一束花,太太会特别高兴;你不送花,太太会埋怨你忘了她的生日;如果不是太太的生日的话,你可以送太太一束花,太太感到意外的惊喜;你不送花,结果生活同往常一样。在这个博弈里,我们看到,“自然”可以有两种策略:确定今天是太太的生日或确定今天不是太太的生日,但不论“自然”采取何种策略,你的最好行动都是买花。 “家家有本难念”,就是司空见惯的夫妻吵架也是一场博弈。
在竞争激烈的商业界,博弈就更为常见。比如两个空调厂家之间的价格战,双方都要判断对方是否降价来决定自己是否降价,显而易见,厂家之间的博弈目标就是尽可能获得最大的市场份额,赚取最多的收益。事实上,这种有利益(或效用)的争夺正是博弈的目的,也是形成博弈的基础。经济学的最基本的假设就是经济人或理性人的目的就是为了效用最大化,参与博弈的博弈者正是为了自身效用的最大化而互相争斗。参与博弈的各方形成相互竞争相互对抗的关系,以争得效用的多少决定胜负,一定的外部条件又决定了竞争和对抗的具体形式,这就形成了博弈。
三、如何运用好博弈论
在我国传统文化中,包含有许多精妙的博弈策略。许多成语及成语典故,就是对博弈策略的令人叫绝的运用和归纳。如:围魏救赵、背水一战、暗渡陈仓、釜底抽薪、狡兔三窟、先发制人、借鸡生蛋等等。当然,博弈策略的成功运用须依赖一定的环境、条件,在一定的博弈框架中进行。
在博弈中,人们经常采用威胁策略,但其他博弈方也会采取对威胁的辨别和反威胁策略。经济学家泽尔腾就将不可置信的威胁剔除出去,解决了一个博弈中可能存在多个“纳什均衡”的问题,从而使人们能方便地预测博弈的结果。举一个通俗的例子来说,父母不同意女儿所交的男友,威胁女儿说:“如果你再同他交往,我们就与你断绝关系。”但这样的威胁往往是不可信的。对爱情执着的聪明女儿会置父母的不可置信的威胁于不顾,继续与男友交往甚至最终与之结婚,父母最后也会承认那个当初他们并不喜欢的女婿。这个结果便是剔除了不可置信的威胁后的“纳什均衡”,“博弈论”中称其为“子博弈精炼纳什均衡”。
“博弈论”研究还发现,在重复博弈中,如果博弈的次数是无限的,博弈方会选择相互合作的策略。
在博弈中,人们掌握的信息经常是不完全的,这就需要在博弈进行过程(即动态博弈)中不断地收集信息、积累知识、修正判断。成语故事“黔驴技穷”实际上就包含了一个不完全信息动态博弈。老虎吃掉毛驴的策略,在“博弈论”中就是所谓的“精炼贝叶斯均衡”。人们常提到“上有政策、下有对策”,其实是对管理者与被管理者之间的动态博弈的一种描述,面对上边的政策,下边寻求对策是正常的、必然的。从“博弈论”的角度讲,上边的政策制定必须在考虑到下边可能会有的对策的基础上进行,否则,政策就不会是科学、合理的。
生活中无处不存在博弈论,只有好好运用它,它才能体现它的价值,发挥它的作用。我们的生活真的就是跟博弈问题息息相关了。而在这样一个复杂的博弈战场上,我们怎么能使得自己在博弈场上获得最大的利益就是一门很大的学问了。
1、智猪博弈
假设猪圈里有一头大猪、一头小猪。
猪圈的一头有猪食槽(两猪均在食槽端),另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是在去往食槽的路上会有两个单位猪食的体能消耗,若大猪先到槽边,大小猪吃到食物的收益比是6:4;同时行动(去按按钮),收益比是7∶3;小猪先到槽边,收益比是9:1。
那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。
"智猪博弈"由纳什于1950年提出。
实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪选择等待的话,小猪可得到4个单位的纯收益,而小猪行动的话,则仅仅可以获得大猪吃剩的1个单位的纯收益,所以等待优于行动。
在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。
当大猪选择行动的时候,小猪如果行动,其收益是1,而小猪等待的话,收益是4,所以小猪选择等待;当大猪选择等待的时候,小猪如果行动的话,其收益是-1,而小猪等待的话,收益是0,所以小猪也选择等待。
综合来看,无论大猪是选择行动还是等待,小猪的选择都将是等待,即等待是小猪的占优策略。
2、协同攻击难题
两个将军各带领自己的部队埋伏在相距一定距离的两个山上,等候敌人。将军A得到可靠情报说,敌人刚刚到达,立足未稳。如果敌人没有防备,两股部队一起进攻的话,就能够获得胜利;而如果只有一方进攻的话,进攻方将失败。这是两位将军都知道的。
A遇到了一个难题:如何与将军B协同进攻?那时没有电话之类的通讯工具,只有通过派情报员来传递消息。将军A派遣一个情报员去了将军B那里,告诉将军B:敌人没有防备,两军于黎明一起进攻。
然而可能发生的情况是,情报员失踪或者被敌人抓获。即:将军A虽然派遣情报员向将军B传达“黎明一起进攻”的信息,但他不能确定将军B是否收到他的信息。
事实上,情报员回来了。将军A又陷入了迷茫:将军B怎么知道情报员肯定回来了?将军B如果不能肯定情报员回来的话,他必定不会贸然进攻的。于是将军A又将该情报员派遣到B地。然而,他不能保证这次情报员肯定到了将军B那里……
这就是“协同攻击难题”,它是由格莱斯(J Gray)于1978年提出。更为糟糕的是,有学者证明,不论这个情报员来回成功地跑多少次,都不能使两个将军一起进攻。
扩展资料
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,莱因哈德·泽尔腾、约翰·海萨尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的学科。在金融学、证券学、生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
-博弈论
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)