自学广义相对论需要哪些知识储备,哪些书籍适合具有非

自学广义相对论需要哪些知识储备,哪些书籍适合具有非,第1张

介绍相对论是分一定阶层的

如果你的学习水平是大学~博士(要求是理工科)等级,你可以直接买大学物理教材,一般相对论教材会放到大学物理测量学和大学力学教材当中,推荐你买一本书:英文翻译过来的经典《物理学基础》,出版社忘了,只记得好象是由清华北大学者翻译来的书封面有牛顿和爱因斯坦的肖像,价格160元RMB,新华书店一般会进一到两本,书内含盖了整个物理学领域的基础教材知识,且适合有一定基础的人自学

如果你是高中生,并且自己觉得对高三微积分初步掌握的不错,你同样可以看看《物理学基础》,如果你尚未掌握微积分,推荐你先买《托马斯微积分》,价格80RMB左右,新华书店一般进3~4本,含盖了初等微积分和高等微积分,并且对学微积分需要的基础知识也列入其中,高中生掌握它不会太难

不推荐高中生阶段的人看高三物理最后一章中的相对论,因为高三教材中的相对论讲的太不全面了,容易让人看不懂相对论反而轻易觉得相对论是错误的

如果你是初中生,已超课标一定程度,可以看看《时间简史》或《果壳中的地球》,作者都是霍金,当然你的语文阅读水平要高

如果你是小学生,你可以先上到初中再按以上做法了解相对论

先声明,相对论的正确性到目前仍有争议,不论对错,深入学习相对论对学习高能物理和改进高能物理都是必经的道路

正如水天一线,近湖之山必有倒影,情感也是一样的,无论是爱情,友情还是亲情,哪怕是最简单的人际感情,都是相对存在的,这个,也可以称之为“情感相对”。

人区别于动物,最大的不同之处,不仅仅在于智商和会使用工具,还在于更加细腻的情感表达以及情感处理。

每个个体都是独立存在的,这个也突出表现在情感方面,每个人对于情感的表达和处理都是完全不一样的。

对于情感的表达和处理的细腻,不仅在个体中体现,在彼此的交往人际之中,体现的也很明显。

情感,其实也是相对。

这个怎么说呢,假如A对B,表现出来的情感是亲近和热情,哪怕这个亲近和热情比较隐晦,没那么明显,但是,在这个过程中,B是会有明显的感受的,他是可以感觉的到的。

明显的好感或者是恶感,哪怕是隐晦的,也是可以感觉的到的。当然,某些先天迟钝的人也是有的,但那是极少部分存在。

假如有些人,对于他人的情感反映,表现出来的是延迟或者未接收,有大部分都是装出来的,可能是出于某种原因,比如不想接受,却也不想远离,就是经常说的鸵鸟心理,不作为。

凡是走过,必有痕迹,何况是情感。每个人的表达和接受程度也都不一样,有些人比较洒脱大度,有些人则比较敏感细腻。

无论如何,都要有这个意识,情感的表达和接收,永远都是双向的,是相对的,我们应该学会换位思考。

在表达情感的时候,尤其是比较激烈的情感,还是需要多考虑一下对方的感受,这点在人际关系处理中,尤为重要,无论是爱情,亲情还是友情。再坚固的情感,都是有一个度的,一旦太超过,对双方都不好。

情感是相对的,希望大家处理人际关系,都可以有一个较好的意识,己所不欲勿施于人,当然,己所欲也,也不要过度施于人。

问题一:狭义与广义相对论浅说哪个版本好 一般是北京出版社的比较好,里面文字和图公式的计算充实,简明,很容易接受。如下图:

问题二:狭义与广义相对论浅说的介绍 《狭义与广义相对论浅说》是2006年由北京大学出版社出版的图书,该书作者是(美)爱因斯坦,译者是杨润殷。

问题三:狭义与广义相对论浅说的作品目录 《狭义与广义相对论浅说》导读序第十五版说明第一部分 狭义相对论1几何命题的物理意义2坐标系3经典力学中的空间和时间4伽利略坐标系5相对性原理(狭义)6经典力学中所用的速度相加定理7光的传播定律与相对性原理的表面抵触8物理学的时间观9同时性的相对性10距离概念的相对性11洛伦兹变换12量杆和钟在运动时的行为13速度相加定理斐索实验14相对论的启发作用15狭义相对论的普遍性结果16经验和狭义相对论17闵可夫斯基四维空间第二部分 广义相对论18狭义和广义相对性原理19引力场20惯性质量和引力质量相等是广义相对性公理的一个论据21经典力学的基础和狭义相对论的基础在哪些方面不能令人满意22广义相对性原理的几个推论23在转动的参考物体上的钟和量杆的行为24欧几里得和非欧几里得连续区域25高斯坐标26狭义相对论的空时连续区可以当做欧几里得连续区27广义相对论的空时连续区不是欧几里得连续区28广义相对性原理的严格表述29在广义相对性原理的基础上解引力问题第三部分 关于整个宇宙的一些考虑30牛顿理论在宇宙论方面的困难31一个“有限”而又“无界”的宇宙的可能性32以广义相对论为依据的空间结构附录Ⅰ1洛伦兹变换的简单推导2闵可夫斯基四维空问(“世界”)3广义相对论的实验证实4以广义相对论为依据的空间结构5相对论与窄问问题附录Ⅱ1自述2自述片段3以太和相对论4物理学中的空间、以太和场的问题5相对性:相对论的本质6论动体的电动力学7关于统一场论

问题四:狭义与广义相对论浅说的作品片段 爱因斯坦作为一个著名的科学家,不仅创造了深奥的相对论理论,而且试图把这种深奥的科学理论让更多的人了解,于是他写作了《狭义与广义相对论浅说》。这本书分为两部分:《狭义相对论》(1905年发表),《广义相对论》(1915年发表)。《狭义与广义相对论浅说》是物理学科中的重要经典著作之一,也是爱因斯坦亲自对他的相对论所做的大众化解释。爱因斯坦根据自然科学和几何学发展状况,批判了欧几里得几何,接受和运用了非欧几何,并运用非欧几何来建立和论证他的相对论理论。狭义相对论有两个基本原理:第一个原理是相对性原理,即物理学定律在所有惯性系中是相同的,不存在一种特殊的惯性系。时间与空间观念都具有相对性。一个观察者看来是同时发生的事件,另一个向他做相对运动的观察者看来便不是同时发生的。两个这样的观察者对两个事件之间的时间间隔的估计将会不一致,同时他们对距离的衡量也会不一致。假定两个相对匀速运动的观察者所得到的光速相同,那么只要他们对时间与空间运用不同的量度,就能对于现象得到相同的自然规律,并能精确地说明这种差别有多少。换句话说, 每个观察者都有自己一套时间―――空间的框架,对于一切观察者全都相同的绝对空间时间是不存在的。第二个原理是光速不变原理,即在所有的惯性系中,真空中光的速度具有相同的值。假定一个观察者,带着一把码尺和一只座钟,并把码尺指向他运动的方向。当他向观察者B旁边走过时,在A看来他的尺子不足一码长,他的钟也慢了。B 相对于A的速度愈大,这差额也就愈大。假如B用光速在A的旁边通过,我们得到的结果是惊人的,这时B的码尺长度将等于0,他的钟也完全不走了。这就是说光速是速度的极限,宇宙间没有任何东西能以大于光速的速度运动。运动尺子的缩短和运动时钟的变慢效应,都是相对论时空的基本属性,与物体内部结构无关。如果物体速度比光速小得多,相对论力学就可解释牛顿力学。在相对论之前,物理学中承认两条极重要的守恒定律,一条是能量守恒定律,一条是质量守恒定律,两条基本定律似乎彼此独立。但通过相对论它们便可结合成一条定律,质量和能量可以变成互换的项目。一个物体如果放射出能量就会损失质量,如果接受能量就会增加质量,当一物体加快运动时,它的能量和质量都会增加,在光速的情况下,它的质量将变成无穷大。这个质量与能量的关系可以通过数学上推导,写成一个表达式:E=mc^2 (E为能量,m为质量,c为光速)。建立狭义相对论后,爱因斯坦看到了这个理论的局限性,因为它把相对性原理限制在两个做相对匀速运动的惯性系里。它否定了静止的以太阳作为特殊的坐标系是一大进步,但实际上还没有真正解决经典力学中的古老难题。早在200年前,伽利略就发现,所有的惯性系,对于表述力学定律都是同样有效的,平等的,不存在任何特殊的惯性系,这就是说,任何力学实验都无法辨别惯性系本身的运动状态。这种运动的相对性,在古典力学中普遍存在,但在麦克思韦电动力学中不能成立,因为它只适用于静止的坐标系。经典力学是无法回到惯性系在物理学中的优越性的,因此爱因斯坦意识到要进一步探明这个问题,就必须扩大相对性原理的应用范围。他将自己的研究领域从惯性系拓展到了非惯性系。在古典力学中,物质有两种质量。一是牛顿第二定律中的惯性质量,二是万有引力定律中的引力质量。地球表面上的任何一个物体都要受到地球对它的引力,并因此会产生加速度。实验告诉人们,一切自由落体在引力作用下都具有同样的加速度。由此可以推算,引力质量与惯性质量是相等的。牛顿曾经研究过这个问题,但没有得到理论上的解释。长期以来,物理学家一直认为两种质量相等是理所当然的,无需从理论上再加以研究。爱因斯坦>>

问题五:狭义与广义相对论浅说的作品前言 本书的目的,是尽可能使那些从一般科学和哲学的角度对相对论有兴趣而又不熟悉理论物理的数学工具的读者对相对论有一个正确的了解。本书假定读者已具备相当于大学入学考试的知识水平,而且,尽管本书篇幅不长,读者仍须具有相当大的耐心和毅力。作者力求以最简单、最明了的方式来介绍相对论的主要概念,并大体上按照其实际创生的次序和联系来叙述。为了便于明了起见,我感到不能不经常有所重复,而不去考虑文体的优美与否。我严谨地遵照杰出的理论物理学家玻耳兹曼的格言,即形式是否优美的问题应该留给裁缝和鞋匠去考虑。但是我不敢说这样已可为读者解除相对论中固有的难处。另一方面,我在论述相对论的经验性物理基础时,又有意识地采用了“继母”式的做法,以便不熟悉物理的读者不致感到像一个只见树木不见森林的迷路人。但愿本书能为某些读者招致愉快的思考时间。 爱因斯坦 1916年12月

问题六:狭义与广义相对论浅说和相对论一样吗 如果你只是看相对论的入门书籍,我推荐 《图说相对论》,有图讲的清楚,免得乱想走了岔路

《浅说》是从最基本的物理矛盾出发,得出的最基本的思想

而正统的《相对论》则是从数学推导出发,得出物理规律。。

《浅说》比《相对论》简单多了。。

吴大猷先生写的一套理论物理中有一本《相对论》,还是比较耐看的

爱因斯坦的《相对论》,一直只能用尊敬来形容,知道很厉害,就是不懂。只知道相对论和量子力学并称为现代物理学的两大基石。前几天在我们家后山的仙岳书院,居然看到一本爱因斯坦本人写的相对论入门书籍,而且巧的事,居然是我的母校出版社出版的,于是决定借来看一看。

科学史上有两个奇迹年,分别是1666年和1905年,对应两个科学牛人。1666年,牛顿在23岁的时候为了躲避瘟疫,回到英国乡下,几乎就在这一年,牛顿做出了巨大的成就,为光学、数学、力学打下了基础。1905年,年仅26岁的爱因斯坦是一个在苏黎世专利局工作的小职员,但是就在这一年,爱因斯坦发表了6篇论文,关于分子、原子、光电效应等,也包括众所周知的狭义相对论。后来时隔11年,爱因斯坦在1916年正式发表了广义相对论。

想起一个段子,爱因斯坦给别人解释相对论,说“当你和一位美女坐在一起时,感觉时间过得飞快;当你和一位老太婆坐在一起是,感觉时间过得很慢”。虽然这本书只是《相对论》的入门科普读本,不过看起来还真是艰涩难懂。从欧几米得几何学的点线面开始,一点点娓娓道来,构建一套新的解释世界的理论体系。科学是一颗大树,枝繁叶茂,自成体系,爱因斯坦也是在无数前人的基础上得到相对论这颗硕果的。文中提到了大量的前人,包括前人的实验、理论、公式。也不得不叹服,数学真是美妙,用一些简单的公式,就可以解释这么复杂的世界,可以说数学不是一门单独的学科,但是数学水平的高低,直接决定了其它学科上的成就。

狭义相对论

光速是一个恒定的常量(310^8m/s),所有物体的速度不能超过光速。

1、一个物体的时间不是恒定的,速度越快,它的时间越慢。之所以我们平时感觉不出来,是因为速度不够快,这个时间变慢的效应很不明显。一个实际的应用是,我们全球用的GPS卫星给我们提供了精准的时间,这些卫星在高速的绕地球飞行,飞得快,时间就变慢了,它需要根据爱因斯坦的相对论不断的矫正自己的时间。前几年很火的一部**《星际穿越》,里面的老爹飞跃星际,在黑洞里面寻找奥秘,最后回来的时候,老爹还是那个老爹,她的女儿却已经变成一个老太太。

2、一个物体的空间不是恒定的,速度越快,它的长度就越短(延运动的方向)。我记得小时候看过一本书,里面画了一张图,假设一个人骑着自行车以接近光速的速度在路上骑着,这个人在沿着骑行道路的方向上,空间就变短,也就是说这个人看起来变得更瘦了。

3、相对论把质量守恒定律和能量守恒定律合二为一,经典的公式E=mc^2,。以前一直纳闷这个公式怎么来的,甚至怀疑是不是拍脑袋想出来的。其实不然,这个公式是在前人科学家的研究基础之上逐步推导出来的,甚是美妙,让人叹服。

广义相对论

狭义相对论,讨论的是静止或者匀速直线运动下的情况;广义相对论,讨论的是加速运动下的情况。

牛顿的万有引力定律:两个物体之间的引力,与它们质量的乘积成正比,与距离的平方成反比。

广义相对论,简单理解就是,宇宙空间中的物体在它周围会造成一个空间的扭曲,质量越大,空间扭曲越厉害。地球之所以绕着太阳转,并不是由于万有引力,而是太阳把周围的空间扭曲了,地球是沿着扭曲的空间做运动。好比一个弹簧床,一个很重的东西压在中间,床上东西都会朝中间滚动,这个力不是万有引力,而是空间扭曲的结果,往中间滚动的运动还是遵守基本的力和运动规律。

相对来讲,广义相对论比牛顿的万有引力,更能解释一些事情。如果万有引力与距离的平方成反比,那么如果一个行星受到一点外力,距离拉近了一点,那么万有引力就更强了,这样会打破平衡更有力的把双方拉近,距离越近力越强,力越强距离越拉近,直到行星坠入到恒星,反之亦然,有一个向外的力,会最终导致行星飞离恒星。而广义相对论认为没有万有引力,只是一个空间的扭曲,无论怎样受力,它都在这个扭曲的空间里面按照现有的规律运动。

通过推导,光线在加速运动参照系或者“引力场”中是延曲线传播的,并且计算出光线在经过太阳的曲率是17角秒,后来英国科学家在一次日全食中验证了爱因斯坦的这个推论。

宇宙

有限无界。好比一个球面的二维世界,这个二维世界里面的生物只能生活在这个球面上,他们对整个世界的观察只能在这个球面上,这个二维世界的生物会发现他们的世界是有限的,但是它没有边界。然后顺着推导到三维世界,我们的三维世界(空间)也是一个有限但是没有边界的宇宙。而如今,科学家认为整个宇宙是十一维的。

书中提到了很多“实验”,但是这个实验都是在头脑中完成,完全没办法在现实中去做实验,但是正是这样的理论实验,帮助爱因斯坦推导出相对论的结论,也帮助我们理解这套理论。他老人家的脑子真好使!是不是因为这样,我们就称之为“理论”物理学家。

人类社会不断进步,解释世界的能力越来越强,后人在前人的基础之上更接近真理,并不是说前人的理论不正确,而是说后人比前人解释的尺度更大、更广。

  相对论

  Principle of relativity

  相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。

  相对论的提出过程

  除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。

  十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度迭加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。

  1887年迈克尔逊和莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都可以解决,根本不需要什么以太。

  爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。

  从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。

  经典力学中的速度合成法则实际依赖于如下两个假设:

  1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系;

  2.两点的空间距离与测量距离所用的尺的运动状态无关。

  爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。

  如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。

  利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。

  此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc^2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。

  对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。

  爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”

  1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。

  从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生惠斯勒,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和惠斯勒获得了1993年诺贝尔物理奖。

  狭义相对论

  马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。

  狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

  四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。

  四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。

  相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

  狭义相对论基本原理

  物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。

  伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。

  著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理:光速不变原理。

  由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是099倍光速,人的速度也是099倍光速,那么地面观测者的结论不是198倍光速,而是0999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

  狭义相对论效应

  根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。

  相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。

  尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。

  由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。

  时钟佯谬或双生子佯谬

  相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。我们的结论是,无论在那个参考系中,B都比A年轻。

  为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。这样处理的目的是略去加速和减速造成的影响。在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。这是一个"超光速"过程。只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速。如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。在B看来,A先是比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。重逢时,自己仍比A年轻。也就是说,相对论不存在逻辑上的矛盾。

  狭义相对论小结

  相对论要求物理定律要在坐标变换(洛伦兹变化)下保持不变。经典电磁理论可以不加修改而纳入相对论框架,而牛顿力学只在伽利略变换中形势不变,在洛伦兹变换下原本简洁的形式变得极为复杂。因此经典力学与要进行修改,修改后的力学体系在洛伦兹变换下形势不变,称为相对论力学。

  狭义相对论建立以后,对物理学起到了巨大的推动作用。并且深入到量子力学的范围,成为研究高速粒子不可缺少的理论,而且取得了丰硕的成果。然而在成功的背后,却有两个遗留下的原则性问题没有解决。第一个是惯性系所引起的困难。抛弃了绝对时空后,惯性系成了无法定义的概念。我们可以说惯性系是惯性定律在其中成立的参考系。惯性定律实质一个不受外力的物体保持静止或匀速直线运动的状态。然而"不受外力"是什么意思只能说,不受外力是指一个物体能在惯性系中静止或匀速直线运动。这样,惯性系的定义就陷入了逻辑循环,这样的定义是无用的。我们总能找到非常近似的惯性系,但宇宙中却不存在真正的惯性系,整个理论如同建筑在沙滩上一般。第二个是万有引力引起的困难。万有引力定律与绝对时空紧密相连,必须修正,但将其修改为洛伦兹变换下形势不变的任何企图都失败了,万有引力无法纳入狭义相对论的框架。当时物理界只发现了万有引力和电磁力两种力,其中一种就冒出来捣乱,情况当然不会令人满意。

  爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。因此第一个问题转化为非惯性系的时空结构问题。在非惯性系中遇到的第一只拦路虎就是惯性力。在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决。几经曲折,爱因斯坦终于建立了完整的广义相对论。广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。它那优美的数学形式至今令物理学家们叹为观止。就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获。不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。目前学术界公认的最有希望的候选者是超弦理论与超膜理论。

  广义相对论

  相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。

  相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是314等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。

  空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。

  相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。

  广义相对论基本原理

  由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于314。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速圆周而已。

爱,就是傲慢与偏见的整合。

一、傲 慢

这个词虽然是贬义词,但它却在男主人公身上明显存在。故事中的男主人公——达西先生,出现在好友彬格莱举行的一次舞会上。他不仅长得英俊,而且也很富有;但同时他也很无礼、很傲慢。因为彬格莱是一位家财万贯的单身汉,年轻英俊,生性活泼,开朗随和,所以他有很多朋友,自然也有很多人参加了他举行的舞会。这些人中当然也有很多漂亮的女士,但由于达西先生的傲慢,他对舞会上的任何一位女士都没有产生好感,相反还让伊丽莎白受到了他的怠慢。因为达西先生的傲慢和无礼,所以没有人想到他会爱上舞会上的任何一位女士,尤其是被他怠慢过的伊丽莎白。其实不然,后来达西先生慢慢发现了伊丽莎白的机敏聪慧,谈吐不凡,并且对她产生了爱慕之情,但他却极度克制着自己的感情,没有向伊丽莎白求婚,原因是他看不起她的家人,但他对她的爱的确十分强烈,最终克服了家庭、地位的障碍,终于向伊丽莎白表明了心意。傲慢是对爱的一种掩饰吗?它的确是一种习惯超速行驶的情感。

二、偏 见

伊丽莎白是班纳特姐妹中的第二个,也是本故事中的女主人翁,她不仅美貌出众,而且聪明过人。在舞会上受到达西先生的`怠慢后,自尊心受到伤害,因此对达西产生了偏见,可是达西先生傲慢无礼的样子早已进入伊丽莎白的头脑,还怎么对他产生好感?对于旁人的点评又怎能轻易置若罔闻?伊丽莎白对他有偏见是很正常的,所以当达西向伊丽莎白求婚时,大家也不难想到,伊丽莎白拒绝了他的求婚。但令我们没想到的是:最终,达西与伊丽莎白走到了一起。这虽然很出乎我的意料,但仔细一想,也不难想出。因为伊丽莎白对达西存在着偏见,所以就让伊丽莎白对达西有着比较深刻的印象,这种偏见也间接的对爱的产生起了一定的推动作用。偏见,其实就是爱的红绿灯。

三、傲慢与偏见

由于达西的傲慢,致使伊丽莎白对他产生偏见,以致拒绝了他的求婚。但是拒绝了一次求婚并不意味着他们永远不能够在一起。因为达西的傲慢而使伊丽莎白对他产生了偏见,所以在达西向伊丽莎白求婚时,她不仅没有接受他,而且还痛斥了他一顿,而正是因这一顿痛斥,让达西认识到了自己的傲慢,此后他变得不再傲慢了,伊丽莎白对他的偏见也随之冰释了。最终,两人终成眷属。

所以,爱就是傲慢与偏见的整合。正是因为达西的傲慢和伊丽莎白的偏见而使二者结合在一起,并且相克相生,使得傲慢与偏见都荡然无存,最终才产生了爱的果实。

爱,竟能使两个人到如此地步。一次邂逅,一次目光的交融,就是永远的合二为一,就是与上帝的契约,纵使风暴雷电,也无法分解这种心灵的黏结。爱的力量是多么伟大呀!在爱面前,连傲慢也不得不低下他高贵的头颅。爱的力量实在是太高深莫测了,在爱面前不仅傲慢低下了他高贵的头颅,就连偏见也不得不甘拜下风。

在这个世界上,傲慢与偏见根本就不是爱的对手,傲慢与偏见在遇到爱之后不会让爱消失,相反,它们只会双双变成爱的俘虏。

《爱的相对论》由海润影视制作有限公司出品都市情感剧,由庞好执导,罗晋、王媛可、李勤勤、林京来等人主演。该剧讲述两代人之间的分歧与隔阂,探讨了“80后”新婚夫妻在家庭生活与事业追求之间存在的一系列问题。该剧已于2013年12月4日东南卫视独家首播1。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/3792998.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-18
下一篇2023-08-18

发表评论

登录后才能评论

评论列表(0条)

    保存