情感机器人就是用人工的方法和技术赋予计算机或机器人以人类式的情感,使之具有表达、识别和理解喜乐哀怒,模仿、延伸和扩展人的情感的能力,是许多科学家的梦想,与人工智能技术的高度发展相比,人工情感技术所取得的进展却是微乎其微,情感始终是横跨在人脑与电脑之间一条无法愈越的鸿沟。很长时间内,情感机器人只能是科幻小说中的重要素材,很少纳入科学家们的研究课题之中。
日本软银公司开发的全球首款可以与人交流的情感机器人“佩珀”近期在网上开售,售价198万日元(约合11万元人民币),首批1000台一分钟内即告售罄。像人一样拥有丰富情感的机器人,受到了人们的热烈追捧。
情感是指对外界刺激做出的肯定或否定的心理反应,比如说喜欢、愤怒、悲伤、恐惧等。一般来说,人类的情感很难用指标去量化,情感机器人则恰恰相反。把一堆冷冰冰的零部件组装起来,把看不见摸不着的“情感”,量化成机器可理解、可表达的数据产物,机器人的“情感”即由此而来。
上个世纪末,美国麻省理工学院教授罗莎琳德·皮卡德提出了“情感计算”概念,先从生理学角度,检测人体的各种心理参数,如心跳、脉搏、脑电波等,据此计算人的情感状态;再从心理学角度,通过各种传感器接收并处理环境信息,并据此计算机器人所处的情感状态。
与人类间的情感交流过程类似,情感机器人的运作过程包括情感信息的获取、识别分析和情感的表达。首先,机器人需通过视觉系统、听觉系统和各类传感器等来获取外界信息。与一般智能机器人不同的是,情感机器人会更有目的地获取与情感相关的有效信息,如人脸的表情和动作,语音的高低、强弱等。情感信息的识别与分析是这个过程的重头戏。生活中,脸部表情是人们常用的较自然的情感表达方式,比如,眉头紧皱可能表示愤怒等。20世纪70年代,美国心理学家保罗·艾克曼提出了脸部情感的表达方法,即脸部运动编码系统FACS,通过不同编码和运动单元的组合,可以让机器人自动识别与合成复杂的表情变化,如幸福、愤怒、悲伤等表情。类似的还有动作分析模型和声学模型。
除了情感分析模型外,还需要建立知识库,让机器人“掌握”人们熟知的常识和惯用表达,比如“买买买”这类潮流用语。这样,机器人跟人类的交互体验将更加流畅有趣。通过情感识别与分析的反过程,即给定一种情感状态,再通过语音合成、面部表情合成和动作合成后,一个相对完美的情感机器人就呈现在你的面前。
情感机器人的互动和陪伴功能使其具有广泛的潜在商业价值,有望在医疗、公共服务、研究和智能家庭等方面大有作为。新推出的“佩珀”企业版,雀巢公司用它来推销咖啡机,日本瑞穗银行让它担任银行柜员的职位,今年它还将在山田电机卖场里卖电器……跟“佩珀”类似的,还有工作型机器人Nao、家庭管家式机器人“吉波”等。
人类情感的美妙之处在于它的不可知性,而情感机器人目前还只是人类编写出来的一个程序。从这个意义上来说,情感机器人将促使我们更了解自己的情感,在未来真正地成为人类生活和工作的好帮手。
人工情感包括三个方面:情感识别、情感表达与情感理解(或情感思维)。世界各国的科学家在情感识别与情感表达两个方面所取得的成果非常显著,但在情感理解或情感思维方面却收获甚微。其根本原因在于,到目前为止,没有一个科学家能够真正了解情感的哲学本质及客观目的是什么,没有创立一个全新的、科学的、数学化的情感理论,没有建立一个真正的情感的数学模型。
人工智能实际上只是人工认知,它是狭义的人工智能。知、情、意是人类三种基本的思维形式,那么广义的人工智能应该包括人工认知、人工情感和人工意志三个方面,因此要想由狭义的人工智能朝向广义的人工智能发展,就必须首先解决一系列有关情感的基本理论问题:什么是情感?情感的客观目的是什么?认知与情感到底有何区别?等等,而这些深层次的理论问题是当今的哲学、思维科学、生命科学和心理学等没能真正解决的。计算机的人工智能水平在经历了一段时间的突飞猛进之后,如今已经接近了它的理论上的发展极限,显然,不解决上述深层次的、哲学层面上的理论问题,不解决“人工智能”、“人工情感”和“情感计算”理论所存在的一系列严重的危机与哲学错误,要想研究真正意义的情感机器人是绝对不可能的。人工情感理论存在三个方面的严重缺陷:
1、不了解情感的哲学本质
情感是人类的一种主观意识,它必然是人脑对于某一种客观存在的主观反映,这种客观存在就是“价值”(或利益),情感与价值的关系就是主观与客观的关系,因此情感的哲学本质就是人脑对于事物价值特性的一种主观反映,情感的思维实际上就是人脑对于“价值”的思维,对于情感的计算实际上就是对于价值的计算。而所有人工情感的研究者们都不知道这一点,他们总是试图通过测量和计算情感产生过程的各种生理指标(如心率、血压、脑电波、呼吸、瞳孔直径、激素分泌、血液成份等)的变化数据来确定情感强度的变化情况,来研究情感的变化规律,其结果必然是:“在主观范围内绕圈子,在表面形式上打循环”。事实上,情感的感受强度、表达强度和生理唤醒指标等三个方面只是反映了情感在感受、作用和表达过程中所体现的生理指标,都属于情感的主观表现形式,而不是情感所反映的客观内容。情感所反映的客观内容就是主体所拥有的价值关系或利益关系及其变化,对于情感表现形式所激发的生理指标的计算,只能反映情感的表面形式,而不能反映情感的客观内容,只有对情感所反映的客观内容——价值关系进行计算,才能客观地、准确地、全面地反映情感运行的真实状态。情感是人脑对于事物价值特征的主观反映,其客观目的在于引导人更好地识别价值、消费价值、创造价值和表达价值,因此情感的识别实际上就是价值的识别,情感的表达实际上就是价值的表达,情感的计算实际上就是价值的计算。
2、不了解情感的主要功能
人工情感研究者们只知道情感的功能作用在于使人或机器更具有“人情味”、更友好、更容易形成自然而亲切的人与机交互,营造真正和谐的人机环境。事实是,情感的功能远非如此!情感除了帮助建立机器人的人性化界面,还能够有效地提高思维的效率与速度,而且,情感还有一个更重要的功能,那就是:情感是人的行为灵活性、决策自主性和思维创造性的根本来源。智能机器人主要的缺陷在于:只能按照人预先编制的程序进行动作,不能自主地确立和调整价值目标,不能创造性地制订和修改总体规划及行为方案,不能总结经验和吸取教训。智能机器人一旦具有了情感,就能够以“达到既定的意志目标”为行为方向,以内设的“价值观系统(或情感系统)、认知系统和意志系统”为价值计算依据,以“实现最大价值率”为行为准则,建立一系列价值计算的函数关系式或约束方程式,再根据机器人所处的自然环境和人文社会环境确定若干个边界条件,选定情感和意志的动力特性参数,就可以主动地、创造性地调整“整体规划、行为方案和具体动作”,然后对行为的最终结果进行价值评价,以便及时地修正价值观系统(或情感系统)、认知系统和意志系统,达到总结经验和吸取教训的目的。
3、不了解情感的逻辑程序
人工情感的研究者们完全不了解情感运行的内在逻辑程序,只知道人在进行情感反应时各种生理指标的变化数据。事实上,人在进行情感表达、情感识别和情感思维过程中,遵循着特定的逻辑程序。情感表达的逻辑程序大致是:人通过感觉器官接收刺激信号,大脑就会把以前存储在“价值观系统”中该事物的“主观价值率”提取出来,与自身的“中值价值率”进行比较、判断和计算。当前者大于后者时,就会在大脑中的边缘系统(该组织决定着情感的正负)的“奖励区域”产生正向的情感反映(如满意、自豪);当前者小于后者时,就会在大脑中的边缘系统的“惩罚区域”产生负向的情感反映(如失望、惭愧)。大脑然后对价值的目标指向、变化方式、变化时态、对方的利益相关性等进行判断,从而确定和选择情感表达的基本模式。此外,情感识别、情感计算与情感调控也遵循着特定的逻辑程序。如果不了解情感运行的内在逻辑程序,就不可能研制出真正意义的情感机器人。
4、不了解情感的数学模型
心理学没有建立任何的情感数学模型,也不知道情感的数学变化规律。显然,要实现情感的数字化,就必须首先建立情感的数学模型。事实上,人的情感可以通过情感矩阵来进行描述,并可以进行情感的交集运算与并集运算,情感强度的变化有着特定的数学规律。情感是人脑对于事物价值特性的主观反映,虽然,事物的“价值率高差”在根本上决定着人的情感强度,但在一般情况下,情感的强度并不与事物的价值率高差成正比,而是一种特殊的指数函数关系。
正是上述的理论障碍,在根本上决定了情感机器人的发展局限性。各国所声称拥有情感的机器人,最多只能模拟人的某些情感表达方式,并进行一些简单的情感识别,不可能具有真正意义上的内在情感思维。
机器人技术的形成,归功于在第二次世界大战中各国加强了经济的投入,由于人力的缺乏,战后的汽车工业、机械制造业等迫切需要一种机器人来从事繁重的体力劳动,以提高生产效率,降低人的劳动强度。
机器人技术的发展主要基于两个目的:一是,机器人可以干人不愿意干的事,从而把人从有毒的、有害的、高温的或危险的的环境中解放出来;二是,机器人可以干人不能干的事,许多高强度、高速度、高复杂性、高重复单调性工作,人是无法适应的,一些太空领域、深海领域、恶劣环境领域和微观领域的工作,人也无法适应。机器人有四个发展阶段。
第一代机器人:示教再现型机器人。1947年,为了搬运和处理核燃料,美国橡树岭国家实验室研发了世界上第一台遥控的机器人。1962年美国又研制成功PUMA通用示教再现型机器人,这种机器人通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作。比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作。
第二代机器人:感觉型机器人。示教再现型机器人对于外界的环境没有感知,这个操作力的大小,这个工件存在不存在,焊接的好与坏,它并不知道,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫感觉型机器人,这种机器人拥有类似人在某种功能的感觉,如力觉、触觉、滑觉、视觉、听觉等,它能够通过感觉来感受和识别工件的形状、大小、颜色。
第三代机器人:情感识别与表达型机器人。20世纪90年代各国纷纷提出了“情感计算”、“感性工学”、“人工情感”与“人工心理”等理论,为情感识别与表达型机器人的产生奠定了理论基础。主要的技术成果有:基于图像或视频的人脸表情识别技术,基于情景的情感手势、动作识别与理解技术,表情合成和情感表达方法和理论,情感手势、动作生成算法和模型,基于概率图模型的情感状态理解技术,情感测量和表示技术,情感交互设计和模型等。这种机器人能够比较逼真地模拟人的许多种情感表达方式,能够较为准确地识别几种基本的情感模式。但是,这种机器人没有内在的情感逻辑系统,不能真正地进行情感思维与情感计算。
第四代机器人:情感理解型机器人。经过二十多年的潜心研究,仇德辉创立了“统一价值论”与“数理情感学”,为情感理解型机器人的产生奠定了理论基础。“数理情感学”建立在“统一价值论”的基础之上,揭示了情感的哲学本质就是人脑对于事物价值特性的主观反映,情感的客观目的在于引导人如何正确地识别价值、消费价值、创造价值和表达价值;首次提出了情感可以采用数学矩阵的方式来进行描述,推导出情感强度三大定律,并采用数学的方式来定义和计算情感的八大动力特性;“数理情感学”详细阐述了情感与意志运行的内在逻辑程序以及情感内部逻辑系统的基本结构;等等,基本上解决了情感机器人的主要理论问题,从而揭开了情感机器人真正登上历史舞台的序幕。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)