江西省计算技术研究所这个单位怎么样?工作及待遇方面,有了解情况的吗进来说一说!十分感谢!!

江西省计算技术研究所这个单位怎么样?工作及待遇方面,有了解情况的吗进来说一说!十分感谢!!,第1张

个人感觉不太好,虽然说是科技厅直属的单位,但根据本人在里面工作的经历告诉我,这个单位非常穷,一年下来三万不到(本人08年研究生毕业),伤不起啊,无奈之下我只有选择跳说到这单位的工作,总体来说还可以,不是太累,但相比较公务员,我想还是比那要累点(虽然我没当过公各员,呵呵),而且这单位还有个好处就是稳定,到月给工资,一分不会少,关于福利方面,因为我之前只是一名普通职工,所以没怎么感受到福利,我想里面有权的人,应该还是有点油水的总的来说,我觉得,如果你是个男生(我也是男生),我觉得不是太好,看着那飙升的房价,还有那高不可及的CPI,这么点工资伤不起呀,如果是女生,进这个单位还是可以考虑的,毕竟工资够生活,而且不会太累,可以有点时间照顾家里.就说这么多了,肺腑之言,楼主要给分啊

人工情感包括三个方面:情感识别、情感表达与情感理解(或情感思维)。世界各国的科学家在情感识别与情感表达两个方面所取得的成果非常显著,但在情感理解或情感思维方面却收获甚微。其根本原因在于,到目前为止,没有一个科学家能够真正了解情感的哲学本质及客观目的是什么,没有创立一个全新的、科学的、数学化的情感理论,没有建立一个真正的情感的数学模型。

人工智能实际上只是人工认知,它是狭义的人工智能。知、情、意是人类三种基本的思维形式,那么广义的人工智能应该包括人工认知、人工情感和人工意志三个方面,因此要想由狭义的人工智能朝向广义的人工智能发展,就必须首先解决一系列有关情感的基本理论问题:什么是情感?情感的客观目的是什么?认知与情感到底有何区别?等等,而这些深层次的理论问题是当今的哲学、思维科学、生命科学和心理学等没能真正解决的。计算机的人工智能水平在经历了一段时间的突飞猛进之后,如今已经接近了它的理论上的发展极限,显然,不解决上述深层次的、哲学层面上的理论问题,不解决“人工智能”、“人工情感”和“情感计算”理论所存在的一系列严重的危机与哲学错误,要想研究真正意义的情感机器人是绝对不可能的。人工情感理论存在三个方面的严重缺陷:

1、不了解情感的哲学本质

情感是人类的一种主观意识,它必然是人脑对于某一种客观存在的主观反映,这种客观存在就是“价值”(或利益),情感与价值的关系就是主观与客观的关系,因此情感的哲学本质就是人脑对于事物价值特性的一种主观反映,情感的思维实际上就是人脑对于“价值”的思维,对于情感的计算实际上就是对于价值的计算。而所有人工情感的研究者们都不知道这一点,他们总是试图通过测量和计算情感产生过程的各种生理指标(如心率、血压、脑电波、呼吸、瞳孔直径、激素分泌、血液成份等)的变化数据来确定情感强度的变化情况,来研究情感的变化规律,其结果必然是:“在主观范围内绕圈子,在表面形式上打循环”。事实上,情感的感受强度、表达强度和生理唤醒指标等三个方面只是反映了情感在感受、作用和表达过程中所体现的生理指标,都属于情感的主观表现形式,而不是情感所反映的客观内容。情感所反映的客观内容就是主体所拥有的价值关系或利益关系及其变化,对于情感表现形式所激发的生理指标的计算,只能反映情感的表面形式,而不能反映情感的客观内容,只有对情感所反映的客观内容——价值关系进行计算,才能客观地、准确地、全面地反映情感运行的真实状态。情感是人脑对于事物价值特征的主观反映,其客观目的在于引导人更好地识别价值、消费价值、创造价值和表达价值,因此情感的识别实际上就是价值的识别,情感的表达实际上就是价值的表达,情感的计算实际上就是价值的计算。

2、不了解情感的主要功能

人工情感研究者们只知道情感的功能作用在于使人或机器更具有“人情味”、更友好、更容易形成自然而亲切的人与机交互,营造真正和谐的人机环境。事实是,情感的功能远非如此!情感除了帮助建立机器人的人性化界面,还能够有效地提高思维的效率与速度,而且,情感还有一个更重要的功能,那就是:情感是人的行为灵活性、决策自主性和思维创造性的根本来源。智能机器人主要的缺陷在于:只能按照人预先编制的程序进行动作,不能自主地确立和调整价值目标,不能创造性地制订和修改总体规划及行为方案,不能总结经验和吸取教训。智能机器人一旦具有了情感,就能够以“达到既定的意志目标”为行为方向,以内设的“价值观系统(或情感系统)、认知系统和意志系统”为价值计算依据,以“实现最大价值率”为行为准则,建立一系列价值计算的函数关系式或约束方程式,再根据机器人所处的自然环境和人文社会环境确定若干个边界条件,选定情感和意志的动力特性参数,就可以主动地、创造性地调整“整体规划、行为方案和具体动作”,然后对行为的最终结果进行价值评价,以便及时地修正价值观系统(或情感系统)、认知系统和意志系统,达到总结经验和吸取教训的目的。

3、不了解情感的逻辑程序

人工情感的研究者们完全不了解情感运行的内在逻辑程序,只知道人在进行情感反应时各种生理指标的变化数据。事实上,人在进行情感表达、情感识别和情感思维过程中,遵循着特定的逻辑程序。情感表达的逻辑程序大致是:人通过感觉器官接收刺激信号,大脑就会把以前存储在“价值观系统”中该事物的“主观价值率”提取出来,与自身的“中值价值率”进行比较、判断和计算。当前者大于后者时,就会在大脑中的边缘系统(该组织决定着情感的正负)的“奖励区域”产生正向的情感反映(如满意、自豪);当前者小于后者时,就会在大脑中的边缘系统的“惩罚区域”产生负向的情感反映(如失望、惭愧)。大脑然后对价值的目标指向、变化方式、变化时态、对方的利益相关性等进行判断,从而确定和选择情感表达的基本模式。此外,情感识别、情感计算与情感调控也遵循着特定的逻辑程序。如果不了解情感运行的内在逻辑程序,就不可能研制出真正意义的情感机器人。

4、不了解情感的数学模型

心理学没有建立任何的情感数学模型,也不知道情感的数学变化规律。显然,要实现情感的数字化,就必须首先建立情感的数学模型。事实上,人的情感可以通过情感矩阵来进行描述,并可以进行情感的交集运算与并集运算,情感强度的变化有着特定的数学规律。情感是人脑对于事物价值特性的主观反映,虽然,事物的“价值率高差”在根本上决定着人的情感强度,但在一般情况下,情感的强度并不与事物的价值率高差成正比,而是一种特殊的指数函数关系。

正是上述的理论障碍,在根本上决定了情感机器人的发展局限性。各国所声称拥有情感的机器人,最多只能模拟人的某些情感表达方式,并进行一些简单的情感识别,不可能具有真正意义上的内在情感思维。

传统的人机交互,主要通过键盘、鼠标、屏幕等方式进行,只追求便利和准确,无法理解和适应人的情绪或心境。而如果缺乏这种情感理解和表达能力,就很难指望计算机具有类似人一样的智能,也很难期望人机交互做到真正的和谐与自然。由于人类之间的沟通与交流是自然而富有感情的,因此,在人机交互的过程中,人们也很自然地期望计算机具有情感能力。情感计算(Affective Computting)就是要赋予计算机类似于人一样的观察、理解和生成各种情感特征的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。 有关人类情感的深入研究,早在19世纪末就进行了。然而,除了科幻小说当中,过去极少有人将“感情”和无生命的机器联系在一起。只有到了现代,随着数字信息技术的发展,人们才开始设想让机器(计算机)也具备“感情”。从感知信号中提取情感特征,分析人的情感与各种感知信号的关联,是国际上近几年刚刚兴起的研究方向(图1)。

人的情绪与心境状态的变化总是伴随着某些生理特征或行为特征的起伏,它受到所处环境、文化背景、人的个性等一系列因素的影响。要让机器处理情感,我们首先必须探讨人与人之间的交互过程。那么人是如何表达情感,又如何精确地觉察到它们的呢?人们通过一系列的面部表情、肢体动作和语音来表达情感,又通过视觉、听觉、触觉来感知情感的变化。视觉察觉则主要通过面部表情、姿态来进行;语音、音乐则是主要的听觉途径;触觉则包括对爱抚、冲击、汗液分泌、心跳等现象的处理。

情感计算研究的重点就在于通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建感知、识别和理解人类情感的能力,并能针对用户的情感做出智能、灵敏、友好反应的个人计算系统,缩短人机之间的距离,营造真正和谐的人机环境(图2)。 在生活中,人们很难保持一种僵硬的脸部表情,通过脸部表情来体现情感是人们常用的较自然的表现方式,其情感表现区域主要包括嘴、脸颊、眼睛、眉毛和前额等。人在表达情感时,只稍许改变一下面部的局部特征(譬如皱一下眉毛),便能反映一种心态。在1972年,著名的学者Ekman提出了脸部情感的表达方法(脸部运动编码系统FACS)。通过不同编码和运动单元的组合,即可以在脸部形成复杂的表情变化,譬如幸福、愤怒、悲伤等。该成果已经被大多数研究人员所接受,并被应用在人脸表情的自动识别与合成(图3)。

随着计算机技术的飞速发展,为了满足通信的需要,人们进一步将人脸识别和合成的工作融入到通信编码中。最典型的便是MPEG4 V2视觉标准,其中定义了3个重要的参数集:人脸定义参数、人脸内插变换和人脸动画参数。表情参数中具体数值的大小代表人激动的程度,可以组合多种表情以模拟混合表情。

在目前的人脸表情处理技术中,多侧重于对三维图像的更加细致的描述和建模。通常采用复杂的纹理和较细致的图形变换算法,达到生动的情感表达效果。在此基础上,不同的算法形成了不同水平的应用系统(图4,图5) 人的姿态一般伴随着交互过程而发生变化,它们表达着一些信息。例如手势的加强通常反映一种强调的心态,身体某一部位不停地摆动,则通常具有情绪紧张的倾向。相对于语音和人脸表情变化来说,姿态变化的规律性较难获取,但由于人的姿态变化会使表述更加生动,因而人们依然对其表示了强烈的关注。

科学家针对肢体运动,专门设计了一系列运动和身体信息捕获设备,例如运动捕获仪、数据手套、智能座椅等。国外一些著名的大学和跨国公司,例如麻省理工学院、IBM等则在这些设备的基础上构筑了智能空间。同时也有人将智能座椅应用于汽车的驾座上,用于动态监测驾驶人员的情绪状态,并提出适时警告。意大利的一些科学家还通过一系列的姿态分析,对办公室的工作人员进行情感自动分析,设计出更舒适的办公环境。 在人类的交互过程中,语音是人们最直接的交流通道,人们通过语音能够明显地感受到对方的情绪变化,例如通过特殊的语气词、语调发生变化等等。在人们通电话时,虽然彼此看不到,但能从语气中感觉到对方的情绪变化。例如同样一句话“你真行”,在运用不同语气时,可以使之成为一句赞赏的话,也可以使之成为讽刺或妒忌的话。

目前,国际上对情感语音的研究主要侧重于情感的声学特征的分析这一方面。一般来说,语音中的情感特征往往通过语音韵律的变化表现出来。例如,当一个人发怒的时候,讲话的速率会变快,音量会变大,音调会变高等,同时一些音素特征(共振峰、声道截面函数等)也能反映情感的变化。中国科学院自动化研究所模式识别国家重点实验室的专家们针对语言中的焦点现象,首先提出了情感焦点生成模型。这为语音合成中情感状态的自动预测提供了依据,结合高质量的声学模型,使得情感语音合成和识别率先达到了实际应用水平。 虽然人脸、姿态和语音等均能独立地表示一定的情感,但人在相互交流的过程中却总是通过上面信息的综合表现来进行的。所以,惟有实现多通道的人机界面,才是人与计算机最为自然的交互方式,它集自然语言、语音、手语、人脸、唇读、头势、体势等多种交流通道为一体,并对这些通道信息进行编码、压缩、集成和融合,集中处理图像、音频、视频、文本等多媒体信息。

目前,多模态技术本身也正在成为人机交互的研究热点,而情感计算融合多模态处理技术,则可以实现情感的多特征融合,能够有力地提高情感计算的研究深度,并促使出现高质量、更和谐的人机交互系统。

在多模态情感计算研究中,一个很重要的研究分支就是情感机器人和情感虚拟人的研究。美国麻省理工学院、日本东京科技大学、美国卡内基·梅隆大学均在此领域做出了较好的演示系统。目前中科院自动化所模式识别国家重点实验室已将情感处理融入到了他们已有的语音和人脸的多模态交互平台中,使其结合情感语音合成、人脸建模、视位模型等一系列前沿技术,构筑了栩栩如生的情感虚拟头像,并正在积极转向嵌入式平台和游戏平台等实际应用(图6)。 情感状态的识别和理解,则是赋予计算机理解情感并做出恰如其分反应的关键步骤。这个步骤通常包括从人的情感信息中提取用于识别的特征,例如从一张笑脸中辨别出眉毛等,接着让计算机学习这些特征以便日后能够准确地识别其情感。

为了使计算机更好地完成情感识别任务,科学家已经对人类的情感状态进行了合理而清晰的分类,提出了几类基本情感。目前,在情感识别和理解的方法上运用了模式识别、人工智能、语音和图像技术的大量研究成果。例如:在情感语音的声学分析的基础上,运用线性统计方法和神经网络模型,实现了基于语音的情感识别原型;通过对面部运动区域进行编码,采用HMM等不同模型,建立了面部情感特征的识别方法;通过对人姿态和运动的分析,探索肢体运动的情感类别等等。

不过,受到情感信息的捕获技术的影响,并缺乏大规模的情感数据资源,有关多特征融合的情感理解模型的研究还有待深入。随着未来的技术进展,还将提出更有效的机器学习机制。 情感计算与智能交互技术试图在人和计算机之间建立精确的自然交互方式,将会是计算技术向人类社会全面渗透的重要手段。未来随着技术的不断突破,情感计算的应用势在必行,其对未来日常生活的影响将是方方面面的,目前我们可以预见的有:

情感计算将有效地改变过去计算机呆板的交互服务,提高人机交互的亲切性和准确性。一个拥有情感能力的计算机,能够对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们便于理解自己和他人的情感世界。

它还能帮助我们增加使用设备的安全性(例如当采用此类技术的系统探测到司机精力不集中时可以及时改变车的状态和反应)、使经验人性化、使计算机作为媒介进行学习的功能达到最佳化,并从我们身上收集反馈信息。例如,一个研究项目在汽车中用电脑来测量驾车者感受到的压力水平,以帮助解决所谓驾驶者的“道路狂暴症”问题。

情感计算和相关研究还能够给涉及电子商务领域的企业带来实惠。已经有研究显示,不同的图像可以唤起人类不同的情感。例如,蛇、蜘蛛和枪的能引起恐惧,而有大量美元现金和金块的则可以使人产生非常强烈的积极反应。如果购物网站和股票交易网站在设计时研究和考虑这些因素的意义,将对客流量的上升产生非常积极的影响。

在信息家电和智能仪器中,增加自动感知人们的情绪状态的功能,可以提供更好的服务。

在信息检索应用中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。

在远程教育平台中,情感计算技术的应用能增加教学效果。

利用多模式的情感交互技术,可以构筑更贴近人们生活的智能空间或虚拟场景等等。

情感计算还能应用在机器人、智能玩具、游戏等相关产业中,以构筑更加拟人化的风格和更加逼真的场景。 由于缺乏较大规模的情感数据资源,情感计算的发展受到一定的限制,而且多局限在语音、身体语言等具体而零散的研究领域,仅仅依靠这些还难以准确地推断和生成一个人的情感状态,并进行有效的情感交互。目前,科学家们正在积极地探索多特征融合的情感计算理论模型。很多人认为,今后几年情感计算将在这些方面需要取得突破:

更加细致和准确的情感信息获取、描述及参数化建模。

多模态的情感识别、理解和表达(图像、语音、生理特征等)。

自然场景对生理和行为特征的影响。

更加适用的机器学习算法。

海量的情感数据资源库。 不久前,为了推动我国在这一领域的研究,探讨情感计算和智能交互技术的发展动态与趋势,促进我国科研人员在此领域的交流与合作,中国科学院自动化研究所、中国自动化学会、中国计算机学会、中国图象图形学会、中国中文信息学会、国家自然科学基金委员会和国家863计划计算机软硬件技术主题作为主办单位,在北京主办了第一届中国情感计算与智能交互学术会议。

事实证明,情感计算的概念尽管诞生不久,但已受到学术界和产业界的高度重视,相关领域的研究和应用正方兴未艾,国家自然科学基金委也将其列入重点项目的指南中。值得注意的是,近几年来,与情感计算有密切关系的普适计算和可穿戴式计算机的研究也已获得了蓬勃发展,并同样得到了国家的大力支持。这为情感信息的实时获取提供了极大的便利条件,也为情感计算在国内的发展提供了更好的发展平台。

  不少人都翘首以盼,计算机会变得越来越聪明,在不久的将来,它就能像人一样具有情感,与人进行自然、亲切和生动的智能交互。 认知科学(Cognitive Science)是在心理学、计算机科学、人工智能、神经科学、科学语言学、科学哲学以及其他基础科学(如数学、理论物理学)共同感兴趣的界面上,即理解人类的、乃至机器的智能的共同兴趣上,涌现出来的高度跨学科的新兴科学。认知科学试图依靠众多学科的共同努力,理解心智的性质,可能的话,在此基础上制造出能思维的机器。而认知心理学由于关注和研究人的心智活动,在认知科学中发挥着重要的作用。

认知心理学: 人脑与计算机类比

认知心理学是20世纪60年代兴起的心理学研究取向,它不仅研究心智活动的“软件”(即心智活动的过程,如人对信息的编码、储存和提取),而且研究心智活动的“硬件”(即心智活动的结构,如认知功能的脑定位或脑机制),提出了极富特色的理论,促进了对人类心智活动的细微剖析和准确理解,成为现代心理学的主流方向。

信息加工系统(Information-Processing System)也被称为符号操作系统(Symbol Operation System)或物理符号系统(Physical Symbol System)。一个完整的物理符号系统具有信息的输入(Input)、输出(Output)、存储(Store)、复制(Copy)、建立符号结构(Build Symbol Structure)和条件性迁移(Conditional Transfer)六种功能。物理符号系统假设提出,任何一个系统,如果能够表现出智能的话,就必能执行上述六种功能; 反之,任何系统如果具有这六种功能,就能表现出智能。其推论自然是: 人具有智能,人一定是个物理符号系统; 计算机是个物理符号系统,计算机一定能表现出智能。既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就可以用计算机来模拟人的智能活动。认知心理学所做的,就是试图用物理符号系统假设中的基本规律来解释人类复杂的心理现象。

心智的计算-表征理解(Computa-tional-Representational Understanding of Mind,简称CRUM)是一种对心智问题的理解方式,认为对思维最恰当的理解是将其视为心智中的表征结构以及在这些结构上进行操作的计算程序。 心智表征属于系统的内部状态,是相对于外部事件或事件的语义加以界定的,是一种形式化的符号表达式; 而所有与系统有关的语义内容,都依照深层的符号表达式及其变换的形式和符号关系结构加以规定,这是一种物理符号操作,是一种计算。表征与计算二者的关系密不可分,因为一定的计算总是建立在一定的表征之上,表现为对表征的某种操作和转换; 而一定的计算也总是会产生某种新的表征。

认知心理学研究心智结构和信息加工过程的方法主要由四个步骤构成,即理论、模型、程序和平台。一个认知理论首先要假定一套表征结构和一套在这些结构上进行操作的加工过程; 然后,通过与由数据结构和算法构成的计算机程序进行类比,设计一个计算模型使得这些表征结构和过程更为精确。有关表征的模糊概念可以用准确的关于数据结构的计算概念予以补充,而心理过程则可由算法来定义; 为了测试该模型,必须用一种编程语言将其在一个软件程序中实现; 最后,该程序应该可以在各种软硬件平台上运行。实际上,无论是信息加工取向对规则和搜索策略等进行的抽象的串行的分析,还是联结主义取向强调的分布式表征和平行加工,各种心智结构和信息加工过程均可采用上述方法进行研究。理论、模型、程序、平台一起构成了认知心理学的基本研究构架。大量研究都遵循着这个途径,并通过实验将各个步骤贯穿起来。

情感计算: 人与计算机交互

显然,情感交流是个复杂的过程,不仅受时间、地点、环境、人物对象和经历的影响,而且有表情、语言、动作或身体的接触。情感计算研究试图通过不断加深对人的情感状态和机制的理解,创建一种能感知、识别和理解人的情感,并能针对人的情感做出智能、灵敏、友好反应的计算系统。

作者简介:傅小兰

研究员,现任中国科学院心理研究所副所长,研究领域为认知心理学,主要关注人的基本认知过程、信息加工动态机制、知识表征、认知绩效以及人机交互中的心理与行为问题。担任脑与认知科学国家重点实验室副主任,中国心理学会常务理事、副秘书长、中国人类工效学会理事、认知工效学专业委员会副主任委员,全国人类工效学标准化技术委员会副主任委员等。

情感计算研究有助于提高计算机感知情境,理解人的情感和意图,做出适当反应的能力。情境化是人与计算机交互研究中的新热点。在人与计算机的交互中,计算机需要捕捉关键信息,觉察人的情感变化,形成预期,进行调整,做出反应。例如,通过对不同类型的用户建模(例如: 操作方式、表情特点、态度喜好、认知风格、知识背景等),以识别用户的情感状态,利用有效的线索选择合适的用户模型(例如,根据可能的用户模型主动提供相应有效信息的预期),并以适合当前类型用户的方式呈现信息(例如: 呈现方式、操作方式、与知识背景有关的决策支持等); 在对当前的操作做出即时反馈的同时,还要对情感变化背后的意图形成新的预期,并激活相应的数据库,及时主动地提供用户需要的新信息。

情感计算是一个高度综合化的技术领域。目前情感计算研究面临的挑战仍是多方面的: (1)情感信息的获取与建模,例如细致和准确的情感信息获取、描述及参数化建模,海量的情感数据资源库,多特征融合的情感计算理论模型; (2)情感识别与理解,例如多模态的情感识别和理解; (3)情感表达,例如多模态的情感表达(图像、语音、生理特征等),自然场景对生理和行为特征的影响; (4)自然和谐的人性化和智能化的人计交互的实现,例如情感计算系统需要将大量广泛分布的数据整合,然后再以个性化的方式呈现给每个用户。

情感计算有广泛的应用前景。计算机通过对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们理解自己和他人的情感世界。计算机的情感化设计能帮助我们增加使用设备的安全性,使经验人性化,使计算机作为媒介进行学习的功能达到最佳化。在信息检索中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。

在电子商务领域,在设计购物网站和股票交易网站等时充分利用人的情感因素的作用,以改变客流量。多模式的情感交互技术能构筑更贴近人们生活的智能空间或虚拟场景,而机器人、智能玩具、游戏等产业则能构筑出更加拟人化的风格和更加逼真的场景。

目前人工智能的研究发展已经达到了较高的水平,同时它的研究内容也在逐步扩展和延伸。对人的情感和认知的研究是人工智能的高级阶段,它的研究将会大大促进拟人控制理论、情感机器人、人性化的商品设计和市场开发等方面的进展,为最终营造一个人与人、人与机器和谐的社会环境做出贡献。心理学家认为,人工智能下一个重大突破性的发展可能来自与其说赋予机器更多的逻辑智能,倒不如说赋予计算机更多的情感智能。对人的情感和认知的研究是在人工智能理论框架下的一个质的进步。因为从广度上讲它扩展并包容了感情智能,从深度上讲感情智能在人类智能思维与反应中体现了一种更高层次的智能。对人的情感和认知的研究必将为计算机的未来应用展现一种全新的方向。在这个领域的研究中主要包括情感计算(Affective Computing)、人工心理(Artificail Psychology)和感性工学(Kansei Engineering)等。

人工心理理论是由中国北京科技大学教授、中国人工智能学会人工心理与人工情感专业委员会主任王志良教授提出的。他指出,人工心理就是利用信息科学的手段,对人的心理活动(着重是人的情感、意志、性格、创造)的更全面再一次人工机器(计算机、模型算法等)模拟,其目的在于从心理学广义层次上研究人工情感、情绪与认知、动机与情绪的人工机器实现的问题。

日本从上世纪九十年代就开始了感性工学(Kansei Engineering)的研究。所谓感性工学就是将感性与工程结合起来的技术,是在感性科学的基础上,通过分析人类的感性,把人的感性需要加入到商品设计、制造中去,它是一门从工程学的角度实现能给人类带来喜悦和满足的商品制造的技术科学[4]。日本已经形成举国研究感性工学的高潮。

欧盟国家也在积极地对情感信息处理技术(表情识别、情感信息测量、可穿戴计算等)进行研究。欧洲许多大学成立了情感与智能关系的研究小组。其中比较著名的有:日内瓦大学 Klaus Soberer领导的情绪研究实验室。布鲁塞尔自由大学的D Canamero领导的情绪机器人研究小组以及英国伯明翰大学的A Sloman领导的 Cognition and Affect Project。在市场应用方面,德国Mehrdad Jaladi-Soli等人在2001年提出了基于EMBASSI系统的多模型购物助手。EMBASSI是由德国教育及研究部(BMBF)资助并由20多个大学和公司共同参与的,以考虑消费者心理和环境需求为研究目标的网络型电子商务系统。

我国对人工情感和认知的理论和技术的研究始于20世纪90年代,大部分研究工作是针对人工情感单元理论与技术的实现。哈尔滨工业大学研究多功能感知机,主要包括表情识别、人脸识别、人脸检测与跟踪、手语识别、手语会成、表情合成、唇读等内容,并与海尔公司合作研究服务机器人。清华大学进行了基于人工情感的机器人控制体系结构的研究。北京交通大学进行多功能感知机和情感计算的融合研究。中国科学院自动比研究所主要研究基于生物特征的身份验证。

当前国际人工智能领域对人工情感合认知领域的研究日趋活跃。美国人工智能协会(AAAI)在1998,1999和2004年连续组织召开专业的学术会议对人工情感和认知进行研讨,国内的研究者也开展了许多的研究工作和学术活动。2003年12月在北京召开了第一届中国情感计算及智能交互学术大会。2005年10月在北京召开的第一届情感计算和智能交互国际学术会议,集合了世界一流的情感计算、人工情绪和人工心理研究的著名专家学者。这说明我国的人工情感和人工心理的研究在逐步展开并向国际水平看齐。

对情感计算的研究大致可以分为情感识别、情感建模和情感反应三大部分,这其中情感识别无疑是最基础,也是最重要的部分。

综上所述,对人的情感和认知的研究,包括对情感识别的研究,无论在理论上还是实践中都已经受到了研究者广泛的关注,对这一问题的研究具有重要的理论和应用价值。对这一问题的研究将最终推动人工智能的进一步发展,实现人机和谐的目标。

清华计算机系,简称贵系,研究方向众多,我会从主要的几个实验室来分别介绍。这里将您说的专业等价于研究方向。

清华计算机系包括5个研究所或者国家重点实验室,下面一一介绍。

智能技术与系统实验室

研究方向

神经和认知科学与智能信息处理的交叉与结合研究;

基于内容的海量信息处理理论与方法,特别是针对信息安全、信息检索、信息挖掘等研究具体的算法及应用;

计算机科学理论,包括算法设计与复杂性分析、形式化方法、量子计算与量子信息、量子软件理论、人工智能基础理论;

机器学习理论、方法与应用;

多时标非线性系统及分布参数系统的智能建模与控制理论在空间机器人动力学、规划与控制中的应用;

先进的智能信息处理与控制理论在移动机器人与智能车、类人机器人、空间机器人等系统中的应用理论与技术;

自然语言文字处理的理论与方法、模式识别,包括语音与汉字识别、生物特征识别、文档识别与理解,智能视频监控,多媒体信息处理,信号处理理论与应用;

计算机网络技术研究所

研究方向

网络体系结构与网络协议测试

路由与交换

网络服务质量与传输控制

网络与信息安全

分布式信息系统

无线自组网与计算机协同工作

高性能计算研究所

研究方向

面向科学计算以及工程需要的计算机系统

以数据为中心的计算系统

计算机软件研究所

研究方向

数据工程

知识工程

电子设计自动化(EDA)

可视化技术

软件工程与系统软件

人机交互与媒体集成研究所

研究方向

计算机图形学与计算机视觉:真实感绘制与动画、几何处理、图像视频的理解与合成、计算机视觉等。

媒体计算:多媒体编码、检索与传输、社会媒体计算等。

和谐人机交互:情感计算、语音交互、大幅面交互、脑机接口、交互效率与优化、新型终端自然交互接口等。

普适计算环境:普适计算模式、主动服务、嵌入式系统、情境感知、智能空间及物联网等。

非常荣幸回答您的问题!!!

楼上的哥们,你是不是嫉妒啊?你根本就不是计算所的学生,不了解情况请不要乱喷,我是计算所的研究生,具体情况比你了解,历届学长都比较优秀,就业相当不错的,起薪不低于10W/年,基本都去了国内外一批著名的IT企业和金融系统,如INTEL、IBM、microsoft、amazon、华为、百度、淘宝、各大银行等。上海市计算技术研究所欢迎优秀学子。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/726987.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-08
下一篇2023-07-08

发表评论

登录后才能评论

评论列表(0条)

    保存