浅谈用户画像

浅谈用户画像,第1张

用户画像分两类,一给人看,二给机器看,如下图所示:

从产品角度而言,精确的用户画像是产品定位的基础以及后续产品优化的方向。在此我大致分为三类:

01

目标明晰群体:例如百度搜索---搜索内容;高德地图---使用导航;锤子便签---记录事件。我们会发现服务于明确目标用户群体的产品会更偏向于工具类,当然绝不以偏概全。

02

内容消费群体:例如腾讯视频---看视频;今日头条--看新闻;知乎---看内容;这类APP都偏向内容输出方向。用户在空闲时刻就可以利用这类产品浏览内容,学习知识。

03

走马观花群体:例如小红书和礼物说,它们和京东最大不同就是没有提供精准搜索。因为服务群体不一样,小红书和礼物说的用户群体是女性,其目的就是为了提供一个随意逛街的场景,并不是购买。

淘宝和微博是一个综合体,他们有一个共同的特征是他们都有头羊,微博的大V用户就是头羊;淘宝的店主就是头羊。有了头羊就有羊群,就有用户群。

从智能推荐而言,目前用户画像大多都只是对用户行为数据的统计和匹配工作。数据来源大致分为两类。一是人口统计学,包括姓名、年龄、地域、教育等基本资料信息;二是用户历史行为数据统计。机器算法大致分为结构化文本提取和标签选择,后续会详细介绍。

如何构建用户画像?

以上是最简单的一个流程框架,实际运用中远比这复杂。数据对于推荐而言非常必要,如何获取数据,智能匹配仍然是需要长期实践的过程。

01

如何收集数据:最简单的方法是用户主动提供,举个最常见的产品---QQ,它在发布动态时用户可主动添加标签。这样的产品还很多,尤其是UGC创作平台。但更多的是在技术层面上实现对用户行为数据的精确收集。

02

如何保证数据的准确性:前期很重要的一点是产品规划,必须明确产品路径上的所有数据埋点,另外要预留风险方案;其次只能依靠技术手段实现数据保障。

03

如何精确匹配数据:对于机器而言,用户画像实质上就是用户信息向量化表示。大致分为几个要素,以民宿来举例说明:

    1)、向量的维度:地理位置、价格、舒适度;

    2)、向量的量化:对维度赋予分值,若三个维度都是1-5分;

    3)、效果评估:对应民宿的订购率和入住率,还有好评度。

每个用户都会有自己的量化分,拿一些场景举例,若我第二天要赶飞机,那么地理位置对我很重要,相应分值提高;如果我现在经济条件不充裕,那么相应价格分值会提高。

所以不同场景会有不同量化分,结合场景进行个性化推荐是最终目标。

以上为几点思考,多多交流!

什么是用户画像?

用户画像是真实用户的虚拟代表,是建立在一系列真实数据之上的目标用户模型。

通俗来讲,就是——我们产品的目标受众是什么,使用我们产品的核心人群是什么样的,他们有什么行为特征、消费习惯,什么是能够刺激他们购买的核心需求。

我们可以理解成,它就是一家企业的核心武器,它可以帮助我们:

聚焦、洞察用户的需求。

更精准地决策。

培养用户思维。

为了帮助大家更好地理解用户画像,这里为大家梳理了一套用户画像建立模板,大家可以参考:

如何分析用户画像?

1百度大数据洞察:百度指数

百度指数是以百度海量网民行为数据为基础的数据分享平台。分别有趋势研究、需求图谱、人群画像是百度指数的三个展现维度。

趋势研究:这是百度指数最核心、最基本的功能,是以时间维度,判断关键词的关注热度;我们可以做对比分析,从而找出规律。

以美术班为例,搜索关键词后,发现了一条规律,每年的3月和9月是搜索高峰期,这也正好应对了两个开学季。

需求图谱:通过用户在搜索该词的前后的搜索行为变化中表现出来的相关检索词需求。

比如,通过“美术”这个大关键词,检索出的相关小关键词。可以帮我们更精准地掌握用户的需求。圆中的圈越大,说明与大关键词的关联性越强。

人群画像:搜索关键词的人群共性特征,是从地域、年龄、性别分布以及兴趣属性这几个特征展开的。

2全域数据洞察——观星盘

观星盘汇聚了百度域内数据、客户数据、合作伙伴数据组成的全域数据,构建海量用户行为标签,提供多维度行业和品牌洞察能力,全方位感知用户行为和意图,帮助品牌锁定精准目标用户。

借助观星盘数据精细化细分人群,可以覆盖不同侧重点进行引流营销,增强目标用户对品牌的认知,提升影响力。

用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。

通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。

标签的分类方法比较多样,可以按标签的产出方式分,也可以按实际业务分,也可以组合起来分类。

按产出方式来分的话:

1)事实统计类标签 例如近7日活跃时长、近7日活跃次数等等

2)事实规则类标签 例如消费活跃:近30天交易次数>=2

3)模型类标签 例如RFM模型,AARRR模型

4)算法类标签 例如根据用户购买的商品判断其购物性别、对某商品的偏好程度

按实际业务来分的话:

1)用户属性标签

2)用户消费标签

3)用户行为标签

4)风险控制标签

。。。

在互联网、电商领域用户画像常用来作为精准营销、推荐系统的基础性工作,其作用总体包括:

1)精准营销:根据历史用户特征,分析产品的潜在用户和用户的潜在需求,针对特定群体,利用短信、邮件等方式进行营销,提升营销效率和营销效果。

2)用户统计:根据用户的属性、行为特征对用户进行分类后,统计不同特征下的用户数量、分布;分析不同用户画像群体的分布特征。

3)数据挖掘:以用户画像为基础构建推荐系统、搜索引擎、广告投放系统,提升服务精准度。

4)服务产品:对产品进行用户画像,对产品进行受众分析,更透彻地理解用户使用产品的心理动机和行为习惯,完善产品运营,提升服务质量。

5)行业报告&用户研究:通过用户画像分析可以了解行业动态,比如人群消费习惯、消费偏好分析、不同地域品类消费差异分析

6)ABtest:用于创建ABtest实验,和实验效果分析

用户画像必须从实际业务场景出发,解决实际的业务问题,之所以进行用户画像,要么是获取新用户,要么是提升用户体验、或者挽回流失用户等具有明确的业务目标。

数据源的数据是标签构建的最底层,来源于各个业务端的数据,主要有离线和实时两大数据来源,一般的大数据架构会有流批处理的链路分别处理,也有流批一体的架构,数据产品可不重点关注。

数据层开始数据产品会比较关注,数据产品在设计标签时需要关注标签的生产在数据仓库的流转口径,特别是在定义原子标签的时候,需要深入理解业务,了解用户的来源,状态,订单的渠道,线上线下,订单状态等等。

标签层一般的,会按照上面说的实际业务分类进行标签的建设,一般构建原子标签就足够了,在服务层的标签工厂可以个性化的创建新的派生标签。

服务层主要包含两块,一个是画像平台的应用,一个是画像数据的统一API服务,给前台的营销系统、广告系统等提供标签分群数据支持。

以上是用户画像系统的基础概念,下一节我们了解下画像系统的难点之一:如何构建oneid?

用户画像最核心的组成部分其实是其中所包含的用户标签,用户标签其实可以理解成用户特征的一系列符号表示,每个标签可以理解成认识用户的一个角度。用户画像其实是标签的集合,每个标签之间都有一定的联系,整体上看各个维度的标签组合到一起形成了一个完整的用户画像。所以说用户画像其实可以用标签的集合来表示。

1Persona 人物角色

Persona是用来描绘一个抽象自然人的属性,这种感觉有点像实例化的一个对象,Persona具有一定的代表性,在市场运营的过程中我们会用Persona做什么?首先我们在做产品研发或者内容产出的时候,要最优先设定一个Persona,此后这个人就会不断的出现在脑海中,这个人物角色会指导我们一切工作,我们产品和内容就是为这个人为创造。

2 、Profile

Profile指的是用户信息标签化,通常应用于运营和数据分析中,企业通过数据分析平台(易观方舟)搜集用户搜集用户的基础属性、社会属性、产品事件行为等信息,刻画一个用户的全貌,得到较完整的用户标签信息后,运营人员可以按照标签分群进行精准定向营销。

3 、受众定向

很多人在谈论用户画像的时候,其实并不是在以上两者可能之间,他们只是隐约觉得自己说的事情可能跟用户画像相关,这个时候就要去剖析原始诉求,比如,有个客户是想知道我的用户在哪,我要去那个地方投广告,做内容营销。那么我想知道我的用户画像是什么?这个时候我们就可以明显感觉到用户要知道的是受众定向,而不是用户画像,方向不同是完全不同的。

4 、单用户档案和用户行为

对于营销和运营来说,用户档案和用户行为的应用和persona完全不同,persona是为了抽象的用户示例,用来进行标尺。而用户档案是Marketingdatabase用来存储用户信息的核心数据,用户行为更是洞察用户,精细化运营的必要数据。

我们在讨论用户画像的时候,一定要知道自己要的是什么,并且根据自己的需求进行用户画像的应用,组合几种用户画像经常出现的场景,可以更好的了解用户、更精准的人群投放、和更聚焦的产品内容创作。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/746875.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-08
下一篇2023-07-08

发表评论

登录后才能评论

评论列表(0条)

    保存