本次实验将加载两个数据,一个是已经标注好的用户评论数据,另外一个是用户评价主题句,通过标注过的用户评论数据进行基于集成模型的情感极性模型训练,然后利用模型对主题句进行情感极性推理,最后通过数据聚合可视化得出主题情感极性。
使用 Pandas 加载在线数据表格,并查看数据维度和前 5 行数据。
数据属性如下表所示
加载我们之前通过主题词典提取出来的主题句。
数据属性如下表所示
用户评论分词
jieba 分词器预热,第一次使用需要加载字典和缓存,通过结果看出返回的是分词的列表。
批量对用户评价进行分词,需要一些时间,并打印第一行情感极性训练集的分词结果。
批量对用户评价主题句进行分词,并打印第一句用户主题句分词结果。
依据统计学模型假设,假设用户评论中的词语之间相互独立,用户评价中的每一个词语都是一个特征,我们直接使用 TF-IDF 对用户评价提取特征,并对提取特征后的用户评价输入分类模型进行分类,将类别输出为积极的概率作为用户极性映射即可。
用户评论向量化
TF-IDF 是一种用于信息检索与数据挖掘的常用加权技术,当某个词在文章中的TF-IDF越大,那么一般而言这个词在这篇文章的重要性会越高,比较适合对用户评论中的关键词进行量化。
数据集合划分
按照训练集 8 成和测试集 2 成的比例对数据集进行划分,并检查划分之后的数据集数量。
我们在系列实验的开始使用朴素贝叶斯模型来训练情感分析模型,下面我们新增逻辑回归模型作为对比模型。逻辑回归(Logistic Regression)是一种用于解决二分类问题的机器学习方法,在线性回归的基础上,套用了一个 sigmod 函数,这个函数将线性结果映射到一个概率区间,并且通常以 05 分界线,这就使得数据的分类结果都趋向于在 0 和 1 两端,将用户评论进行向量化之后也可以用此方式预测用户情感。本实验直接对标注过的用户情感数据进行训练,并验证单一模型和集成模型在情感分析性能上的差异。
模型加载
通过传入原始的标签和预测的标签可以直接将分类器性能进行度量,利用常用的分类模型评价指标对训练好的模型进行模型评价,accuracy_score 评价被正确预测的样本占总样本的比例,Precision 是衡量模型精确率的指标,它是指模型识别出的文档数与识别的文档总数的比率,衡量的是模型的查准率。Recall 召回率也称为敏感度,它是指模型识别出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率,表示正样本在被正确划分样本中所占的比例,f1_score 值是精确率与召回率的调和平均数,是一个综合性的指数。
我们分别对不同模型使用相同的数据集进行训练和测试,以此来比较单模型之间的差异,并打印模型运行时间供大家参考,批量处理不同的模型需要一些时间进行计算,清耐心等待。
通过求得的指标进行模型评价,我们发现使用相同的数据进行模型训练,朴素贝叶斯模型和逻辑回归模型性能基本持平,相差很微弱,逻辑回归稍稍占一些优势。
Stacking 堆栈模型训练
集成学习是地结合来自两个或多个基本机器学习算法的优势,学习如何最好地结合来自多个性能良好的机器学习模型的预测结果,并作出比集成中的任何一个模型更好的预测。主要分为 Bagging, Boosting 和 Stacking,Stacking 堆栈模型是集成机器学习模型的一种,具体是将训练好的所有基模型对整个训练集进行预测,然后将每个模型输出的预测结果合并为新的特征,并加以训练。主要能降低模型的过拟合风险,提高模型的准确度。
开始对两个模型进行集成训练,训练的时间要比单一模型时间久一些,清耐心等待。
评测结果收集。
结果分析
将结果存入 Dataframe 进行结果分析,lr 表示逻辑回归,nb 表示朴素贝叶斯,model_stacking 将两个单模型集成后的模型。从结果来看集成模型准确度和 f1 值都是最高的,结合两个模型的优势,整体预测性能更好,鲁棒性更好。
样例测试
通过测试样例发现,分类器对正常的积极和消极判断比较好。但是当我们改变语义信息,情感模型则不能进行识别,模型鲁棒性较差。作为早期的文本分类模型,我们使用 TFIDF 的特征提取方式并不能很好的解决语义问题,自然语言是带有语序和语义的关联,其词语之间的关联关系影响整句话的情感极性,后续我们继续试验深度情感分析模型研究解决此类问题。
加载民宿主题数据。
模型预测
将情感分析模型推理的结果写入 DataFrame 中进行聚合。
单主题聚合分析
挑选一个主题进行主题情感分析。
对民宿“设施”进行描述统计,此次我们使用主题词典的出来的用户关于民宿“设施”主体的讨论条数为 4628 条,平均用户情感极性为 040 表示为整体呈现不满意的情况,有超过一半的关于“设施”的民宿评论中表现用户不满意的情况,重庆民宿需要在“设施”进行改善,以此提高用户满意度。
单主题情感极性可视化
我们开始进行“设置”主题下的用户主题情感进行可视化,首先加载画图模块。
对“设施”主题下的用户情感极性进行可视化,我们利用集成模型对主题句进行情感极性预测,如下所示。
百度文心一言是一款基于人工智能技术的短文本情感分析产品,它能够针对输入的短文本,分析出其中蕴含的情感,并给出相应的情感标签和分值。文心一言可以帮助用户更好地理解和处理短文本信息,并为企业提供情感分析类的数据支持,促进决策的准确性和效率。
一、更加准确的情感分析。文心一言不仅能够高度自适应,精准分析自然语言,还能够识别语境,抓住写作的情感、倾向以及沟通目的。采用更先进的算法和技术,让情感识别更为准确可信,提升应用的实用价值。
二、更丰富的应用场景
我期望文心一言能够应用于更广泛的场景,包括但不限于社交媒体、舆情监测、新闻报道、广告营销、客户服务等领域。例如,可以结合社交媒体的实时数据,实现更全面的舆情监测和反馈。还可以为广告商提供更精准的广告投放策略,提高广告投放的效果和ROI。期望文心一言可以通过与其他工具和产品的结合,为更多行业解决情感分析及管理问题。
三、更完善的应用支持
百度文心不停完善产品本身和其应用生态,进一步提高用户体验和应用效果。具体来说,文心一言需要提供更加丰富、灵活的情感分析API,同时为开发者提供更完善的文档和技术支持。
此外,还需要不断完善产品的用户界面和易用性,方便非技术人员使用。根据用户反馈,及时更新算法、修复漏洞,优化集成流程,达到更好的用户体验。
在不断变化的市场环境下,情感分析类技术正在逐渐成为企业决策的重要组成部分。文心一言作为其中的佼佼者之一,必将不懈努力,积极应对市场变化,以先进的技术为基础,为用户和企业提供更加优质的情感分析服务
未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)