C可以用于设计和实现抽象数据类型(ADT,abstract data type),因为他可以限制函数和
数据定义的作用域。这个几千也被称为黑盒(black box )设计。抽象数据类型的基本思想
----模块具有
功能说明----模块所执行的任务
和接口说明----模块的使用
模块的用户并不需要知道模块实现的任何细节,并且除了已经定义好的那些接口以外,
用户不能一任何方式访问模块。
限制对模块的访问是通过static关键字的合理使用实现的,他可以限制对那些并非
接口的函数和数据的访问。
例如:一个用于维护一个地址/电话号码列表的模块。模块必须提供函数,根据一个制定的
名字查找地址和电话号码。但列表存储的方式依赖于具体的实现,并且这个信息为模块所私有
客户并不清楚,也不必清楚。
是时间改看一个例子的时候了,下面的程序说明了这个模块的一种可能的实现方法。
头文件定义了一些由客户使用的接口。
/filename : addrlisth/
/
地址模块的声明
/
/
数据特征
各种数据的最大长度(包括结尾的NUL字节)和地址的最大数量
/
#define NAME_LENGTH 30
#define ADDR_LENGTH 100
#define PHONE_LENGTH 11
#define MAX_ADDRESSES 1000
/
接口函数
根据给出名字,查找对应的地址
/
char const
lookup_address(char const name);
/给据给出的名字查找对应的电话号码/
char const
lookup_phone(char const name);
------------------------------------------------
/file name : addrlistc/
/用于维护一个地址列表的抽象数据类型/
#include "addrlisth"
#include
/
每个地址的三个部分分别保存于三个数字化的对应元素中
/
static char name[MAX_ADDRESSES][NAME_LENGTH];
static char address[MAX_ADDRESSES][ADDR_LENGTH];
static char phone[MAX_ADDRESSES][PHONE_LENGTH];
/
在数组中查找一个名字返回查找的位置的下标
如查询不到则直接返回-1
/
static int
find_entry(char const name_to_find)
{
int entry;
for(entry = 0; entry < MAX_ADDRESSES;entry ++)
if(strcmp(name_to_find,name[entry]) == 0)
return entry;
return -1;
}
/
给定一个名字查找并返回对应的地址
如果名字没有找到直接返回一个NULL指针
/
char const
lookup_address(char const name)
{
int entry ;
entry = find_entry(name);
if(entry == -1)
return NULL;
else
return address[entry];
}
/
根据给定的名字查找并返回对应的电话号码,如名字不存在则返回NULL指针
/
char const
lookup_phone(char const name)
{
int entry ;
entry = find_entry(name);
if (entry == -1)
return NULL;
else
return phone[entry];
}
这个例子可以很好的说明黑盒的功能。黑盒通过规定特定的接口,来提供给外部用户的访问
在这个例子中,接口函数是lookup_address和lookup_phone。用户不能直接访问和模块实现有关的
数据,如数组或辅助函数find_entry,因为这些内容被声明为static。
这种黑盒的概念使实现细节与外界隔绝,这就消除了用户试图直接访问这些实现谢姐的诱惑,
这样访问模块唯一可能的方法就是通过模块所定义的接口。
这种开发模式是非常重要的,尤其是在大型项目规划中,很多时候我们只考虑接口问题,
其中具体的实现细节我们可以暂不考虑,一提高团队整体合作开发的速度。
1黑盒测试又称功能测试,是着眼于程序的外部特征,不考虑程序的内部逻辑结构。
2测试者把被测程序看成一个黑盒,不用关心程序的内部结构。
3黑盒测试是在程序接口处进行测试,只检查程序功能是否能按照规格说明书的规定正常使用,程序是否能适当地接收输入数据产生正确的输出信息,且保持外部信息的完整性。
4黑盒测试主要采用的技术有:等价分类法、边沿值分析法、错误推测法和因果图等技术。
黑盒测试(Black-box Testing,又称为功能测试或数据驱动测试)是把测试对象看作一个黑盒子。利用黑盒测试法进行动态测试时,需要测试软件产品的功能,不需测试软件产品的内部结构和处理过程。
采用黑盒技术设计测试用例的方法有:等价类划分、边界值分析、错误推测、因果图和综合策略。
黑盒测试注重于测试软件的功能性需求,也即黑盒测试使软件工程师派生出执行程序所有功能需求的输入条件。黑盒测试并不是白盒测试的替代品,而是用于辅助白盒测试发现其他类型的错误。
黑盒测试试图发现以下类型的错误:
1)功能错误或遗漏;
2)界面错误;
3)数据结构或外部数据库访问错误;
4)性能错误;
5)初始化和终止错误。
一、黑盒测试的测试用例设计方法
·等价类划分方法
·边界值分析方法
·错误推测方法
·因果图方法
·判定表驱动分析方法
·正交实验设计方法
·功能图分析方法
等价类划分:
是把所有可能的输入数据,即程序的输入域划分成若干部分(子集),然后从每一个子集中选取少数具有代表性的数据作为测试用例该方法是一种重要的,常用的黑盒测试用例设计方法
1) 划分等价类: 等价类是指某个输入域的子集合在该子集合中,各个输入数据对于揭露程序中的错误都是等效的并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据取得较好的测试结果等价类划分可有两种不同的情况:有效等价类和无效等价类
有效等价类:是指对于程序的规格说明来说是合理的,有意义的输入数据构成的集合利用有效等价类可检验程序是否实现了规格说明中所规定的功能和性能
无效等价类:与有效等价类的定义恰巧相反
设计测试用例时,要同时考虑这两种等价类因为,软件不仅要能接收合理的数据,也要能经受意外的考验这样的测试才能确保软件具有更高的可靠性
2)划分等价类的方法:下面给出六条确定等价类的原则
①在输入条件规定了取值范围或值的个数的情况下,则可以确立一个有效等价类和两个无效等价类
②在输入条件规定了输入值的集合或者规定了“必须如何”的条件的情况下,可确立一个有效等价类和一个无效等价类
③在输入条件是一个布尔量的情况下,可确定一个有效等价类和一个无效等价类
④在规定了输入数据的一组值(假定n个),并且程序要对每一个输入值分别处理的情况下,可确立n个有效等价类和一个无效等价类
⑤在规定了输入数据必须遵守的规则的情况下,可确立一个有效等价类(符合规则)和若干个无效等价类(从不同角度违反规则)
⑥在确知已划分的等价类中各元素在程序处理中的方式不同的情况下,则应再将该等价类进一步的划分为更小的等价类
3)设计测试用例:在确立了等价类后,可建立等价类表,列出所有划分出的等价类:
输入条件 有效等价类 无效等价类
然后从划分出的等价类中按以下三个原则设计测试用例:
①为每一个等价类规定一个唯一的编号
②设计一个新的测试用例,使其尽可能多地覆盖尚未被覆盖地有效等价类,重复这一步直到所有的有效等价类都被覆盖为止
③设计一个新的测试用例,使其仅覆盖一个尚未被覆盖的无效等价类,重复这一步直到所有的无效等价类都被覆盖为止
边界值分析法
边界值分析方法是对等价类划分方法的补充
(1)边界值分析方法的考虑:
长期的测试工作经验告诉我们,大量的错误是发生在输入或输出范围的边界上,而不是发生在输入输出范围的内部因此针对各种边界情况设计测试用例,可以查出更多的错误
使用边界值分析方法设计测试用例,首先应确定边界情况通常输入和输出等价类的边界,就是应着重测试的边界情况应当选取正好等于,刚刚大于或刚刚小于边界的值作为测试数据,而不是选取等价类中的典型值或任意值作为测试数据
(2)基于边界值分析方法选择测试用例的原则:
1)如果输入条件规定了值的范围,则应取刚达到这个范围的边界的值,以及刚刚超越这个范围边界的值作为测试输入数据
2)如果输入条件规定了值的个数,则用最大个数,最小个数,比最小个数少一,比最大个数多一的数作为测试数据
3)根据规格说明的每个输出条件,使用前面的原则1)
4)根据规格说明的每个输出条件,应用前面的原则2)
5)如果程序的规格说明给出的输入域或输出域是有序集合,则应选取集合的第一个元素和最后一个元素作为测试用例
6)如果程序中使用了一个内部数据结构,则应当选择这个内部数据结构的边界上的值作为测试用例
7)分析规格说明,找出其它可能的边界条件
错误推测法
错误推测法: 基于经验和直觉推测程序中所有可能存在的各种错误, 从而有针对性的设计测试用例的方法
错误推测方法的基本思想: 列举出程序中所有可能有的错误和容易发生错误的特殊情况,根据他们选择测试用例 例如, 在单元测试时曾列出的许多在模块中常见的错误 以前产品测试中曾经发现的错误等, 这些就是经验的总结 还有, 输入数据和输出数据为0的情况 输入表格为空格或输入表格只有一行 这些都是容易发生错误的情况 可选择这些情况下的例子作为测试用例
因果图方法
前面介绍的等价类划分方法和边界值分析方法,都是着重考虑输入条件,但未考虑输入条件之间的联系, 相互组合等 考虑输入条件之间的相互组合,可能会产生一些新的情况 但要检查输入条件的组合不是一件容易的事情, 即使把所有输入条件划分成等价类,他们之间的组合情况也相当多 因此必须考虑采用一种适合于描述对于多种条件的组合,相应产生多个动作的形式来考虑设计测试用例 这就需要利用因果图(逻辑模型)
因果图方法最终生成的就是判定表 它适合于检查程序输入条件的各种组合情况
利用因果图生成测试用例的基本步骤:
(1) 分析软件规格说明描述中, 那些是原因(即输入条件或输入条件的等价类),那些是结果(即输出条件), 并给每个原因和结果赋予一个标识符
(2) 分析软件规格说明描述中的语义找出原因与结果之间, 原因与原因之间对应的关系 根据这些关系,画出因果图
(3) 由于语法或环境限制, 有些原因与原因之间,原因与结果之间的组合情况不不可能出现 为表明这些特殊情况, 在因果图上用一些记号表明约束或限制条件
(4) 把因果图转换为判定表
(5) 把判定表的每一列拿出来作为依据,设计测试用例
从因果图生成的测试用例(局部,组合关系下的)包括了所有输入数据的取TRUE与取FALSE的情况,构成的测试用例数目达到最少,且测试用例数目随输入数据数目的增加而线性地增加
前面因果图方法中已经用到了判定表判定表(Decision Table)是分析和表达多逻辑条件下执行不同操作的情况下的工具在程序设计发展的初期,判定表就已被当作编写程序的辅助工具了由于它可以把复杂的逻辑关系和多种条件组合的情况表达得既具体又明确
判定表通常由四个部分组成
条件桩(Condition Stub):列出了问题得所有条件通常认为列出得条件的次序无关紧要
动作桩(Action Stub):列出了问题规定可能采取的操作这些操作的排列顺序没有约束
条件项(Condition Entry):列出针对它左列条件的取值在所有可能情况下的真假值
动作项(Action Entry):列出在条件项的各种取值情况下应该采取的动作
规则:任何一个条件组合的特定取值及其相应要执行的操作在判定表中贯穿条件项和动作项的一列就是一条规则显然,判定表中列出多少组条件取值,也就有多少条规则,既条件项和动作项有多少列
判定表的建立步骤:(根据软件规格说明)
①确定规则的个数假如有n个条件每个条件有两个取值(0,1),故有 种规则
②列出所有的条件桩和动作桩
③填入条件项
④填入动作项等到初始判定表
⑤简化合并相似规则(相同动作)
B Beizer 指出了适合使用判定表设计测试用例的条件:
①规格说明以判定表形式给出,或很容易转换成判定表
②条件的排列顺序不会也不影响执行哪些操作
③规则的排列顺序不会也不影响执行哪些操作
④每当某一规则的条件已经满足,并确定要执行的操作后,不必检验别的规则
⑤如果某一规则得到满足要执行多个操作,这些操作的执行顺序无关紧要
黑盒测试的优点
1 基本上不用人管着,如果程序停止运行了一般就是被测试程序crash了
2 设计完测试例之后,下来的工作就是爽了,当然更苦闷的是确定crash原因
黑盒测试的缺点
1 结果取决于测试例的设计,测试例的设计部分来势来源于经验,OUSPG的东西很值得借鉴
2 没有状态转换的概念,目前一些成功的例子基本上都是针对PDU来做的,还做不到针对被测试程序的状态转换来作
3 就没有状态概念的测试来说,寻找和确定造成程序crash的测试例是个麻烦事情,必须把周围可能的测试例单独确认一遍。而就有状态的测试来说,就更麻烦了,尤其不是一个单独的testcase造成的问题。这些在堆的问题中表现的更为突出。
黑盒测试(功能测试)工具的选择
那么,如何高效地完成功能测试?选择一款合适的功能测试工具并培训一支高素质的工具使用队伍无疑是至关重要的。尽管现阶段存在少数不采用任何功能测试工具,从事功能测试外包项目的软件服务企业。短期来看,这类企业盈利状况尚可,但长久来看,它们极有可能被自动化程度较高的软件服务企业取代。
目前,用于功能测试的工具软件有很多,针对不同架构软件的工具也不断推陈出新。这里重点介绍的是其中一个较为典型自动化测试工具,即Mercury公司的WinRunner。
WinRunner是一种用于检验应用程序能否如期运行的企业级软件功能测试工具。通过自动捕获、检测和模拟用户交互操作,WinRunner能识别出绝大多数软件功能缺陷,从而确保那些跨越了多个功能点和数据库的应用程序在发布时尽量不出现功能性故障。
WinRunner的特点在于: 与传统的手工测试相比,它能快速、批量地完成功能点测试; 能针对相同测试脚本,执行相同的动作,从而消除人工测试所带来的理解上的误差; 此外,它还能重复执行相同动作,测试工作中最枯燥的部分可交由机器完成; 它支持程序风格的测试脚本,一个高素质的测试工程师能借助它完成流程极为复杂的测试,通过使用通配符、宏、条件语句、循环语句等,还能较好地完成测试脚本的重用; 它针对于大多数编程语言和Windows技术,提供了较好的集成、支持环境,这对基于Windows平台的应用程序实施功能测试而言带来了极大的便利。
WinRunner的工作流程大致可以分为以下六个步骤:
1.识别应用程序的GUI
在WinRunner中,我们可以使用GUI Spy来识别各种GUI对象,识别后,WinRunner会将其存储到GUI Map File中。它提供两种GUI Map File模式: Global GUI Map File和GUI Map File per Test。其最大区别是后者对每个测试脚本产生一个GUI文件,它能自动建立、存储、加载,推荐初学者选用这种模式。但是,这种模式不易于描述对象的改变,其效率比较低,因此对于一个有经验的测试人员来说前者不失为一种更好的选择,它只产生一个共享的GUI文件,这使得测试脚本更容易维护,且效率更高。
2.建立测试脚本
在建立测试脚本时,一般先进行录制,然后在录制形成的脚本中手工加入需要的TSL(与C语言类似的测试脚本语言)。录制脚本有两种模式: Context Sensitive和Analog,选择依据主要在于是否对鼠标轨迹进行模拟,在需要回放时一般选用Analog。在录制过程中这两种模式可以通过F2键相互切换。
只要看看现代软件的规模和功能点数就可以明白,功能测试早已跨越了单靠手工敲敲键盘、点点鼠标就可以完成的阶段。而性能测试则是控制系统性能的有效手段,在软件的能力验证、能力规划、性能调优、缺陷修复等方面都发挥着重要作用。
3.对测试脚本除错(debug)
在WinRunner中有专门一个Debug Toolbar用于测试脚本除错。可以使用step、pause、breakpoint等来控制和跟踪测试脚本和查看各种变量值。
4.在新版应用程序执行测试脚本
当应用程序有新版本发布时,我们会对应用程序的各种功能包括新增功能进行测试,这时当然不可能再来重新录制和编写所有的测试脚本。我们可以使用已有的脚本,批量运行这些测试脚本测试旧的功能点是否正常工作。可以使用一个call命令来加载各测试脚本。还可在call命令中加各种TSL脚本来增加批量能力。
5.分析测试结果
分析测试结果在整个测试过程中最重要,通过分析可以发现应用程序的各种功能性缺陷。当运行完某个测试脚本后,会产生一个测试报告,从这个测试报告中我们能发现应用程序的功能性缺陷,能看到实际结果和期望结果之间的差异,以及在测试过程中产生的各类对话框等。
6.回报缺陷(defect)
在分析完测试报告后,按照测试流程要回报应用程序的各种缺陷,然后将这些缺陷发给指定人,以便进行修改和维护。
常用的功能测试方法
功能测试就是对产品的各功能进行验证,根据功能测试用例,逐项测试,检查产品是否达到用户要求的功能。常用的测试方法如下:
1 页面链接检查:每一个链接是否都有对应的页面,并且页面之间切换正确。
2 相关性检查:删除/增加一项会不会对其他项产生影响,如果产生影响,这些影响是否都正确。
3 检查按钮的功能是否正确:如update, cancel, delete, save等功能是否正确。
4 字符串长度检查: 输入超出需求所说明的字符串长度的内容, 看系统是否检查字符串长度,会不会出错
5 字符类型检查: 在应该输入指定类型的内容的地方输入其他类型的内容(如在应该输入整型的地方输入其他字符类型),看系统是否检查字符类型,会否报错
6 标点符号检查: 输入内容包括各种标点符号,特别是空格,各种引号,回车键看系统处理是否正确
7 中文字符处理: 在可以输入中文的系统输入中文,看会否出现乱码或出错
8 检查带出信息的完整性: 在查看信息和update信息时,查看所填写的信息是不是全部带出,带出信息和添加的是否一致
9 信息重复: 在一些需要命名,且名字应该唯一的信息输入重复的名字或ID,看系统有没有处理,会否报错,重名包括是否区分大小写,以及在输入内容的前后输入空格,系统是否作出正确处理
10 检查删除功能:在一些可以一次删除多个信息的地方,不选择任何信息,按”delete”,看系统如何处理,会否出错;然后选择一个和多个信息,进行删除,看是否正确处理
11 检查添加和修改是否一致: 检查添加和修改信息的要求是否一致,例如添加要求必填的项,修改也应该必填;添加规定为整型的项,修改也必须为整型
12 检查修改重名:修改时把不能重名的项改为已存在的内容,看会否处理,报错同时,也要注意,会不会报和自己重名的错
13 重复提交表单:一条已经成功提交的纪录,back后再提交,看看系统是否做了处理。
14 检查多次使用back键的情况: 在有back的地方,back,回到原来页面,再back,重复多次,看会否出错
15 search检查: 在有search功能的地方输入系统存在和不存在的内容,看search结果是否正确如果可以输入多个search条件,可以同时添加合理和不合理的条件,看系统处理是否正确
16 输入信息位置: 注意在光标停留的地方输入信息时,光标和所输入的信息会否跳到别的地方
17 上传下载文件检查:上传下载文件的功能是否实现,上传文件是否能打开。对上传文件的格式有何规定,系统是否有解释信息,并检查系统是否能够做到。
18 必填项检查:应该填写的项没有填写时系统是否都做了处理,对必填项是否有提示信息,如在必填项前加
19 快捷键检查:是否支持常用快捷键,如Ctrl+C Ctrl+V Backspace等,对一些不允许输入信息的字段,如选人,选日期对快捷方式是否也做了限制。
20 回车键检查: 在输入结束后直接按回车键,看系统处理如何,会否报错
大致可以分为以下几种:等价类划分法、边界值分析法、错误推测法、因果图法、判定表驱动法、正交试验设计法、功能图法等下面详细列举几种仅供参考。
等价类划分法:
是把程序的输入域划分成若干部分(子集),然后从每个部分中选取少数代表性数据作为测试用例。每一类的代表性数据在测试中的作用等价于这一类中的其他值。该方法是一种重要的,常用的软件黑盒测试用例设计方法。
1) 划分等价类:等价类是指某个输入域的子集合。在该子集合中,各个输入数据对于揭露程序中的错误都是等效的,并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试。因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据,取得较好的测试结果,等价类划分可有两种不同的情况:有效等价类和无效等价类。
有效等价类:是指对于程序的规格说明来说是合理的,有意义的输入数据构成的集合,利用有效等价类可检验程序是否实现了规格说明中所规定的功能和性能。
无效等价类:与有效等价类的定义恰巧相反。
设计测试用例时,要同时考虑这两种等价类。因为,软件不仅要能接收合理的数据,也要能经受意外的考验,这样的测试才能确保软件具有更高的可靠性。
2)划分等价类的方法:下面给出六条确定等价类的原则。
①在输入条件规定了取值范围或值的个数的情况下,则可以确立一个有效等价类和两个无效等价类。
②在输入条件规定了输入值的集合或者规定了“必须如何”的条件的情况下,可确立一个有效等价类和一个无效等价类。
③在输入条件是一个布尔量的情况下,可确定一个有效等价类和一个无效等价类。
④在规定了输入数据的一组值(假定n个),并且程序要对每一个输入值分别处理的情况下,可确立n个有效等价类和一个无效等价类。
⑤在规定了输入数据必须遵守的规则的情况下,可确立一个有效等价类(符合规则)和若干个无效等价类(从不同角度违反规则)。
⑥在确知已划分的等价类中各元素在程序处理中的方式不同的情况下,则应再将该等价类进一步的划分为更小的等价类。
3)设计测试用例:在确立了等价类后,可建立等价类表,列出所有划分出的等价类:
输入条件 有效等价类无效等价类
然后从划分出的等价类中按以下三个原则设计测试用例:
①为每一个等价类规定一个唯一的编号。
②设计一个新的测试用例,使其尽可能多地覆盖尚未被覆盖地有效等价类,重复这一步,直到所有的有效等价类都被覆盖为止。
③设计一个新的测试用例,使其仅覆盖一个尚未被覆盖的无效等价类,重复这一步,直到所有的无效等价类都被覆盖为止。
边界值分析
边界值分析是通过选择等价类边界的测试用例。边界值分析法不仅重视输入条件边界,而且也必须考虑输出域边界。它是对等价类划分方法的补充。
(1)边界值分析方法的考虑:
长期的测试工作经验告诉我们,大量的错误是发生在输入或输出范围的边界上,而不是发生在输入输出范围的内部。因此针对各种边界情况设计测试用例,可以查出更多的错误。
使用边界值分析方法设计测试用例,首先应确定边界情况。通常输入和输出等价类的边界,就是应着重测试的边界情况,应当选取正好等于,刚刚大于或刚刚小于边界的值作为测试数据,而不是选取等价类中的典型值或任意值作为测试数据。
(2)基于边界值分析方法选择测试用例的原则:
1)如果输入条件规定了值的范围,则应取刚达到这个范围的边界的值,以及刚刚超越这个范围边界的值作为测试输入数据。
2)如果输入条件规定了值的个数,则用最大个数,最小个数,比最小个数少一,比最大个数多一的数作为测试数据。
3)根据规格说明的每个输出条件,使用前面的原则1)
4)根据规格说明的每个输出条件,应用前面的原则2)
5)如果程序的规格说明给出的输入域或输出域是有序集合,则应选取集合的第一个元素和最后一个元素作为测试用例。
6)如果程序中使用了一个内部数据结构,则应当选择这个内部数据结构的边界上的值作为测试用例。
7)分析规格说明,找出其它可能的边界条件。
错误推测法
是基于经验和直觉推测程序中所有可能存在的各种错误, 从而有针对性的设计测试用例的方法。 错误推测方法的基本思想:
列举出程序中所有可能有的错误和容易发生错误的特殊情况,根据他们选择测试用例。 例如, 在单元测试时曾列出的许多在模块中常见的错误,以前产品测试中曾经发现的错误等, 这些就是经验的总结。 还有, 输入数据和输出数据为0的情况,输入表格为空格或输入表格只有一行,这些都是容易发生错误的情况, 可选择这些情况下的例子作为测试用例。
因果图法
前面介绍的等价类划分方法和边界值分析方法,都是着重考虑输入条件,但未考虑输入条件之间的联系, 相互组合等。考虑输入条件之间的相互组合,可能会产生一些新的情况。 但要检查输入条件的组合不是一件容易的事情, 即使把所有输入条件划分成等价类,他们之间的组合情况也相当多,因此必须考虑采用一种适合于描述对于多种条件的组合,相应产生多个动作的形式来考虑设计测试用例,这就需要利用因果图(逻辑模型)。
因果图方法最终生成的就是判定表,它适合于检查程序输入条件的各种组合情况。
利用因果图生成测试用例的基本步骤:
(1) 分析软件规格说明描述中, 那些是原因(即输入条件或输入条件的等价类),那些是结果(即输出条件), 并给每个原因和结果赋予一个标识符。
(2) 分析软件规格说明描述中的语义找出原因与结果之间, 原因与原因之间对应的关系,根据这些关系,画出因果图。
(3) 由于语法或环境限制, 有些原因与原因之间,原因与结果之间的组合情况不不可能出现,为表明这些特殊情况, 在因果图上用一些记号表明约束或限制条件。
(4) 把因果图转换为判定表。
(5) 把判定表的每一列拿出来作为依据,设计测试用例。
从因果图生成的测试用例(局部,组合关系下的)包括了所有输入数据的取TRUE与取FALSE的情况,构成的测试用例数目达到最少,且测试用例数目随输入数据数目的增加而线性地增加。
判定表(Decision Table)
前面因果图方法中已经用到了判定表,判定表(Decision Table)是分析和表达多逻辑条件下执行不同操作的情况下的工具,在程序设计发展的初期,判定表就已被当作编写程序的辅助工具了,由于它可以把复杂的逻辑关系和多种条件组合的情况表达得既具体又明确。
判定表通常由四个部分组成。
条件桩(Condition Stub):列出了问题得所有条件,通常认为列出得条件的次序无关紧要。
动作桩(Action Stub):列出了问题规定可能采取的操作,这些操作的排列顺序没有约束。
条件项(Condition Entry):列出针对它左列条件的取值,在所有可能情况下的真假值。
动作项(Action Entry):列出在条件项的各种取值情况下应该采取的动作。
规则:任何一个条件组合的特定取值及其相应要执行的操作,在判定表中贯穿条件项和动作项的一列就是一条规则。显然,判定表中列出多少组条件取值,也就有多少条规则,既条件项和动作项有多少列。
判定表的建立步骤:(根据软件规格说明)
①确定规则的个数,假如有n个条件,每个条件有两个取值(01),故有 种规则。
②列出所有的条件桩和动作桩。
③填入条件项。
④填入动作项,等到初始判定表。
⑤简化,合并相似规则(相同动作)。
B Beizer 指出了适合使用判定表设计测试用例的条件:
①规格说明以判定表形式给出,或很容易转换成判定表。
②条件的排列顺序不会也不影响执行哪些操作。
③规则的排列顺序不会也不影响执行哪些操作。
④每当某一规则的条件已经满足,并确定要执行的操作后,不必检验别的规则。
⑤如果某一规则得到满足要执行多个操作,这些操作的执行顺序无关紧要。
正交试验设计法
就是使用已经造好了的正交表格来安排试验并进行数据分析的一种方法,目的是用最少的测试用例达到最高的测试覆盖率。
软件黑盒测试的优点
1 基本上不用人管着,如果程序停止运行了一般就是被测试程序crash了
2 设计完测试例之后,下来的工作就是爽了,当然更苦闷的是确定crash原因
软件黑盒测试的缺点
1 结果取决于测试例的设计,测试例的设计部分来势来源于经验,OUSPG的东西很值得借鉴
2 没有状态转换的概念,目前一些成功的例子基本上都是针对PDU来做的,还做不到针对被测试程序的状态转换来作
3 就没有状态概念的测试来说,寻找和确定造成程序crash的测试例是个麻烦事情,必须把周围可能的测试例单独确认一遍。而就有状态的测试来说,就更麻烦了,尤其不是一个单独的testcase造成的问题。这些在堆的问题中表现的更为突出。
黑盒测试。
黑盒测试也称功能测试或数据驱动测试,它是在已知产品所应具有的功能,通过测试来检测每个功能是否都能正常使用。在测试时,把程序看作一个不能打开的黑盒子,在完全不考虑程序内部结构和内部特性的情况下,测试者在程序接口进行测试,它只检查程序功能是否按照需求规格说明书的规定正常使用,程序是否能适当地接收输入数锯而产生正确的输出信息,并且保持外部信息(如数据库或文件)的完整性。
白盒测试也称结构测试或逻辑驱动测试,它是按照程序内部的结构测试程序,通过测试来检测产品内部动作是否按照设计规格说明书的规定正常进行,检验程序中的每条通路是否都能按预定要求正确工作。
这一方法是把测试对象看作一个打开的盒子,测试人员依据程序内部逻辑结构相关信息,设计或选择测试用例,对程序所有逻辑路径进行测试,通过在不同点检查程序的状态,确定实际的状态是否与预期的状态一致。
采用什么方法对软件进行测试呢?常用的软件测试方法有两大类:静态测试方法和动态测试方法。其中软件的静态测试不要求在计算机上实际执行所测程序,主要以一些人工的模拟技术对软件进行分析和测试;而软件的动态测试是通过输入一组预先按照一定的测试准则构造的实例数据来动态运行程序,而达到发现程序错误的过程。
白盒测试的测试方法有代码检查法、静态结构分析法、静态质量度量法、逻辑覆盖法、基本路径测试法、域测试、符号测试、Z路径覆盖、程序变异。
白盒测试法的覆盖标准有逻辑覆盖、循环覆盖和基本路径测试。其中逻辑覆盖包括语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖。
六种覆盖标准:语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖发现错误的能力呈由弱至强的变化。语句覆盖每条语句至少执行一次。判定覆盖每个判定的每个分支至少执行一次。条件覆盖每个判定的每个条件应取到各种可能的值。判定/条件覆盖同时满足判定覆盖条件覆盖。条件组合覆盖每个判定中各条件的每一种组合至少出现一次。路径覆盖使程序中每一条可能的路径至少执行一次。
"白盒"法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。"白盒"法是穷举路径测试。在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。贯穿程序的独立路径数是天文数字。但即使每条路径都测试了仍然可能有错误。第一,穷举路径测试决不能查出程序违反了设计规范,即程序本身是个错误的程序。第二,穷举路径测试不可能查出程序中因遗漏路径而出错。第三,穷举路径测试可能发现不了一些与数据相关的错误。
如何挑选白盒测试工具
白盒测试目前主要用在具有高可靠性要求的软件领域,例如:军工软件、航天航空软件、工业控制软件等等。白盒测试工具在选购时应当主要是对开发语言的支持、代码覆盖的深度、嵌入式软件的测试、测试的可视化等。
对开发语言的支持:白盒测试工具是对源代码进行的测试,测试的主要内容包括词法分析与语法分析、静态错误分析、动态检测等。但是对于不同的开发语言,测试工具实现的方式和内容差别是较大的。目前测试工具主要支持的开发语言包括:标准C、C++、Visual C++、Java、Visual J++等。
代码的覆盖深度:从覆盖源程序语句的详尽程度分析,逻辑覆盖标准包括以下不同的覆盖标准:语句覆盖、判定覆盖、条件覆盖、条件判定组合覆盖、多条件覆盖和修正判定条件覆盖。
·语句覆盖 为了暴露程序中的错误,程序中的每条语句至少应该执行一次。因此语句覆盖(Statement Coverage)的含义是:选择足够多的测试数据,使被测程序中每条语句至少执行一次。语句覆盖是很弱的逻辑覆盖。
·判定覆盖 比语句覆盖稍强的覆盖标准是判定覆盖(Decision Coverage)。判定覆盖的含义是:设计足够的测试用例,使得程序中的每个判定至少都获得一次“真值”或“假值”,或者说使得程序中的每一个取“真”分支和取“假”分支至少经历一次,因此判定覆盖又称为分支覆盖。
·条件覆盖 在设计程序中,一个判定语句是由多个条件组合而成的复合判定。为了更彻底地实现逻辑覆盖,可以采用条件覆盖(Condition Coverage)的标准。条件覆盖的含义是:构造一组测试用例,使得每一判定语句中每个逻辑条件的可能值至少满足一次。
·多条件覆盖 多条件覆盖也称条件组合覆盖,它的含义是:设计足够的测试用例,使得每个判定中条件的各种可能组合都至少出现一次。显然满足多条件覆盖的测试用例是一定满足判定覆盖、条件覆盖和条件判定组合覆盖的。
·修正条件判定覆盖 修正条件判定覆盖是由欧美的航空/航天制造厂商和使用单位联合制定的“航空运输和装备系统软件认证标准”,目前在国外的国防、航空航天领域应用广泛。这个覆盖度量需要足够的测试用例来确定各个条件能够影响到包含的判定的结果。它要求满足两个条件:首先,每一个程序模块的入口和出口点都要考虑至少要被调用一次,每个程序的判定到所有可能的结果值要至少转换一次;其次,程序的判定被分解为通过逻辑操作符(and、or)连接的布尔条件,每个条件对于判定的结果值是独立的。
不同的测试工具对于代码的覆盖能力也是不同的,通常能够支持修正条件判定覆盖的测试工具价格是极其昂贵的。
嵌入式软件的测试:对于嵌入式软件的测试,我们还需要一方面进一步考虑测试工具对于嵌入式操作系统的支持能力,例如DOS、Vxworks、Neculeus、Linux和Windows CE等;另一方面还需要考虑测试工具对于硬件平台的支持能力,包括是否支持所有64/32/16位CPU 和 MCU,是否可以支持 PCI/VME/CPCI 总线。
测试的可视化:白盒测试是工作量巨大并且枯燥的工作,可视化的设计对于测试来说是十分重要的。在选购白盒测试工具时,应当考虑该款测试工具的可视化是否良好,例如:测试过程中是否可以显示覆盖率的函数分布图和上升趋势图,是否使用不同的颜色区分已执行和未执行的代码段显示分配内存情况实时图表等,这些对于测试效率和测试质量的提高是具有很大的作用的。
白盒测试之基本路径测试法
白盒测试的测试方法有代码检查法、静态结构分析法、静态质量度量法、逻辑覆盖法、基本路径测试法、域测试、符号测试、Z路径覆盖、程序变异。
其中运用最为广泛的是基本路径测试法。
基本路径测试法是在程序控制流图的基础上,通过分析控制构造的环路复杂性,导出基本可执行路径集合,从而设计测试用例的方法。
设计出的测试用例要保证在测试中程序的每个可执行语句至少执行一次。
在程序控制流图的基础上,通过分析控制构造的环路复杂性,导出基本可执行路径集合,从而设计测试用例。包括以下4个步骤和一个工具方法:
1 程序的控制流图:描述程序控制流的一种图示方法。
2 程序圈复杂度:McCabe复杂性度量。从程序的环路复杂性可导出程序基本路径集合中的独立路径条数,这是确定程序中每个可执行语句至少执行一次所必须的测试用例数目的上界。
3 导出测试用例:根据圈复杂度和程序结构设计用例数据输入和预期结果。
4 准备测试用例:确保基本路径集中的每一条路径的执行。
工具方法:
图形矩阵:是在基本路径测试中起辅助作用的软件工具,利用它可以实现自动地确定一个基本路径集。
程序的控制流图:描述程序控制流的一种图示方法。
圆圈称为控制流图的一个结点,表示一个或多个无分支的语句或源程序语句
流图只有二种图形符号:
图中的每一个圆称为流图的结点,代表一条或多条语句。
流图中的箭头称为边或连接,代表控制流
任何过程设计都要被翻译成控制流图。
如何根据程序流程图画出控制流程图
在将程序流程图简化成控制流图时,应注意:
在选择或多分支结构中,分支的汇聚处应有一个汇聚结点。
边和结点圈定的区域叫做区域,当对区域计数时,图形外的区域也应记为一个区域。
基本路径测试法的步骤:
第一步:画出控制流图
流程图用来描述程序控制结构。可将流程图映射到一个相应的流图(假设流程图的菱形决定框中不包含复合条件)。在流图中,每一个圆,称为流图的结点,代表一个或多个语句。一个处理方框序列和一个菱形决测框可被映射为一个结点,流图中的箭头,称为边或连接,代表控制流,类似于流程图中的箭头。一条边必须终止于一个结点,即使该结点并不代表任何语句(例如:if-else-then结构)。由边和结点限定的范围称为区域。计算区域时应包括图外部的范围。
第二步:计算圈复杂度
圈复杂度是一种为程序逻辑复杂性提供定量测度的软件度量,将该度量用于计算程序的基本的独立路径数目,为确保所有语句至少执行一次的测试数量的上界。独立路径必须包含一条在定义之前不曾用到的边。
有以下三种方法计算圈复杂度:
流图中区域的数量对应于环型的复杂性;
给定流图G的圈复杂度V(G),定义为V(G)=E-N+2,E是流图中边的数量,N是流图中结点的数量;
给定流图G的圈复杂度V(G),定义为V(G)=P+1,P是流图G中判定结点的数量。
第三步:导出测试用例 根据上面的计算方法,可得出四个独立的路径。(一条独立路径是指,和其他的独立路径相比,至少引入一个新处理语句或一个新判断的程序通路。V(G)值正好等于该程序的独立路径的条数。)
路径1:4-14
路径2:4-6-7-14
路径3:4-6-8-10-13-4-14
路径4:4-6-8-11-13-4-14
根据上面的独立路径,去设计输入数据,使程序分别执行到上面四条路径。
白盒测试三步法
1) 根据代码的功能,人工设计测试用例进行基本功能测试;
2) 统计白盒覆盖率,为未覆盖的白盒单位设计测试用例,实现完整的白盒覆盖,比较理想的覆盖率是实现100%语句、条件、分支、路径覆盖;
3) 自动生成大量的测试用例,捕捉"程序员未处理某些特殊输入"形成的错误。
第1步的测试用例通常是现成的,因为详细设计文档会规定程序的基本功能,没有文档的,程序员在编程时也要想清楚程序的功能,这些基本功能就是基本测试用例;
第2步是在第1步的基础上,检查未覆盖的白盒单位,由于未覆盖的逻辑单位通常对应未测试的等价类,因此第2步可以找出第1步所遗漏的测试用例;
第3步用自动动态测试弥补第2步的固有缺陷。
"三步法"尽量避免重复工作,白盒方法和黑盒方法相结合,人工方法和自动方法相补充,如果第2步的覆盖率比较理想,那么基本上可以保证找出所有等价类。在开发过程允许的限度内,"三步法"已接近极限,当得起"彻底测试"四个字。
黑盒测试也称功能测试,它是通过测试来检测每个功能是否都能正常使用。在测试地,把程序看作一个不能打开的黑盒子,在完全不考虑程序内部结构和内部特性的情况下,在程序接口进行测试,它只检查程序功能是否按照需求规格说明书的规定正常使用,程序是否能适当地接收输入数据而产生正确的输出信息。黑盒测试着眼于程序外部结构,不考虑内部逻辑结构,主要针对软件界面和软件功能进行测试。
黑盒测试是以用户的角度,从输入数据与输出数据的对应关系出发进行测试的。很明显,如果外部特性本身有问题或规格说明的规定有误,用墨盒测试方法是发现不了的。
黑盒测试法注重于测试软件的功能需求,主要试图发现下列几类错误。
功能不正确或遗漏;
界面错误;
数据库访问错误;
性能错误;
初始化和终止错误等。
从理论上讲,黑盒测试只有采用穷举输入测试,把所有可能的输入都作为测试情况考虑,才能查出程序中所有的错误。实际上测试情况有无穷多个,人们不仅要测试所有合法的输入,而且还要对那些不合法但可能的输入进行测试。这样看来,完全测试是不可能的,所以我们要进行有针对性的测试,通过制定测试案例指导测试的实施,保证软件测试有组织、按步骤,以及有计划地进行。黑盒测试行为必须能够加以量化,才能真正保证软件质量,而测试用例就是将测试行为具体量化的方法之一。具体的黑盒测试用例设计方法包括等价类划分法、边界值分析法、错误推测法、因果图法、判定表驱动法、正交试验设计法、功能图法等。
等价类划分的办法是把程序的输入域划分成若干部分(子集),然后从每个部分中选取少数代表性数据作为测试用例。每一类的代表性数据在测试中的作用等价于这一类中的其他值。该方法是一种重要的,常用的黑盒测试用例设计方法。
1) 划分等价类: 等价类是指某个输入域的子集合。在该子集合中,各个输入数据对于揭露程序中的错误都是等效的,并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据取得较好的测试结果等价类划分可有两种不同的情况:有效等价类和无效等价类
有效等价类:是指对于程序的规格说明来说是合理的,有意义的输入数据构成的集合利用有效等价类可检验程序是否实现了规格说明中所规定的功能和性能
无效等价类:与有效等价类的定义恰巧相反
设计测试用例时,要同时考虑这两种等价类因为,软件不仅要能接收合理的数据,也要能经受意外的考验这样的测试才能确保软件具有更高的可靠性
2)划分等价类的方法:下面给出六条确定等价类的原则
①在输入条件规定了取值范围或值的个数的情况下,则可以确立一个有效等价类和两个无效等价类
②在输入条件规定了输入值的集合或者规定了“必须如何”的条件的情况下,可确立一个有效等价类和一个无效等价类
③在输入条件是一个布尔量的情况下,可确定一个有效等价类和一个无效等价类
④在规定了输入数据的一组值(假定n个),并且程序要对每一个输入值分别处理的情况下,可确立n个有效等价类和一个无效等价类
⑤在规定了输入数据必须遵守的规则的情况下,可确立一个有效等价类(符合规则)和若干个无效等价类(从不同角度违反规则)
⑥在确知已划分的等价类中各元素在程序处理中的方式不同的情况下,则应再将该等价类进一步的划分为更小的等价类
3)设计测试用例:在确立了等价类后,可建立等价类表,列出所有划分出的等价类:
输入条件 有效等价类 无效等价类
然后从划分出的等价类中按以下三个原则设计测试用例:
①为每一个等价类规定一个唯一的编号
②设计一个新的测试用例,使其尽可能多地覆盖尚未被覆盖地有效等价类,重复这一步直到所有的有效等价类都被覆盖为止
③设计一个新的测试用例,使其仅覆盖一个尚未被覆盖的无效等价类,重复这一步直到所有的无效等价类都被覆盖为止
边界值分析是通过选择等价类边界的测试用例。边界值分析法不仅重视输入条件边界,而且也必须考虑输出域边界。它是对等价类划分方法的补充
(1)边界值分析方法的考虑:
长期的测试工作经验告诉我们,大量的错误是发生在输入或输出范围的边界上,而不是发生在输入输出范围的内部因此针对各种边界情况设计测试用例,可以查出更多的错误
使用边界值分析方法设计测试用例,首先应确定边界情况通常输入和输出等价类的边界,就是应着重测试的边界情况应当选取正好等于,刚刚大于或刚刚小于边界的值作为测试数据,而不是选取等价类中的典型值或任意值作为测试数据
(2)基于边界值分析方法选择测试用例的原则:
1)如果输入条件规定了值的范围,则应取刚达到这个范围的边界的值,以及刚刚超越这个范围边界的值作为测试输入数据
2)如果输入条件规定了值的个数,则用最大个数,最小个数,比最小个数少一,比最大个数多一的数作为测试数据
3)根据规格说明的每个输出条件,使用前面的原则1)
4)根据规格说明的每个输出条件,应用前面的原则2)
5)如果程序的规格说明给出的输入域或输出域是有序集合,则应选取集合的第一个元素和最后一个元素作为测试用例
6)如果程序中使用了一个内部数据结构,则应当选择这个内部数据结构的边界上的值作为测试用例
7)分析规格说明,找出其它可能的边界条件
错误推测法是基于经验和直觉推测程序中所有可能存在的各种错误, 从而有针对性的设计测试用例的方法
错误推测方法的基本思想: 列举出程序中所有可能有的错误和容易发生错误的特殊情况,根据他们选择测试用例 例如, 在单元测试时曾列出的许多在模块中常见的错误 以前产品测试中曾经发现的错误等, 这些就是经验的总结 还有, 输入数据和输出数据为0的情况 输入表格为空格或输入表格只有一行 这些都是容易发生错误的情况 可选择这些情况下的例子作为测试用例
因果图法:
前面介绍的等价类划分方法和边界值分析方法,都是着重考虑输入条件,但未考虑输入条件之间的联系, 相互组合等 考虑输入条件之间的相互组合,可能会产生一些新的情况 但要检查输入条件的组合不是一件容易的事情, 即使把所有输入条件划分成等价类,他们之间的组合情况也相当多 因此必须考虑采用一种适合于描述对于多种条件的组合,相应产生多个动作的形式来考虑设计测试用例 这就需要利用因果图(逻辑模型)
因果图方法最终生成的就是判定表 它适合于检查程序输入条件的各种组合情况
利用因果图生成测试用例的基本步骤:
(1) 分析软件规格说明描述中, 那些是原因(即输入条件或输入条件的等价类),那些是结果(即输出条件), 并给每个原因和结果赋予一个标识符
(2) 分析软件规格说明描述中的语义找出原因与结果之间, 原因与原因之间对应的关系 根据这些关系,画出因果图
(3) 由于语法或环境限制, 有些原因与原因之间,原因与结果之间的组合情况不不可能出现 为表明这些特殊情况, 在因果图上用一些记号表明约束或限制条件
(4) 把因果图转换为判定表
(5) 把判定表的每一列拿出来作为依据,设计测试用例
从因果图生成的测试用例(局部,组合关系下的)包括了所有输入数据的取TRUE与取FALSE的情况,构成的测试用例数目达到最少,且测试用例数目随输入数据数目的增加而线性地增加
前面因果图方法中已经用到了判定表判定表(Decision Table)是分析和表达多逻辑条件下执行不同操作的情况下的工具在程序设计发展的初期,判定表就已被当作编写程序的辅助工具了由于它可以把复杂的逻辑关系和多种条件组合的情况表达得既具体又明确
判定表通常由四个部分组成
条件桩(Condition Stub):列出了问题得所有条件通常认为列出得条件的次序无关紧要
动作桩(Action Stub):列出了问题规定可能采取的操作这些操作的排列顺序没有约束
条件项(Condition Entry):列出针对它左列条件的取值在所有可能情况下的真假值
动作项(Action Entry):列出在条件项的各种取值情况下应该采取的动作
规则:任何一个条件组合的特定取值及其相应要执行的操作在判定表中贯穿条件项和动作项的一列就是一条规则显然,判定表中列出多少组条件取值,也就有多少条规则,既条件项和动作项有多少列
判定表的建立步骤:(根据软件规格说明)
①确定规则的个数假如有n个条件每个条件有两个取值(0,1),故有 种规则
②列出所有的条件桩和动作桩
③填入条件项
④填入动作项等到初始判定表
⑤简化合并相似规则(相同动作)
B Beizer 指出了适合使用判定表设计测试用例的条件:
①规格说明以判定表形式给出,或很容易转换成判定表
②条件的排列顺序不会也不影响执行哪些操作
③规则的排列顺序不会也不影响执行哪些操作
④每当某一规则的条件已经满足,并确定要执行的操作后,不必检验别的规则
⑤如果某一规则得到满足要执行多个操作,这些操作的执行顺序无关紧要
正交试验设计法,就是使用已经造好了的正交表格来安排试验并进行数据分析的一种方法,目的是用最少的测试用例达到最高的测试覆盖率。
黑盒测试的优点
1 基本上不用人管着,如果程序停止运行了一般就是被测试程序crash了
2 设计完测试例之后,下来的工作就是爽了,当然更苦闷的是确定crash原因
黑盒测试的缺点
1 结果取决于测试例的设计,测试例的设计部分来势来源于经验,OUSPG的东西很值得借鉴
2 没有状态转换的概念,目前一些成功的例子基本上都是针对PDU来做的,还做不到针对被测试程序的状态转换来作
3 就没有状态概念的测试来说,寻找和确定造成程序crash的测试例是个麻烦事情,必须把周围可能的测试例单独确认一遍。而就有状态的测试来说,就更麻烦了,尤其不是一个单独的testcase造成的问题。这些在堆的问题中表现的更为突出。
黑盒测试(功能测试)工具的选择
那么,如何高效地完成功能测试?选择一款合适的功能测试工具并培训一支高素质的工具使用队伍无疑是至关重要的。尽管现阶段存在少数不采用任何功能测试工具,从事功能测试外包项目的软件服务企业。短期来看,这类企业盈利状况尚可,但长久来看,它们极有可能被自动化程度较高的软件服务企业取代。
目前,用于功能测试的工具软件有很多,针对不同架构软件的工具也不断推陈出新。这里重点介绍的是其中一个较为典型自动化测试工具,即Mercury公司的WinRunner。
WinRunner是一种用于检验应用程序能否如期运行的企业级软件功能测试工具。通过自动捕获、检测和模拟用户交互操作,WinRunner能识别出绝大多数软件功能缺陷,从而确保那些跨越了多个功能点和数据库的应用程序在发布时尽量不出现功能性故障。
WinRunner的特点在于: 与传统的手工测试相比,它能快速、批量地完成功能点测试; 能针对相同测试脚本,执行相同的动作,从而消除人工测试所带来的理解上的误差; 此外,它还能重复执行相同动作,测试工作中最枯燥的部分可交由机器完成; 它支持程序风格的测试脚本,一个高素质的测试工程师能借助它完成流程极为复杂的测试,通过使用通配符、宏、条件语句、循环语句等,还能较好地完成测试脚本的重用; 它针对于大多数编程语言和Windows技术,提供了较好的集成、支持环境,这对基于Windows平台的应用程序实施功能测试而言带来了极大的便利。
WinRunner的工作流程大致可以分为以下六个步骤:
1.识别应用程序的GUI
在WinRunner中,我们可以使用GUI Spy来识别各种GUI对象,识别后,WinRunner会将其存储到GUI Map File中。它提供两种GUI Map File模式: Global GUI Map File和GUI Map File per Test。其最大区别是后者对每个测试脚本产生一个GUI文件,它能自动建立、存储、加载,推荐初学者选用这种模式。但是,这种模式不易于描述对象的改变,其效率比较低,因此对于一个有经验的测试人员来说前者不失为一种更好的选择,它只产生一个共享的GUI文件,这使得测试脚本更容易维护,且效率更高。
2.建立测试脚本
在建立测试脚本时,一般先进行录制,然后在录制形成的脚本中手工加入需要的TSL(与C语言类似的测试脚本语言)。录制脚本有两种模式: Context Sensitive和Analog,选择依据主要在于是否对鼠标轨迹进行模拟,在需要回放时一般选用Analog。在录制过程中这两种模式可以通过F2键相互切换。
只要看看现代软件的规模和功能点数就可以明白,功能测试早已跨越了单靠手工敲敲键盘、点点鼠标就可以完成的阶段。而性能测试则是控制系统性能的有效手段,在软件的能力验证、能力规划、性能调优、缺陷修复等方面都发挥着重要作用。
3.对测试脚本除错(debug)
在WinRunner中有专门一个Debug Toolbar用于测试脚本除错。可以使用step、pause、breakpoint等来控制和跟踪测试脚本和查看各种变量值。
4.在新版应用程序执行测试脚本
当应用程序有新版本发布时,我们会对应用程序的各种功能包括新增功能进行测试,这时当然不可能再来重新录制和编写所有的测试脚本。我们可以使用已有的脚本,批量运行这些测试脚本测试旧的功能点是否正常工作。可以使用一个call命令来加载各测试脚本。还可在call命令中加各种TSL脚本来增加批量能力。
5.分析测试结果
分析测试结果在整个测试过程中最重要,通过分析可以发现应用程序的各种功能性缺陷。当运行完某个测试脚本后,会产生一个测试报告,从这个测试报告中我们能发现应用程序的功能性缺陷,能看到实际结果和期望结果之间的差异,以及在测试过程中产生的各类对话框等。
6.回报缺陷(defect)
在分析完测试报告后,按照测试流程要回报应用程序的各种缺陷,然后将这些缺陷发给指定人,以便进行修改和维护。
常用的功能测试方法
功能测试就是对产品的各功能进行验证,根据功能测试用例,逐项测试,检查产品是否达到用户要求的功能。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)