短视频情感分析语料如何标注

短视频情感分析语料如何标注,第1张

1、初步筛选:对于短视频情感分析样本库,首先需要进行初步的筛选,选取与研究主题相关的样本,滤除噪声数据和不相关的数据。

2、设计标注体系:根据研究目的,设计情感分析的标注体系,通常包括情感类别(如积极、消极、中性等)、情感极性(如正向、负向等)和情感强度(如强烈、一般、微弱等)等多个方面。

3、标注样本:按照标注体系,对样本进行标注。标注可以通过手工标注和自动标注两种方式进行。手工标注需要人工逐条查看样本,并对其进行情感分类和极性判断等标注操作。自动标注可以使用情感分析算法,对样本进行自动分类和标注。

4、标注质量检查:对标注好的样本进行质量检查,确保标注的准确性和一致性。可以使用多位标注员进行标注,然后比对标注结果,发现并解决标注中的错误和不一致性。

5、数据集整合:将标注好的样本整合成数据集,进行数据清洗和数据预处理等操作,以便后续的情感分析研究和应用。

这是计算机世界的一个尚未开发的前沿:将各种人类情感转化成实实在在的数据。

起源

虽然之前也有一些相关工作,但目前公认的情感分析比较系统的研究工作开始于(Pang et al, 2002)基于监督学习(supervised learning)方法对**评论文本进行情感倾向性分类和(Turney,2002)基于无监督学习(unsupervised learning)对文本情感情感倾向性分类的研究。Pang et al, 2002)基于文本的N元语法(ngram)和词类(POS)等特征分别使用朴素贝叶斯(Naive Bayes),最大熵(Maximum Entropy)和支持向量机(Support Vector Machine,SVM)将文本情感倾向性分为正向和负向两类,将文本的情感进行二元划分的做法也一直沿用至今。同时他们在实验中使用**评论数据集目前已成为广泛使用的情感分析的测试集。(Turney ,2002)基于点互信息(Pointwise Mutual Information,PMI)计算文本中抽取的关键词和种子词(excellent,poor)的相似度来对文本的情感倾向性进行判别(SO-PMI算法)。在此之后的大部分都是基于(Pang et al, 2002)的研究。而相对来说,(Turney et al,2002)提出的无监督学习的方法虽然在实现上更加简单,但是由于单词之间的情感相似度难以准确的计算和种子词的难以确定,继续在无监督学习方向的研究并不是很多的,但是利用SO-PMI算法计算文本情感倾向性的思想却被很多研究者所继承了

关于情感分析文本相似性和语句推断等都属于常见中文分词应用中的语句关系判断回答如下:

情感分析,文本相似性和语句推断等都属于常见中文分词应用中的语句关系判断如下情感分析、文本相似性和语句推断都是中文自然语言处理中的常见任务,需要进行语句关系判断。

其中,分词是中文自然语言处理中的基础步骤,可以将句子切分成有意义的词语,为后续任务提供基础。

在情感分析任务中,需要对文本的情感进行分类,通常采用机器学习算法,对文本进行特征提取和分类。文本相似性任务是指比较两个文本之间的相似度,通常采用词向量模型进行特征提取和相似度计算。

语句推断任务是指给定前提和假设,判断假设是否可以从前提中推出,通常需要进行逻辑推理和语义理解。这些任务都需要进行语句关系判断,对中文自然语言处理具有重要意义。

资料扩展:

情感分析是指通过文本来挖掘人们对于产品、服务、组织、个人、事件等的观点、情感倾向、态度等。情感分析是随着互联网发展而产生的,早期主要用于对网上销售商品的用户评语的分析,

以便判断用户对其所购商品是“喜欢”还是“不喜欢”。后期随着自媒体的流行,情感分析技术更多地用于识别话题发起者、参与者的情感趋向,

从中判断或挖掘话题中的价值,由此来分析相关舆情。情感分析的应用十分广泛,其研究领域涉及自然语言处理、信息检索、机器学习、人工智能等。

领域依赖是指文本情感分析的模型对某一领域的文本数据非常有效,但是将其应用于其他领域的时候,会使得分类模型的性能严重下降。

在国外提出情感分析的概念是指意见挖掘。在国外提出情感分析的概念是指通过自然语言处理、文本挖掘、计算机语言学等技术手段,对文本中的情感信息进行分析和判断,以了解文本作者的情感倾向和态度。情感分析技术最初是应用于英语等欧美语言的研究中,后来随着中文信息处理技术的发展,也被广泛应用于中文文本分析领域。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/7860970.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存