情感计算的“情感计算”的基本内容

情感计算的“情感计算”的基本内容,第1张

人们期盼着能拥有并使用更为人性化和智能化的计算机。在人机交互中,从人操作计算机,变为计算机辅助人;从人围着计算机转,变为计算机围着人转;计算机从认知型,变为直觉型。显然,为实现这些转变,人机交互中的计算机应具有情感能力。情感计算研究就是试图创建一种能感知、识别和理解人的情感,并能针对人的情感做出智能、灵敏、友好反应的计算系统。

情感被用来表示各种不同的内心体验(如情绪、心境和偏好),情绪被用来表示非常短暂但强烈的内心体验,而心境或状态则被用来描述强度低但持久的内心体验。情感是人与环境之间某种关系的维持或改变,当客观事物或情境与人的需要和愿望符合时会引起人积极肯定的情感,而不符合时则会引起人消极否定的情感。

情感具有三种成分:⑴主观体验,即个体对不同情感状态的自我感受;⑵外部表现,即表情,在情感状态发生时身体各部分的动作量化形式。表情包括面部表情(面部肌肉变化所组成的模式)、姿态表情(身体其他部分的表情动作)和语调表情(言语的声调、节奏、速度等方面的变化);⑶生理唤醒,即情感产生的生理反应,是一种生理的激活水平,具有不同的反应模式。

概括而言,情感的重要作用主要表现在四个方面:情感是人适应生存的心理工具,能激发心理活动和行为的动机,是心理活动的组织者,也是人际通信交流的重要手段。从生物进化的角度我们可以把人的情绪分为基本情绪和复杂情绪。基本情绪是先天的,具有独立的神经生理机制、内部体验和外部表现,以及不同的适应功能。人有五种基本情绪,它们分别是当前目标取得进展时的快乐,自我保护的目标受到威胁时的焦虑,当前目标不能实现时的悲伤,当前目标受挫或遭遇阻碍时的愤怒,以及与味觉(味道)目标相违背的厌恶。而复杂情绪则是由基本情绪的不同组合派生出来的。

情感测量包括对情感维度、表情和生理指标三种成分的测量。例如,我们要确定一个人的焦虑水平,可以使用问卷测量其主观感受,通过记录和分析面部肌肉活动测量其面部表情,并用血压计测量血压,对血液样本进行化验,检测血液中肾上腺素水平等。

确定情感维度对情感测量有重要意义,因为只有确定了情感维度,才能对情感体验做出较为准确的评估。情感维度具有两极性,例如,情感的激动性可分为激动和平静两极,激动指的是一种强烈的、外显的情感状态,而平静指的是一种平稳安静的情感状态。心理学的情感维度理论认为,几个维度组成的空间包括了人类所有的情感。但是,情感究竟是二维,三维,还是四维,研究者们并未达成共识。情感的二维理论认为,情感有两个重要维度:⑴愉悦度(也有人提出用趋近-逃避来代替愉悦度);⑵激活度,即与情感状态相联系的机体能量的程度。研究发现,惊反射可用做测量愉悦度的生理指标,而皮肤电反应可用做测量唤醒度的生理指标。

在人机交互研究中已使用过很多种生理指标,例如,皮质醇水平、心率、血压、呼吸、皮肤电活动、掌汗、瞳孔直径、事件相关电位、脑电EEG等。生理指标的记录需要特定的设备和技术,在进行测量时,研究者有时很难分离各种混淆因素对所记录的生理指标的影响。情感计算研究的内容包括三维空间中动态情感信息的实时获取与建模,基于多模态和动态时序特征的情感识别与理解,及其信息融合的理论与方法,情感的自动生成理论及面向多模态的情感表达,以及基于生理和行为特征的大规模动态情感数据资源库的建立等。

欧洲和美国的各大信息技术实验室正加紧进行情感计算系统的研究。剑桥大学、麻省理工学院、飞利浦公司等通过实施“环境智能”、“环境识别”、“智能家庭”等科研项目来开辟这一领域。例如,麻省理工学院媒体实验室的情感计算小组研制的情感计算系统,通过记录人面部表情的摄像机和连接在人身体上的生物传感器来收集数据,然后由一个“情感助理”来调节程序以识别人的情感。如果你对电视讲座的一段内容表现出困惑,情感助理会重放该片段或者给予解释。麻省理工学院“氧工程”的研究人员和比利时IMEC的一个工作小组认为,开发出一种整合各种应用技术的“瑞士军刀”可能是提供移动情感计算服务的关键。而目前国内的情感计算研究重点在于,通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建个人情感计算系统。研究内容主要包括脸部表情处理、情感计算建模方法、情感语音处理、姿态处理、情感分析、自然人机界面、情感机器人等。

情境化是人机交互研究中的新热点。自然和谐的智能化的人机界面的沟通能力特征包括:⑴自然沟通:能看,能听,能说,能触摸;⑵主动沟通:有预期,会提问,并及时调整;⑶有效沟通:对情境的变化敏感,理解用户的情绪和意图,对不同用户、不同环境、不同任务给予不同反馈和支持。而实现这些特征在很大程度上依赖于心理科学和认知科学对人的智能和情感研究所取得的新进展。我们需要知道人是如何感知环境的,人会产生什么样的情感和意图,人如何做出恰当的反应,从而帮助计算机正确感知环境,理解用户的情感和意图,并做出合适反应。因此,人机界面的“智能”不仅应有高的认知智力,也应有高的情绪智力,从而有效地解决人机交互中的情境感知问题、情感与意图的产生与理解问题,以及反应应对问题。

显然,情感交流是一个复杂的过程,不仅受时间、地点、环境、人物对象和经历的影响,而且有表情、语言、动作或身体的接触。在人机交互中,计算机需要捕捉关键信息,觉察人的情感变化,形成预期,进行调整,并做出反应。例如,通过对不同类型的用户建模(例如,操作方式、表情特点、态度喜好、认知风格、知识背景等),以识别用户的情感状态,利用有效的线索选择合适的用户模型(例如,根据可能的用户模型主动提供相应有效信息的预期),并以适合当前类型用户的方式呈现信息(例如,呈现方式、操作方式、与知识背景有关的决策支持等);在对当前的操作做出即时反馈的同时,还要对情感变化背后的意图形成新的预期,并激活相应的数据库,及时主动地提供用户需要的新信息。

情感计算是一个高度综合化的技术领域。通过计算科学与心理科学、认知科学的结合,研究人与人交互、人与计算机交互过程中的情感特点,设计具有情感反馈的人机交互环境,将有可能实现人与计算机的情感交互。迄今为止,有关研究已在人脸表情、姿态分析、语音的情感识别和表达方面取得了一定的进展。

目前情感计算研究面临的挑战仍是多方面的:⑴情感信息的获取与建模,例如,细致和准确的情感信息获取、描述及参数化建模,海量的情感数据资源库,多特征融合的情感计算理论模型;⑵情感识别与理解,例如,多模态的情感识别和理解;⑶情感表达,例如,多模态的情感表达(图像、语音、生理特征等),自然场景对生理和行为特征的影响;⑷自然和谐的人性化和智能化的人机交互的实现,例如,情感计算系统需要将大量广泛分布的数据整合,然后再以个性化的方式呈现给每个用户。

情感计算有广泛的应用前景。计算机通过对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们理解自己和他人的情感世界。计算机的情感化设计能帮助我们增加使用设备的安全性,使经验人性化,使计算机作为媒介进行学习的功能达到最佳化。在信息检索中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。

展望现代科技的潜力,我们预期在未来的世界中将可能会充满运作良好、操作容易、甚至具有情感特点的计算机。

自20世纪70年代中期起,专家学者对顾客满意度进行了大量的研究,提出了许多理论模型。其中,奥立佛提出的 “期望一实绩”模型和情感模型,韦斯卜洛克(Robert A Westbrook)和雷利(Michael D Reilly)提出的 “顾客感知的价值差异”模型、ACSI理论模型是较著名的几个模型。

1“期望一实绩”模型

1980年,奥立佛提出了如图1-2所示的 “期望一实绩”模型。奥立佛认为:在消费过程中或消费后,顾客会根据自己的期望,评估产品和服务的实绩。如果实绩低于期望,顾客就会不满意;如果实绩符合或超过期望,顾客就会满意。1982年,美国学者邱吉尔(Gibert A Churchill)和塞普纳(Carol Surprenant)的实证研究结果表明:在许多情况下,期望和实绩都会影响顾客对期望与实绩比较结果的主观感受,也会直接影响顾客满意度。

图1-2 “期望一实绩”模型

2情感模型

根据奥立佛的观点,满意度是顾客在自己的需要得到满足之后产生的心理反应(包括产品和服务没有满足顾客的需要或超额满足顾客的需要而引起的顾客情感反应),在消费过程中或消费后,顾客会根据自己的期望、需要、理想以及其他可能的实绩标准,评估产品和服务。顾客对实绩的评估结果,以及顾客对评估结果的归因,都会影响顾客的情感,顾客的情感会直接影响顾客满意度。此外,美国路易斯安那州立大学助理教授杰亚特(RamaKJayanti)和杰克逊(AJacks)指出,顾客很难根据某些具体的属性评估服务实绩,因此 “期望一实绩”模型并不能全面解释顾客满意度的形成过程。由于顾客亲自参与服务过程,所以企业管理人员在衡量顾客满意度时应参考顾客在消费过程中的情感反应。芬兰学者李佳得(Verouica Liljaneler)和斯占得克(Tore Strandvik)也发现,顾客在消费过程中的情感直接影响顾客的满意程度。奥立佛在不断完善顾客满意度定义的基础上,于2000年提出了如图1-3所示的顾客满意度形成过程模型。

图1-3 顾客满意度形成过程模型

3“顾客感知的价值差异”模型

美国学者韦斯卜洛克和雷利于1984年提出了“顾客感知的价值差异”模型。他们认为:顾客满意度是顾客对自己感觉中的产品和服务实绩与自己需要的消费价值(需要、愿望、期望)进行比较之后产生的一种情绪反应。产品和服务的实绩越符合顾客需要的消费价值,顾客就越满意;产品和服务的实绩越不符合顾客需要的消费价值,顾客就越不满意。但是,韦斯卜洛克和雷利的实证研究方法存在一些的错误。他们的研究结果并不支持他们提出的 “顾客感知的价值差异会直接影响顾客满意程度”的假设。美国康奈尔大学博士汪纯本于1990年在美国对这个模型进行了实证检验,他的研究结果表明,顾客感知的价值差异是影响顾客满意度的重要因素。1991年,美国学者梅耶斯(JamesHMyers)对 “期望一实绩”模型和“顾客感知的价值差异模型”进行了一次比较研究,他的研究结果表明:与实绩和期望之差相比,顾客感知的价值差异对顾客满意度的影响更大。1993年,斯普兰(RichardASpreng)等人的实证研究结果表明:顾客感知的价值差异对顾客满意度有显著影响,而实绩与期望之差对顾客满意程度却没有显著的影响。

4ACSI理论模型

ACSI基于这样一个理论,即顾客满意度同顾客在产品购买前的期望和在产品购买中及购买后的感知有密切关系,并且,顾客的满意程度低或高将会导致两种基本结果:顾客抱怨和顾客忠诚。ACSI使用的是一种由多重指标(问题)支持的6种潜在变量组成的模型(图1-4)。

图1-4 ACSI模型

ACSI的模型显示在6个潜在变量中,顾客期望、顾客对质量的感知和顾客对价值的感知是3个前提变量;顾客满意度、顾客抱怨、顾客忠诚是3个结果变量,前提变量综合影响并决定着结果变量。展开来说就是,顾客满意度是由顾客在购买和使用产品的经历中,产生对产品质量和价值的实际感知,并将这种感知同购买前或使用前的期望值作比较而得到的感受和体验所决定的;若顾客满意度低就将导致顾客抱怨以至投诉,而顾客满意度高就会提高顾客的忠诚程度;如果重视并妥善处理好顾客的投诉,化解了顾客抱怨,同样可以提高顾客忠诚程度。

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等套用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有套用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际套用上简化矩阵的运算。对一些套用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和套用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函式的泰勒级数的导数运算元的矩阵

基本介绍 中文名 :矩阵 外文名 :Matrix 别称 :矩阵式、纵横阵 表达式 :Amn 提出者 :凯利 提出时间 :19世纪 套用学科 :线性代数 适用领域范围 :天体物理、电路学、力学、计算机科学等 奠基人 :凯利 拼音 :ju zhen 解释 :指纵横排列的二维数据表格 历史,定义,基本运算,加法,减法,数乘,转置,共轭,共轭转置,乘法,行列式,特征值与特征向量,矩阵的迹,正定性,矩阵的分解,三角分解,谱分解,奇异值分解,满秩分解,LUP分解,特殊类别,对称矩阵,Hermitian矩阵,正交矩阵,酉矩阵,带型矩阵,三角矩阵,相似矩阵,相合矩阵,Vandermonde矩阵,Hadamard矩阵,对角矩阵,分块矩阵,Jacobian矩阵,旋转矩阵(Rotation matrix),范数,诱导范数,元素形式范数,Schatten范数,套用,图像处理,线性变换及对称,量子态的线性组合,简正模式,几何光学,电子学, 历史 矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。成书最早在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。 阿瑟·凯利,矩阵论奠基人 矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。 矩阵的概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(FEisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词。 詹姆斯约瑟夫西尔维斯特 英国数学家阿瑟·凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(FGFrohenius)于1898年给出的。 1854年时法国数学家埃尔米特(CHermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。 无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出运算元理论,而无限维矩阵成为了研究函式空间运算元的有力工具。 矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名辞汇编》中,认为应当的译名是“长方阵”。中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。 定义 由 m × n 个数a ij 排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作: 这m×n 个数称为矩阵 A 的元素,简称为元,数a ij 位于矩阵 A 的第i行第j列,称为矩阵 A 的(i,j)元,以数 a ij 为(i,j)元的矩阵可记为(a ij )或(a ij ) m × n ,m×n矩阵 A 也记作 A mn 。 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。 基本运算 矩阵运算在科学计算中非常重要,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置。 加法 矩阵的加法满足下列运算律( A B C 都是同型矩阵): 应该注意的是只有同型矩阵之间才可以进行加法。 减法 数乘 矩阵的数乘满足以下运算律: 矩阵的加减法和矩阵的数乘合称矩阵的线性运算。 转置 把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置 矩阵的转置满足以下运算律: 共轭 矩阵的共轭定义为: 一个2×2复数矩阵的共轭如下所示: 则 共轭转置

矩阵的共轭转置定义为: ,也可以写为: 。一个2×2复数矩阵的共轭如下所示: 则 乘法 主条目: 矩阵乘法 两个矩阵的乘法仅当第一个矩阵 A 的列数和另一个矩阵 B 的行数相等时才能定义。如 A 是 m × n 矩阵和 B 是 n × p 矩阵,它们的乘积 C 是一个 m × p 矩阵 ,它的一个元素: 并将此乘积记为: 例如: 矩阵的乘法满足以下运算律: 结合律: 左分配律: 右分配律: 矩阵乘法不满足交换律。 行列式 主条目: 行列式 一个 n × n 的正方矩阵 A 的行列式记为 或者 , 一个2×2矩阵的行列式可表示如下: 一个n×n矩阵的行列式等于其任意行(或列)的元素与对应的代数余子式乘积之和,即: 特征值与特征向量 主条目: 特征值 , 特征向量 n × n 的方块矩阵 A 的一个特征值和对应特征向量是满足 的标量以及非零向量。其中 v 为特征向量 为特征值。 A 的所有特征值的全体,叫做A的谱,记为 。矩阵的特征值和特征向量可以揭示线性变换的深层特性。 矩阵的迹 主条目: 矩阵的迹 矩阵A的对角元素之和称为矩阵A的迹(trace),记作 , 即 正定性 n × n 的实对称矩阵 A 如果满足对所有非零向量 ,对应的二次型 若 ,就称 A 为正定矩阵。若 则 A 是一个负定矩阵,若 ,则 A 为半正定矩阵,若 A 既非半正定,也非半负定,则 A 为不定矩阵。对称矩阵的正定性与其特征值密切相关。矩阵是正定的若且唯若其特征值都是正数。 矩阵的分解 主条目: 矩阵分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。 三角分解 设 ,则A可以唯一地分解为 A = U 1 R , 其中 U 1 是酉矩阵 ,R 是正线上三角复矩阵 A 可以唯一地分解为其中 L 是正线上三角复矩阵 是酉矩阵 谱分解 谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。 奇异值分解 假设 M 是一个 m×n 阶矩阵,其中的元素全部属于域 K ,也就是实数域或复数域。如此则存在一个分解使得 其中 U 是 m×m 阶酉矩阵;Σ是 m×n 阶实数对角矩阵;而 V ,即 V 的共轭转置,是 n×n 阶酉矩阵。这样的分解就称作 M 的奇异值分解。Σ对角线上的元素Σ i , i 即为 M 的奇异值。常见的做法是将奇异值由大而小排列。如此Σ便能由 M 唯一确定了。 满秩分解 设 ,若存在矩阵 及 使得 A = FG 则称其为的 A 一个满秩分解。 LUP分解 LUP 分解的思想就是找出三个 n×n 矩阵 L , U , P ,满足 其中L是一个单位下三角矩阵,U是一个单位上三角矩阵,P是一个置换矩阵。 而满足分解条件的矩阵 L , U , P 称为矩阵A的一个 LUP 分解。 特殊类别 对称矩阵 在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等。即 例如: Hermitian矩阵 一个正方的复值矩阵 称为Hermitian矩阵,若 A = A H 即其元素 ,换言之Hermitian矩阵是一种复共轭对称矩阵。 对一个实值矩阵,Hermitian矩阵与对称矩阵等价。 正交矩阵 一个实的正方矩阵 称为正交矩阵,若 酉矩阵 一个复值正方矩阵 称为正交矩阵,若 带型矩阵 矩阵 ,若矩阵满足条件a ij =0,|i-j|>k,则矩阵 A 可以称为带型矩阵(banded matrix)。 三角矩阵 在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。若 ,则 的矩阵称为上三角矩阵,若 ,则 的矩阵称为下三角矩阵。三角矩阵可以看做是一般方阵的一种简化情形。 相似矩阵 在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个 n × n 矩阵 A 与 B 为相似矩阵若且唯若存在一个 n × n 的可逆矩阵 P ,使得: 或 。 相合矩阵 令 ,并且 C 非奇异,则矩阵 称为 A 的相合矩阵。其中线性变换 称为相合变换。 Vandermonde矩阵 Vandermonde矩阵(范德蒙矩阵)的命名来自Alexandre-Théophile Vandermonde的名字,范德蒙矩阵是一个各列呈现出几何级数关系的矩阵。 例如: 或以第 i 行第 j 列的关系写作: Hadamard矩阵 Hadamard矩阵(阿达马矩阵)是一个方阵,每个元素都是 +1 或 −1,每行都是互相正交的。 n 阶的阿达马矩阵 H 满足: 。这里 I n 是 n × n 的单位矩阵。 对角矩阵 对于 m×m 的矩阵,当 时,有 ,此时所有非对角线上的元素均为0,此时的矩阵称为对角矩阵。 分块矩阵 一个分块矩阵是将矩阵分割出较小的矩阵,这些较小的矩阵就称为子块。例如: 该矩阵可以分为四个 2×2 的矩阵: 分块后的矩阵可以写为如下形式: Jacobian矩阵 Jacobian矩阵是函式的一阶偏导数以一定方式排列成的矩阵。 可表示为如下形式: 旋转矩阵(Rotation matrix) 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 旋转矩阵是世界上著名的**专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。 旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合最佳化问题。它们解决的是如何组合集合中的元素以达到某种特定的要求。 范数 主条目: 范数 矩阵的范数主要包括三种主要类型:诱导范数,元素形式范数和Schatten范数。 若映射 满足以下要求: 则称该映射为 上的矩阵范数。 诱导范数 诱导范数又称 矩阵空间上的运算元范数(operator norm),定义为: 常用的诱导范数为p-范数: p范数也称为明克夫斯基 p范数或者 范数。特别的,当 时,对应的诱导范数分别为 元素形式范数 将 矩阵按照列的形式,排成一个 的向量,然后采用向量范数的定义,即得到矩阵的元素形式范数,表式如下: Schatten范数 Schatten范数是用矩阵的奇异值定义的范数,定义为: 其中 为对应矩阵的奇异值。 套用 图像处理 在图像处理中图像的仿射变换一般可以表示为一个仿射矩阵和一张原始图像相乘的形式,例如, 这里表示的是一次线性变换再接上一个平移。 线性变换及对称 线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。还有卡比博-小林-益川矩阵(CKM矩阵):在弱相互作用中重要的基本夸克态,与指定粒子间不同质量的夸克态不一样,但两者却是成线性关系,而CKM矩阵所表达的就是这一点。 量子态的线性组合 1925年海森堡提出第一个量子力学模型时,使用了无限维矩阵来表示理论中作用在量子态上的运算元。这种做法在矩阵力学中也能见到。例如密度矩阵就是用来刻画量子系统中“纯”量子态的线性组合表示的“混合”量子态。 另一种矩阵是用来描述构成实验粒子物理基石的散射实验的重要工具。当粒子在加速器中发生碰撞,原本没有相互作用的粒子在高速运动中进入其它粒子的作用区,动量改变,形成一系列新的粒子。这种碰撞可以解释为结果粒子状态和入射粒子状态线性组合的标量积。其中的线性组合可以表达为一个矩阵,称为S矩阵,其中记录了所有可能的粒子间相互作用。 简正模式 矩阵在物理学中的另一类泛套用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。 几何光学 在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。采用近轴近似(英语:paraxial approximation),假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面(英语:principal plane)的垂直距离)。这矩阵称为光线传输矩阵(英语:ray transfer matrix),内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。 由一系列透镜或反射元件组成的光学系统,可以很简单地以对应的矩阵组合来描述其光线传播路径。 电子学 在电子学里,传统的网目分析(英语:mesh ysis)或节点分析会获得一个线性方程组,这可以以矩阵来表示与计算。

1、情感与价值观具有相同的层次结构,且每一个层次之间具有相同的逻辑关系。

2、情感是对事物价值特性的间接反映,而价值观是对事物价值特性的直接反映。

3、情感是人对事物价值特性的相对性认识,而价值观是人对事物价值特性的绝对性认识。

4、由于事物的实际价值率会随着环境条件的变化而变化,因此人的情感通常是多变的;由于价值观所反映的事物的价值率通常基于正常的环境条件或平均的环境条件,因此人的价值观通常是相对稳定的。

5、人的中值价值率是一个相对稳定的值,其情感系统与价值观系统通常“平行”、“同向”地运动与变化。

6、人的情感在平时处于“沉寂”状态,以便于节省能量与价值,只有到了事物的价值率偏离主体的中值价值率时,人的情感才开始激发,而人的价值观则一直处于“觉醒”状态。

7、人的行为驱动力通常是通过情感为直接诱因产生的,价值观通常不直接为主体的行为和思维活动提供驱动力,而是通过影响人的情感来间接地对行为驱动力产生影响。

计算机理论界所开展的针对各种生理指标方面的“人工情感”方法,主要存在如下危机根本无法解决:

(1)要建立情感的识别系统和表达系统,就必须对情感的基本类型进行划分,以确立情感的基本模态。然而,情感的基本类型究竟应该根据什么原则和标准来划分,有何理论根据?

(2)对于同一类型情感,无论是情感感受强度,还是情感表达强度和情感生理唤醒程度,都可以采用不同的生理指标进行计算和测量,究竟应该选用哪一个生理指标为主要尺度呢?

(3)对于同一类型情感采用同一个生理指标进行测量和计算时,由于受到许多环境因素、人体其它生理因素和精神因素的影响,其测量值的差异性和波动性如何消除。

(4)不同的情感类型所产生的不同生理指标之间往往没有通约性,那么,不同类型的情感之间如何进行相互比较和统一度量?

(5)人的情感内容和感情方式是极为丰富的,各种情感之间相互渗透、相互作用、相互转化,往往有着相当复杂而且变化频繁的关系,那么对于情感的计算就需要真正天文数字般的情感数据资源库,还需要海量的计算模型与计算工作量,而人脑为何并不需要?

(6)有些复杂而微妙的情感,如怀疑、犹豫、迷茫、怜悯、尴尬、自我表现等,其生理指标的变化往往极其微弱而且短暂,对于它们的计算和测量如何进行?

(7)有些情感(如“对敌人的仇恨”与“对亲人的生气”)往往具有相同或相近的生理指标,但两者所表达的价值内涵往往相差很大,如何进行区别?

(8)情感的感受强度和表达强度与各种生理指标的变化量度通常不是成线性函数关系,大部分都是呈非线性的、不连续的、模糊的、概率性的、波动的函数关系,因此采用生理指标的变化量来计算情感的感受强度和表达强度,如何消除其误差性和不确定性。

(9)假如能够计算出人的情感感受强度、表达强度和生理唤醒程度,这些计算值又代表了什么样的客观价值意义?如何使电脑或机器人具有和谐、友好、灵活的人机界面?总之,对于情感的感受强度、表达强度和生理唤醒指标的计算实际上只是对于情感的表面形式的计算,而不是对于情感的客观内容的计算,因此不可能实现真正意义的“人工情感”。 为了实现用人工的方法和技术来模仿、延伸和扩展人的情感的目的,就必须首先建立情感的数学模型,实现对情感的内部逻辑关系及其运动变化进行严密的逻辑推理与精确的数学运算。然而,针对情感能否进行精确计算和人工化,理论界存在激烈的争论,具体体现在三个方面。

可能性与不可能性

一种观点认为,人的情感如同人的智能一样是可以进行计算,并在此基础上可以实现情感的人工化或数字化。协同学领袖哈肯曾经预言,“从长远的观点看,有希望制造出以自组织方式执行程序的协同计算机来模拟人类智能”,他系统阐述了他的脑活动和认知的协同学研究结果。另一种观点认为,情感具有不可计算性,人工情感是不可能实现的。他们认为,有些问题是可计算的,即对于这些问题存在可解的算法;但是还有一些问题不是可计算的,即对于这些问题不存在可解的算法。例如,停机问题是不可计算的,程序验证问题是不可计算的,检查一个图灵机是否接受一个给定的输入符号串是不可计算的,“波斯特对应问题”是不可计算的,等等。他们认为,认知的本质是计算,无论是人脑还是计算机,都是操作、处理符号的形式系统,而信息的收集、存储和处理的过程都是算法可计算的,因此认知和智能的任何活动都是图灵意义上的算法可计算的。与现代计算机不同,大脑不是一种通用图灵机,大脑的每一部分都是特异化的,并且是在相互作用中完成整体心智活动的,体现出一种内在的、依存性的、整体自涌现的形式,难以难以计算。哥德尔严格区分了心、脑和计算机的功能,他认为,心脑同一论是我们时代的偏见,心的可计算主义是应当批判的,假定存在超过人心的机器我们能证明吗?托尼·霍尔说:“大脑思维和计算机算法,乍一想这两者有相似性,但我们对大脑了解得非常少,基本结构都远远没有弄清楚。机器是不可能取代大脑的。”他说,比如编程,人的灵感机器没有,机器只能用来排错,机器只是助手。他们认为,欲望、情感和意志是具有主体意识的人类本身专有的,一旦它们脱离人就不存在了或者说变成假的了,情感只有是真时才能起作用,不可想象一台机器会自发地产生那些根本不属于它的特性;情感是不能制造的,模拟永远是假的;情感与人的社会性需求密切相关,电脑不具有任何社会性需求,因而不可能具有真正的情感,具有人类情感的电脑就象永动机一样永远不会实现,除非它具有独立意志。

必要性与不必要性

一种观点认为,人工智能基础理论已经处于相对停滞的状态,人工情感是人工智能必须面对的课题,是人工智能进一步发展的瓶颈,人机界面的人性化、程序运行的自主化、智能资源的效率化等都需要立即解决情感的可计算问题,解决人工情感的一系列基础理论问题和具体技术问题,人工情感已经具有了很迫切的社会需要。另一种观点认为,人工情感是科学研究上一种多余的“奢侈”。人类思维是一个巨大的系统工程,其基本的流程至今还没有完全研究清楚,很多内容甚至不能用语言表达,但肯定不会像二进制那样简单。人脑含有大约1000亿个神经元,每个神经元还有大约1万个连接,在如此复杂且高效的系统中,信息的处理远非人类想像得那么简单,情感型电脑对硬件和软件有着极为特殊的要求,人类在21世纪时的技术手段和思维高度远没有达到要求,对情感进行计算几乎是不可能的,即使能够部分做到,也将会付出高昂的代价,人机交互技术水平已经基本满足了人们的要求,指望某一种技术使得智能化或是交互形式在便捷性上有巨大的发展,基本上是不现实的,也是没有必要的。这种观点还认为,还没有形成对于情感计算机强烈的社会需求,如果技术的高度超过了社会的需求,其结果要么是技术本身被人们所遗弃,要么是技术的存在使人类的本性退化。智能化的最终目的是延伸人的控制力,但智能化似乎进入了绝对化的发展空间,大多数研究人员忽视了两个关键问题——智能化的效果和智能化的成本。技术的成本确实是一个无法回避的问题,“如果智能化的成本在某一时刻超过了人力资本,那么还会有谁去用智能设备呢?”

现实性与非现实性

一种观点认为,人工情感是即将到来的现实。克里克认为:“现在是可以用科学的方法研究意识的时候了,人的意识和精神活动完全由神经细胞、胶质细胞的行为和构成方式、以及影响它们的原子、离子和分子性质所决定,它们完全由物理化学规律支配”。生物计算机的出现,使人工情感变得越来越现实化,科学家发现了分子之间自发的组成具有计算能力的系统的方法,最可能成为生物计算机运算单元的是DNA(脱氧核糖核酸)或RNA(核糖核酸)。另一观点认为,人工情感是件遥远的事情。计算技术发展到今天,对大脑结构和思维本质的无知成了人工智能的“音障”,它们的阻力像激波一样难以突破。21世纪初对于大脑如何工作还没有一个像样的理论基础,里克·雷斯特认为,大脑太复杂了,没有人知道它怎么活动,谈不上模拟大脑的算法,“假设有可以模拟大脑算法的机器,这样的机器有智能和意识吗”。 张亚勤和微软亚洲研究院的两位副院长张宏江、沈向洋在合写的文章中说,一些科学家提出,“人类思维的规则几乎是不可能被完全破译的,所以机器所能够接受的永远都只是残缺不全的‘人的智能’,再强大的机器也不可能再现人类思维的复杂机制。” 由于大脑结构的复杂性、意识的复杂性、认知过程的复杂性、常识知识结构的复杂性等等,也由于意识最重要特征是它的意向性、自明性或自指性,彭罗斯认为这些特征显然是超越逻辑的,是超越算法的。人的情感思维与电脑的智能思维是两种完全不同的思维方式,电脑的最基本构成是处理器、内存和总线结构,它们只能对电路的开关作出反应和发生作用,这就决定了电脑的“思维”方式的有限性;电脑不存在意识,没有心理平衡问题,无法建立主体价值观,不能自动对所有的感受进行过滤,以便处理有用和必要的事情;人脑绝不是单纯处理0和1的装置,它直接接受和处理模拟信号,它的记忆是经验块堆的建立、关联和组合,如果电脑实现人脑功能,它必须在结构和工作机理上彻底翻新;人不会制造完美,大自然则能,人脑是目前物质的最高实现形式,人类只能实现人脑与电脑的交互,根本不可能制造具有真正的人脑思维方式的电脑;人是感性和理性的矛盾统一体,未来电脑可以让我们的社会数字化,但我们却难以让它感性化。总之,电脑距我们人脑还有遥远的距离,中间似乎隔着许多不可逾越的鸿沟。 人工情感包括三个方面:情感识别、情感表达与情感理解(或情感思维)。世界各国的科学家在情感识别与情感表达两个方面所取得的成果非常显著,但在情感理解或情感思维方面却收获甚微。其根本原因在于,到目前为止,没有一个科学家能够真正了解情感的哲学本质及客观目的是什么,没有创立一个全新的、科学的、数学化的情感理论,没有建立一个真正的情感数学模型。

21世界初的人工智能实际上只是人工认知,它是狭义的人工智能。知、情、意是人类三种基本的思维形式,那么广义的人工智能应该包括人工认知、人工情感和人工意志三个方面,因此要想由狭义的人工智能朝向广义的人工智能发展,就必须首先解决一系列有关情感的基本理论问题:什么是情感?情感的客观目的是什么?认知与情感到底有何区别?等等,而这些深层次的理论问题是当今的哲学、思维科学、生命科学和心理学等没能真正解决的。计算机的人工智能水平在经历了一段时间的突飞猛进之后,如今已经接近了它的理论上的发展极限,显然,不解决上述深层次的、哲学层面上的理论问题,不解决“人工智能”、“人工情感”和“情感计算”理论所存在的一系列严重的危机与哲学错误,要想研究真正意义的情感机器人是绝对不可能的。

人工情感理论存在三个方面的严重缺陷:

情感的哲学本质

情感是人类的一种主观意识,它必然是人脑对于某一种客观存在的主观反映,这种客观存在就是“价值”(或利益),情感与价值的关系就是主观与客观的关系,因此情感的哲学本质就是人脑对于事物价值特性的一种主观反映,情感的思维实际上就是人脑对于“价值”的思维,对于情感的计算实际上就是对于价值的计算。而21世纪初所有人工情感的研究者们都不知道这一点,他们总是试图通过测量和计算情感产生过程的各种生理指标(如心率、血压、脑电波、呼吸、瞳孔直径、激素分泌、血液成份等)的变化数据来确定情感强度的变化情况,来研究情感的变化规律,其结果必然是:“在主观范围内绕圈子,在表面形式上打循环”。情感是人脑对于事物价值特征的主观反映,其客观目的在于引导人更好地识别价值、消费价值、创造价值和表达价值,因此情感的识别实际上就是价值的识别,情感的表达实际上就是价值的表达,情感的计算实际上就是价值的计算。

情感的主要功能

21世纪初的人工情感研究者们只知道情感的功能作用在于使人或机器更具有“人情味”、更友好、更容易形成自然而亲切的人与机交互,营造真正和谐的人机环境。事实是,情感的功能远非如此!情感除了帮助建立机器人的人性化界面,还能够有效地提高思维的效率与速度,而且,情感还有一个更重要的功能,那就是:情感是人的行为灵活性、决策自主性和思维创造性的根本来源。智能机器人主要的缺陷在于:只能按照人预先编制的程序进行动作,不能自主地确立和调整价值目标,不能创造性地制订和修改总体规划及行为方案,不能总结经验和吸取教训。智能机器人一旦具有了情感,就能够以“达到既定的意志目标”为行为方向,以内设的“价值观系统(或情感系统)、认知系统和意志系统”为价值计算依据,以“实现最大价值率”为行为准则,建立一系列价值计算的函数关系式或约束方程式,再根据机器人所处的自然环境和人文社会环境确定若干个边界条件,选定情感和意志的动力特性参数,就可以主动地、创造性地调整“整体规划、行为方案和具体动作”,然后对行为的最终结果进行价值评价,以便及时地修正价值观系统(或情感系统)、认知系统和意志系统,达到总结经验和吸取教训的目的。

情感的内在逻辑程序

21世纪初,人工情感的研究者们完全不了解情感运行的内在逻辑程序,只知道人在进行情感反应时各种生理指标的变化数据。事实上,人在进行情感表达、情感识别和情感思维过程中,遵循着特定的逻辑程序。情感表达的逻辑程序大致是:人通过感觉器官接收刺激信号,大脑就会把以前存储在“价值观系统”中该事物的“主观价值率”提取出来,与自身的“中值价值率”进行比较、判断和计算。当前者大于后者时,就会在大脑中的边缘系统(该组织决定着情感的正负)的“奖励区域”产生正向的情感反映(如满意、自豪);当前者小于后者时,就会在大脑中的边缘系统的“惩罚区域”产生负向的情感反映(如失望、惭愧)。大脑然后对价值的目标指向、变化方式、变化时态、对方的利益相关性等进行判断,从而确定和选择情感表达的基本模式。此外,情感识别、情感计算与情感调控也遵循着特定的逻辑程序。如果不了解情感运行的内在逻辑程序,就不可能研制出真正意义的情感机器人。

情感的数学模型

21世纪初的心理学没有建立任何的情感数学模型,也不知道情感的数学变化规律。显然,要实现情感的数字化,就必须首先建立情感的数学模型。事实上,人的情感可以通过情感矩阵来进行描述,并可以进行情感的交集运算与并集运算,情感强度的变化有着特定的数学规律。情感是人脑对于事物价值特性的主观反映,虽然,事物的“价值率高差”在根本上决定着人的情感强度,但在一般情况下,情感的强度并不与事物的价值率高差成正比,而是一种特殊的指数函数关系。

正是上述的理论障碍,在根本上决定了情感机器人的发展局限性。但各国所声称拥有情感的机器人,最多只能模拟人的某些情感表达方式,并进行一些简单的情感识别,不可能具有真正意义上的内在情感思维。

美国著名营销学家Richard l Oliver提出的“期望与实绩”模式是最广泛应用的一种病人满意度模式。根据这个模式,如果病人感觉到的服务质量超过对服务质量的期望,就会感到满意;否则就会不满意。按照病人满意度来评估服务质量,管理者不仅应重视服务过程和服务结果,更应分析、掌握病人的看法及服务过程中影响服务人员和病人相互交往的心理、社会和环境因素。

通过调研,常常发现病人对医务人员提供的服务不满意,而医务人员感到自己已经尽力,对病人的不理解感到委屈。因此,本次调查着重研究医护人员、患者对服务质量理解的差异性,以便为病人提供更能满足其需要的服务。

LSA的正确读法是“LS-A”,表示潜在语义分析(Latent Semantic Analysis),是一种基于线性代数方法的文本分析技术。

LSA模型可以将大量文本数据转化为矩阵形式,便于进一步计算和分析,并且可以处理词义相似但表述不同的情况。

LSA模型的核心思想是将文本中的单词映射到一个高维向量空间中,并通过计算向量之间的相似性来刻画文本之间的关系。LSA通常用于自然语言处理领域中的文本分类、信息检索、文档摘要等任务,可以有效地提高这些任务的准确性和效率。

LSA模型的实现过程包括构建文档-词项矩阵、对矩阵进行奇异值分解计算、选择主题个数进行降维和计算相似度等步骤。LSA模型具有较好的稀疏性和高效性,在处理大规模文本数据时表现优异。

然而,LSA模型也存在一些问题,如对于词语的多义性和歧义性处理不足、无法考虑上下文信息等。因此,近年来更加复杂的基于深度学习的文本分析方法也逐渐得到应用,但LSA模型的基本思想和相关技术仍具有重要的研究价值。

LSA模型中的关键步骤是矩阵分解和主题提取。在矩阵分解过程中,LSA使用奇异值分解(SVD)算法对文档-词项矩阵进行分解,得到三个矩阵,分别代表文档、词项以及主题。在主题提取阶段,LSA将矩阵进行降维处理,保留与主题相关的重要信息。通过这些步骤,LSA模型可以对文本进行向量表示,并计算向量之间的相似性,从而实现文本分类、信息检索等任务。

LSA模型的应用范围非常广泛,其中最为典型的就是文本分类和信息检索。在文本分类方面,LSA模型可以将文本数据转化为向量形式,并使用机器学习算法进行分类,例如朴素贝叶斯分类器、支持向量机等。在信息检索方面,LSA模型通常使用余弦相似度计算查询向量和文档向量之间的相似度,从而找到最匹配的文档。

除了文本分类和信息检索外,LSA模型还可以应用于文档摘要、情感分析等领域。在文档摘要方面,LSA模型可以提取文档中的关键主题,并根据主题的重要程度对文档进行摘要;在情感分析方面,LSA模型可以通过分析大量文本数据中的情感词汇和语义关系等信息,自动生成情感分类器。

总之,LSA模型是一种基于线性代数方法的文本分析技术,可以对文本进行矩阵化表示,实现文本分类、信息检索、文档摘要、情感分析等多种任务。虽然该模型也存在一些问题,但其核心思想和技术仍具有很高的研究价值。

传统的人机交互,主要通过键盘、鼠标、屏幕等方式进行,只追求便利和准确,无法理解和适应人的情绪或心境。而如果缺乏这种情感理解和表达能力,就很难指望计算机具有类似人一样的智能,也很难期望人机交互做到真正的和谐与自然。由于人类之间的沟通与交流是自然而富有感情的,因此,在人机交互的过程中,人们也很自然地期望计算机具有情感能力。情感计算(Affective Computting)就是要赋予计算机类似于人一样的观察、理解和生成各种情感特征的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。 有关人类情感的深入研究,早在19世纪末就进行了。然而,除了科幻小说当中,过去极少有人将“感情”和无生命的机器联系在一起。只有到了现代,随着数字信息技术的发展,人们才开始设想让机器(计算机)也具备“感情”。从感知信号中提取情感特征,分析人的情感与各种感知信号的关联,是国际上近几年刚刚兴起的研究方向(图1)。

人的情绪与心境状态的变化总是伴随着某些生理特征或行为特征的起伏,它受到所处环境、文化背景、人的个性等一系列因素的影响。要让机器处理情感,我们首先必须探讨人与人之间的交互过程。那么人是如何表达情感,又如何精确地觉察到它们的呢?人们通过一系列的面部表情、肢体动作和语音来表达情感,又通过视觉、听觉、触觉来感知情感的变化。视觉察觉则主要通过面部表情、姿态来进行;语音、音乐则是主要的听觉途径;触觉则包括对爱抚、冲击、汗液分泌、心跳等现象的处理。

情感计算研究的重点就在于通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建感知、识别和理解人类情感的能力,并能针对用户的情感做出智能、灵敏、友好反应的个人计算系统,缩短人机之间的距离,营造真正和谐的人机环境(图2)。 在生活中,人们很难保持一种僵硬的脸部表情,通过脸部表情来体现情感是人们常用的较自然的表现方式,其情感表现区域主要包括嘴、脸颊、眼睛、眉毛和前额等。人在表达情感时,只稍许改变一下面部的局部特征(譬如皱一下眉毛),便能反映一种心态。在1972年,著名的学者Ekman提出了脸部情感的表达方法(脸部运动编码系统FACS)。通过不同编码和运动单元的组合,即可以在脸部形成复杂的表情变化,譬如幸福、愤怒、悲伤等。该成果已经被大多数研究人员所接受,并被应用在人脸表情的自动识别与合成(图3)。

随着计算机技术的飞速发展,为了满足通信的需要,人们进一步将人脸识别和合成的工作融入到通信编码中。最典型的便是MPEG4 V2视觉标准,其中定义了3个重要的参数集:人脸定义参数、人脸内插变换和人脸动画参数。表情参数中具体数值的大小代表人激动的程度,可以组合多种表情以模拟混合表情。

在目前的人脸表情处理技术中,多侧重于对三维图像的更加细致的描述和建模。通常采用复杂的纹理和较细致的图形变换算法,达到生动的情感表达效果。在此基础上,不同的算法形成了不同水平的应用系统(图4,图5) 人的姿态一般伴随着交互过程而发生变化,它们表达着一些信息。例如手势的加强通常反映一种强调的心态,身体某一部位不停地摆动,则通常具有情绪紧张的倾向。相对于语音和人脸表情变化来说,姿态变化的规律性较难获取,但由于人的姿态变化会使表述更加生动,因而人们依然对其表示了强烈的关注。

科学家针对肢体运动,专门设计了一系列运动和身体信息捕获设备,例如运动捕获仪、数据手套、智能座椅等。国外一些著名的大学和跨国公司,例如麻省理工学院、IBM等则在这些设备的基础上构筑了智能空间。同时也有人将智能座椅应用于汽车的驾座上,用于动态监测驾驶人员的情绪状态,并提出适时警告。意大利的一些科学家还通过一系列的姿态分析,对办公室的工作人员进行情感自动分析,设计出更舒适的办公环境。 在人类的交互过程中,语音是人们最直接的交流通道,人们通过语音能够明显地感受到对方的情绪变化,例如通过特殊的语气词、语调发生变化等等。在人们通电话时,虽然彼此看不到,但能从语气中感觉到对方的情绪变化。例如同样一句话“你真行”,在运用不同语气时,可以使之成为一句赞赏的话,也可以使之成为讽刺或妒忌的话。

目前,国际上对情感语音的研究主要侧重于情感的声学特征的分析这一方面。一般来说,语音中的情感特征往往通过语音韵律的变化表现出来。例如,当一个人发怒的时候,讲话的速率会变快,音量会变大,音调会变高等,同时一些音素特征(共振峰、声道截面函数等)也能反映情感的变化。中国科学院自动化研究所模式识别国家重点实验室的专家们针对语言中的焦点现象,首先提出了情感焦点生成模型。这为语音合成中情感状态的自动预测提供了依据,结合高质量的声学模型,使得情感语音合成和识别率先达到了实际应用水平。 虽然人脸、姿态和语音等均能独立地表示一定的情感,但人在相互交流的过程中却总是通过上面信息的综合表现来进行的。所以,惟有实现多通道的人机界面,才是人与计算机最为自然的交互方式,它集自然语言、语音、手语、人脸、唇读、头势、体势等多种交流通道为一体,并对这些通道信息进行编码、压缩、集成和融合,集中处理图像、音频、视频、文本等多媒体信息。

目前,多模态技术本身也正在成为人机交互的研究热点,而情感计算融合多模态处理技术,则可以实现情感的多特征融合,能够有力地提高情感计算的研究深度,并促使出现高质量、更和谐的人机交互系统。

在多模态情感计算研究中,一个很重要的研究分支就是情感机器人和情感虚拟人的研究。美国麻省理工学院、日本东京科技大学、美国卡内基·梅隆大学均在此领域做出了较好的演示系统。目前中科院自动化所模式识别国家重点实验室已将情感处理融入到了他们已有的语音和人脸的多模态交互平台中,使其结合情感语音合成、人脸建模、视位模型等一系列前沿技术,构筑了栩栩如生的情感虚拟头像,并正在积极转向嵌入式平台和游戏平台等实际应用(图6)。 情感状态的识别和理解,则是赋予计算机理解情感并做出恰如其分反应的关键步骤。这个步骤通常包括从人的情感信息中提取用于识别的特征,例如从一张笑脸中辨别出眉毛等,接着让计算机学习这些特征以便日后能够准确地识别其情感。

为了使计算机更好地完成情感识别任务,科学家已经对人类的情感状态进行了合理而清晰的分类,提出了几类基本情感。目前,在情感识别和理解的方法上运用了模式识别、人工智能、语音和图像技术的大量研究成果。例如:在情感语音的声学分析的基础上,运用线性统计方法和神经网络模型,实现了基于语音的情感识别原型;通过对面部运动区域进行编码,采用HMM等不同模型,建立了面部情感特征的识别方法;通过对人姿态和运动的分析,探索肢体运动的情感类别等等。

不过,受到情感信息的捕获技术的影响,并缺乏大规模的情感数据资源,有关多特征融合的情感理解模型的研究还有待深入。随着未来的技术进展,还将提出更有效的机器学习机制。 情感计算与智能交互技术试图在人和计算机之间建立精确的自然交互方式,将会是计算技术向人类社会全面渗透的重要手段。未来随着技术的不断突破,情感计算的应用势在必行,其对未来日常生活的影响将是方方面面的,目前我们可以预见的有:

情感计算将有效地改变过去计算机呆板的交互服务,提高人机交互的亲切性和准确性。一个拥有情感能力的计算机,能够对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们便于理解自己和他人的情感世界。

它还能帮助我们增加使用设备的安全性(例如当采用此类技术的系统探测到司机精力不集中时可以及时改变车的状态和反应)、使经验人性化、使计算机作为媒介进行学习的功能达到最佳化,并从我们身上收集反馈信息。例如,一个研究项目在汽车中用电脑来测量驾车者感受到的压力水平,以帮助解决所谓驾驶者的“道路狂暴症”问题。

情感计算和相关研究还能够给涉及电子商务领域的企业带来实惠。已经有研究显示,不同的图像可以唤起人类不同的情感。例如,蛇、蜘蛛和枪的能引起恐惧,而有大量美元现金和金块的则可以使人产生非常强烈的积极反应。如果购物网站和股票交易网站在设计时研究和考虑这些因素的意义,将对客流量的上升产生非常积极的影响。

在信息家电和智能仪器中,增加自动感知人们的情绪状态的功能,可以提供更好的服务。

在信息检索应用中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。

在远程教育平台中,情感计算技术的应用能增加教学效果。

利用多模式的情感交互技术,可以构筑更贴近人们生活的智能空间或虚拟场景等等。

情感计算还能应用在机器人、智能玩具、游戏等相关产业中,以构筑更加拟人化的风格和更加逼真的场景。 由于缺乏较大规模的情感数据资源,情感计算的发展受到一定的限制,而且多局限在语音、身体语言等具体而零散的研究领域,仅仅依靠这些还难以准确地推断和生成一个人的情感状态,并进行有效的情感交互。目前,科学家们正在积极地探索多特征融合的情感计算理论模型。很多人认为,今后几年情感计算将在这些方面需要取得突破:

更加细致和准确的情感信息获取、描述及参数化建模。

多模态的情感识别、理解和表达(图像、语音、生理特征等)。

自然场景对生理和行为特征的影响。

更加适用的机器学习算法。

海量的情感数据资源库。 不久前,为了推动我国在这一领域的研究,探讨情感计算和智能交互技术的发展动态与趋势,促进我国科研人员在此领域的交流与合作,中国科学院自动化研究所、中国自动化学会、中国计算机学会、中国图象图形学会、中国中文信息学会、国家自然科学基金委员会和国家863计划计算机软硬件技术主题作为主办单位,在北京主办了第一届中国情感计算与智能交互学术会议。

事实证明,情感计算的概念尽管诞生不久,但已受到学术界和产业界的高度重视,相关领域的研究和应用正方兴未艾,国家自然科学基金委也将其列入重点项目的指南中。值得注意的是,近几年来,与情感计算有密切关系的普适计算和可穿戴式计算机的研究也已获得了蓬勃发展,并同样得到了国家的大力支持。这为情感信息的实时获取提供了极大的便利条件,也为情感计算在国内的发展提供了更好的发展平台。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/840748.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-10
下一篇2023-07-10

发表评论

登录后才能评论

评论列表(0条)

    保存