100以内的质数(素数):2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97 (共25个) 100内的合数有:46891012141516182021222425262728303233343536383940424
大于1的自然数中,除了1及其本身之外没有其他因数的自然数是质数。比如7、11、29、97等只能被1及其自身整除,这样的数就是质数,否则就是合数。人类对质数的认识已有数千年,在3600多年前的《莱因德纸草书》上就可以看到古埃及人已经对质数和合数有了一定的认识。在古希腊学者欧几里得的《几何原本》中就有三个章节涉及到对质数的研究。
可以用一个公式将所有的奇数或偶数表示出来,能否用类似的方法将质数或其中一部分质数表示出来,这是很多数学家的追求。遗憾的是在目前看来,质数的分布并没有太多的规律可循。如果能够找到质数的分布规律,像哥德巴赫猜想等很多关于质数的难题可能会迎刃而解。
历史上曾经有数学家给出一些公式,猜想那些公式可以表示出一部分质数。比较有名的有费尔马数、梅森质数。费尔马是17世纪伟大的数学家,他对数论有比较深的研究,留下了费尔马大定理等数学发现。费马曾给出费尔马数的表达式Fn=2^(2^n)+1,当n取0、1、2、3、4……时,Fn都是质数,费马因此猜想当n取其他整数时Fn也是质数。后来欧拉证明了n=5时费尔马数是一个合数,费尔马的猜想破灭。目前计算机可以将费尔马数算到n=1000以后,有趣的是这些费尔马数都不是质数。
17世纪的梅森给出了一个表达式2^p-1,p取不同整数得到的结果被称作梅森数,如果梅森数是质数则被称作梅森质数。目前梅森质数在密码学中有一些应用。
1963年,波兰数学家乌拉姆无聊时漫无目的地在正方矩阵里写着连续的数字,首先在中间位置写下1,之后数字螺旋式地在网格中延续着。乌拉姆惊奇地发现,质数基本上都落在对角线及直线上。这个发现让一些人认识到,质数分布也许并非是无迹可寻的。
乌拉姆还研究过,如果矩阵螺旋的中间数字不是从1开始,质数分布也能够呈现出奇怪的分布模式。至于质数为什么会这样分布?
1、质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。
具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,是素数或者不是素数。如果为素数,则要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
2、因数是指整数a除以整数b(b≠0) 的商正好是整数而没有余数,我们就说b是a的因数。小学数学定义:假如ab=c(a、b、c都是整数),
那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称c为a、b的倍数。在研究因数和倍数时,小学数学不考虑0。
3、数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
扩展资料:
一直以来,质数的科学研究被觉得仅有纯数学上的实际意义,具体并没什么使用价值。直至20世纪七十年代,
麻省理工大学(MIT)的三位一位数学家李维斯特、萨莫尔和阿德曼相互明确提出了一种公开密钥加密算法,也就是之后被广泛运用于金融机构数据加密的RSA算法,大家才了解来到质数的关键作用。
参考资料:
——因数
——质数
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)