合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
1、合数的一种方法为计算其质因数的个数。一个有两个质因数的合数称为半质数,有三个质因数的合数则称为楔形数。在一些的应用中,亦可以将合数分为有奇数的质因数的合数及有偶数的质因数的合数。
2、合数可分为奇合数和偶合数,也能基本合数(能被2或3整除的),分阴性合数(6N-1)和阳性合数(6N+1),还能分双因子合数和多因子合数。
扩展资料:
1、合数可分成基本合数(能被2和3 整除的),阴性合数(加1能被6整除的)和阳性合数(减1能被6整除的)。阴性数在以下式中可以确定是阴性上合数和阴性下合数还是阴性素数。
2、自然数用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
3、质数又称素数。一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数;否则称为合数。质数的个数是无穷的。
4、所有大于2的偶数都是合数;所有大于5的奇数中,个位为5的都是合数;除0以外,所有个位为0的自然数都是合数;所有个位为4,6,8的自然数都是合数;最小的(偶)合数为4,最小的奇合数为9。
参考资料:
4,9,20,35,()找规律的:4等于2乘以2,9等于3乘以3,20等于4乘以5,35等于5乘以7。竖是2,3,4,5所以后面应该是6,竖是2,3,5,7都是质数所以后面应该是11,最后得出数字就是6乘以11等于66。1到40的数字的规律是很微妙的,也是,我们要认真去发掘的,因为1到40,它是一个等差数列,每一相邻的两个数之间,他是相差一,所以这就是他们的规律。
数字的含义
数字最早源自于原始时代,数字是一种神秘的存在,在旧社会的时候,数字象征着秩序和神性,很多国家的数理哲学家都坚信数字可以解释时空变更的规律和基本原则。人从一出生开始,就需要学习数字,所以通常会把数看的比较重要。
数字的组成有无数种,但是所有的数字都是从0到9组成而组合而成的。每个数字所代表的含义也不同,例如零代表的是起点、开始,同时它也代表着无,数字一是所有数字当中最具有包含性的一个数字,它可以代表一切,数字2的含义,通常比较矛盾,它可以代表复合也可以代表分裂。
1、除了1和它本身,还有其他因数的数,叫做合数。
2、合数有4、6、8、9、10、12……,也就是说最小的合数是4,没有最大的合数,合数有无数多个。
相关概念补充:
1、在整数除法中,商是整数,并且没有余数。我们就说被除数是除数的倍数,除数是被除数的因数。(小学阶段,因数和倍数是在除0以外的自然数范围内讨论的)
2、除了1和它本身,没有其他因数的数,叫做质数。
扩展资料:
合数的一种方法为计算其质因数的个数。一个有两个质因数的合数称为半质数,有三个质因数的合数则称为楔形数。在一些的应用中,亦可以将合数分为有奇数的质因数的合数及有偶数的质因数的合数。对于后者, (其中μ为默比乌斯函数且''x''为质因数个数的一半),而前者则为 注意,对于质数,此函数会传回 -1,且 。而对于有一个或多个重复质因数的数字''n'', 。
另一种分类合数的方法为计算其因数的个数。所有的合数都至少有三个因数。一质数的平方数,其因数有 。一数若有著比它小的整数都还多的因数,则称此数为高合成数。另外,完全平方数的因数个数为奇数个,而其他的合数则皆为偶数个。
合数可分为奇合数和偶合数,也能基本合数(能被2或3整除的),分阴性合数(6N-1)和阳性合数(6N+1),还能分双因子合数和多因子合数。
只有1和它本身两个因数的自然数,叫质数(或称素数)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个因数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)
100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,一共有25个。
质数的个数是无穷的。欧几里得的《几何原本》中的证明使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。
如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。
因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以证明。
任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积,这里P1<P2<<Pn是质数,其诸方幂ai是正整数。
这样的分解称为N的标准分解式。
算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。
算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。
此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念,更一般的还有戴德金理想分解定理。
1、除了1和它本身,还有其他因数的数,叫做合数。
2、合数有4、6、8、9、10、12……,也就是说最小的合数是4,没有最大的合数,合数有无数多个。
相关概念补充:
1、在整数除法中,商是整数,并且没有余数。我们就说被除数是除数的倍数,除数是被除数的因数。(小学阶段,因数和倍数是在除0以外的自然数范围内讨论的)
2、除了1和它本身,没有其他因数的数,叫做质数。
扩展资料:
合数的一种方法为计算其质因数的个数。一个有两个质因数的合数称为半质数,有三个质因数的合数则称为楔形数。在一些的应用中,亦可以将合数分为有奇数的质因数的合数及有偶数的质因数的合数。对于后者, (其中μ为默比乌斯函数且''x''为质因数个数的一半),而前者则为 注意,对于质数,此函数会传回 -1,且 。而对于有一个或多个重复质因数的数字''n'', 。
另一种分类合数的方法为计算其因数的个数。所有的合数都至少有三个因数。一质数的平方数,其因数有 。一数若有著比它小的整数都还多的因数,则称此数为高合成数。另外,完全平方数的因数个数为奇数个,而其他的合数则皆为偶数个。
合数可分为奇合数和偶合数,也能基本合数(能被2或3整除的),分阴性合数(6N-1)和阳性合数(6N+1),还能分双因子合数和多因子合数。
只有1和它本身两个因数的自然数,叫质数(或称素数)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个因数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)
100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,一共有25个。
质数的个数是无穷的。欧几里得的《几何原本》中的证明使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。
如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。
因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以证明。
任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积,这里P1<P2<<Pn是质数,其诸方幂ai是正整数。
这样的分解称为N的标准分解式。
算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。
算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。
此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念,更一般的还有戴德金理想分解定理。
合数有4、6、8、9、10、12、14、15、16、18、20、21、22、24、25、26、27、28、30、32、33、34、35、36、38、38、40、42、44、45、46、48、49。
1、合数
除了2之外,所有的偶数都是合数。反之,除了2之外,所有的素数都是奇数。但是奇数包括了合数和素数。合数根和素数根的概念就是用来区分任何一个大于9的奇数属于合数还是素数。任何一个奇数都可以表示为2n+1(n是非0的自然数)。我们将n命名为数根。当2n+1属于合数时,我们称之为合数根;反之,当2n+1是素数时,我们称之为素数根。
2、规律
任何一个奇数,如果它是合数,都可以分解成两个奇数的乘积。设2n+1是一个合数,将它分解 成两个奇数2a+1和2b+1的积(其中a、b都属于非0的自然数),则有
2n+1=(2a+1)(2b+1)=4ab+2(a+b)+1=2(2ab+a+b)+1
可见,任何一个合数根都可以表示为"2ab+a+b",反之,不能表示为"2ab+a+b"的数根,就称为素数根。由此可以得到合数根表。判断一个大奇数属于合数还是素数,只需在合数根表中查找是否存在它的数根就知道了。
分数是把“一个数”或“几个数”平均分成若干份,表示这样的一份或几份的数。如1/3,5/8,3/5吨等。
合数是指一个的因数除了1和它本身还有其他因数的数,简单地说就是含有3个或3个以上因数的数。如4,6,8,9……都是合数。
合数至少有几个因数:合数至少有三个因素。
1合数定义
合数是指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。所有大于2的偶数都是合数。
所有大于5的奇数中,个位为5的都是合数。除0以外,所有个位为0的自然数都是合数。所有个位为4,6,8的自然数都是合数。最小的(偶)合数为4,最小的奇合数为9。合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
2质数的定义
只有1和它本身两个因数的自然数,叫质数(或称素数)。如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个因数,所以2就是质数。
与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。
3算术基本定理
算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。
此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念,更一般的还有戴德金理想分解定理。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)