北欧的5座首都城市风貌,个个幸福指数高,你喜欢去哪个呢?

北欧的5座首都城市风貌,个个幸福指数高,你喜欢去哪个呢?,第1张

现如今,人们有时候也会选择去到一些国外游玩。不过,大部分还是去到一些东南亚的国家,或是像欧洲的法国、意大利、英国、德国等等。对于经常放在一起说的北欧五国,相对来说前往的人们还是要少一些,也没有像那些国家那么火热。今日,小编为大家盘点一下较少被提及的北欧五国的首都城市风貌。

斯德哥尔摩

不少人听到这个名字可能第一时间会想到的是斯德哥尔摩综合症,因为这个症状的人最先发现就是在这里。瑞典的首都斯德哥尔摩还是他们的第一大城市,同样也是北欧地区的一座“水城”,有着“北方威尼斯”的称号。在去年的全球500强城市中,斯德哥尔摩就排到了第十五名。

奥斯陆

奥斯陆不仅是挪威的首都,也是挪威的第一大城市。在这里的老城区中还保留着较好的中世纪风貌。在奥斯陆很少可以看到高楼大厦,一般最多的就是到6、7层的样子,这一点与其他的城市有着很大的不同。另外,奥斯陆不仅是世界上最幸福的城市之一,在欧洲来说也是很富有的城市之一。

赫尔辛基

赫尔辛基是一个因港口建立的城市,同时也是芬兰的首都所在地。与挪威的奥斯陆相同,这里也是全球最幸福的城市之一。在赫尔辛基这座城市,可以看到最多的便是浅色花岗岩所修建的各种建筑,站在城市较高一些的地方,俯瞰整座赫尔辛基就如同一座“洁白无瑕”的城市一般。在连续几年的时间里,这座城市已经被选入全世界最宜居的城市名单中。

哥本哈根

哥本哈根是北欧最大的城市,面积大概有97平方公里。在作为丹麦的首都城市的同时,也是一座交通发达的港口城市。很多重要的国际会议都有选择在这里召开,比如像全球气候变化大会等。自然而然,这里也是全球最幸福与最宜居的城市之一。不知道大家还能否记得著名的美人鱼雕像,就在哥本哈根的海边。

北欧的5座首都城市风貌,个个幸福指数高,生活安逸舒适惬意

雷克雅未克

由于原本冰岛所处的纬度就比较高,人口密度也比较小,所以它的首都雷克雅未克城内很少有大型工厂,空气质量自然而然很好,素来被称为“无烟城市”,也是全球所处位置最北的首都。另外在北大西洋暖流的作用下,这里也并没有很寒冷,还是比较温和的。城内的居民都生活的比较惬意,舒适,幸福指数也很高,同其他几个首都城市一样。

1丹麦王国首都哥本哈根(Copenhagen)

丹麦王国首都哥本哈根(Copenhagen)位于丹麦西兰岛东部,隔着厄勒海峡和瑞典重要海港马尔默遥遥相对。它是丹麦政治、经济、文化的中心,全国最大和最重要的城市,是北欧最大的城市,也是著名的古城。哥市虽地理纬度较高,但由于受墨西哥湾暖流影响,气候温和。1—2月气温在0℃左右,7—8月平均气温16℃。年平均降水量700毫米。

根据丹麦的历史记载,哥本哈根在十一世纪初还是一个小小的渔村和进行贸易的场所。随着贸易的日益繁盛,到十二世纪初发展成为一个商业城镇。十五世纪初,成为丹麦王国的首都。哥本哈根在丹麦文中就是“商人的港口”或“贸易港”的意思。

哥本哈根人口501万(2006年1月)。全国重要的食品、造船、机械、电子等工业大多集中在这里。哥本哈根的海港,水深港阔,设备优良,是丹麦最大的商港。每年出入港口的船只达三万五千艘以上,丹麦一半以上的对外贸易都经由这里进出口。哥本哈根有铁路通过火车轮渡与日德兰半岛及斯堪的纳维亚半岛各国相连接。有许多国际航空线经过这里,是西欧和北欧间铁路、航空的枢纽。 哥本哈根既是传统的贸易和船运中心,又是新兴制造业城市。全国1/3工厂建在大哥本哈根区。主要工业项目有造船、机械、罐头、酿造等。当地东亚公司、布米斯特—怀恩机械和船业公司等厂家世界闻名。1950年后工业和人口迁往市郊,市区人口逐渐减少。城市交通工具以小汽车、电气铁路和公共汽车为主。市东南8公里处有机场。高等学府有哥本哈根大学(1479)、丹麦理工大学、丹麦工程学院、皇家音乐学院和美术学院(1754)等。

哥本哈根市政厅哥本哈根市容美观整洁,市内新兴的大工业企业和中世纪古老的建筑物交相辉映,使它既是现代化的都市,又具有古色古香的特色。在许多古建筑物中,最有代表性的是一些古老的宫堡。坐落在市中心的克里斯蒂安堡年代最为久远。现在的克里斯蒂安堡是一七九四年被火焚以后重建的。过去,它曾是丹麦国王的宫殿,现在成为议会和政府大厦所在地。建筑在厄勒海峡出口处岩石上的克伦堡宫,是昔日守卫这座古城的一个军事要塞,至今还保存着当时修建的炮台和兵器。此外,现在丹麦国王居住的王宫——阿马林堡,也颇负盛名。哥本哈根市政厅的钟楼,也常常挤满了好奇的来访者。因为那里有一座机件复杂、制作精巧的天文钟。据说,这座天文钟不仅走得极其准确,还能计算出太空星球的位置,能告诉人们:一星期各天的名称、日子和公历的年月、星座的运行、太阳时、中欧时和恒星时等。这座天文钟是一个名叫奥尔森的锁匠花费了四十年心血、耗费了巨资才造成的。

12世纪时洛斯基勒的阿布萨隆重主教在此筑起要塞,兴起了 “商人之港(哥本哈根)”。它不仅是丹麦国内、也是北欧的大门。现在仍是重要的港囗城市,整个城市洋溢着的浪漫气息迷倒了所有前来游览的人。

蒂沃利公园 Tivoli 和美人鱼像可以说是哥本哈根的象征。还有世界第一条步行街斯特洛伊艾,那琳琅满目的商品会让并不喜欢购物的人也为之动心。

富有魅力的不仅是购物,逛逛博物馆和美术馆,感受这里的历史,会使您的旅行留下更深刻的印象。

如果走累了或者肚子饿了,可以在露天咖啡座或餐馆略事休息。哥本哈根的中心街区有各色饭馆,不仅提供丹麦传统菜肴,还有世界各国的美味。何不夹杂在当地居民的人群中尽情体味首都氛围?

补充:丹麦的首都。在西兰岛东岸和阿迈厄岛北部,临厄勒海峡。市区人口483万,包括郊区137万(1989)。原为渔村。1167年沿西兰岛海岸建立堡垒,十六世纪因海运发展而成繁荣城市。北欧重要海陆空交通枢纽;有火车轮渡通瑞典港口马尔默。丹麦政治、经济、文化中心,也是全国最大的军港和商港(自由港)。全国工业30%集中于此,有造船、机器制造、冶金、化学、食品加工和纺织等工业。输出肉类和奶制品。设有科学院、大学(建于1478年)等。旧城以中心广场为核心呈辐射状排列。新建的西北郊区以湖泊与旧城分开。

2009年10月7日,将在哥本哈根揭晓2016年奥运会的举办城市。

[编辑本段]2量子论的哥本哈根解释

量子论的哥本哈根解释是从一个佯谬出发的。物理学中的任何实验,不管它是关于日常生活现象的,或是有关原子事件的,都是用经典物理学的术语来描述的。经典物理学的概念构成了我们描述实验装置和陈述实验结果的语言。我们不能也不应当用任何其他东西来代替这些概念。然而,这些概念的应用受到测不准关系的限制。当使用这些概念时,我们必须在心中牢记经典概念的这个有限的适用范围,但我们不能够也不应当企图去改进这些概念。

为了更好地了解这个佯谬,比较一下在经典物理学和量子论中对一个实验进行理论解释的程序是有用的。譬如,在牛顿力学中,我们要研究行星的运动,可以从测量它的位置和速度开始。只要通过观测推算出行星的一系列坐标值和动量值,就可以将观测结果翻译成数学。此后,运动方程就用来从已定时间的这些坐标和动量值推导出晚些时候系统的坐标值或任何其他性质,这样,天文学家就能够预言系统在晚些时候的性质。例如,他能够预言月蚀的准确时间。

在量子论中,程序稍有不同。例如,我们可能对云室中一个电子的运动感兴趣,并且能用某种观测决定电子的初始位置和速度。但是这个测定将不是准确的;它至少包含由于测不准关系而引起的不准确度,或许还会由于实验的困难包含更大的误差。首先正是由于这些不准确度,才容许我们将观测结果翻译成量子论的教学方案。写出的几率函数是代表进行测量时的实验状况的,其中甚至包含了测量的可能误差。

。这种几率函数代表两种东西的混合物,一部分是事实,而另一部分是我们对事实的知识。就它选定初始时间的初始状说的几率为1(即完全确定)这一点说,它代表了事实:电子在被观测到的位置以被观测到的速度运动;"被观测到"意指在实验的准确度范围内被观测到。而就另一个观测者或许能够更准确地知道电子的位置这一点说,它则代表我们的知识。实验的误差并不(至少在某种程度上)代表电子的性质,而表示了我们对电子的知识的缺陷。这种知识的缺陷也是由几率函数表示的。

在经典物理学中,当在进行精细的研究时,人们同样应当考虑到观测的误差。结果,人们就得到关于坐标和速度的初始值的几率分布,因此也就得到很类似于量子力学中的几率函数的某种东西。只是量子力学中由于测不准关系而必有的测不准性,在经典物理学中是没有的。

当量子论中的几率函数已在初始时间通过观测决定了以后,人们就能够从量子论定律计算出以后任何时间的几率函数,并能由此决定一次测量给出受测量的某一特殊值的几率。例如,我们能预测以后某一时间在云室中某一给定点发现电子的几率。应当强调指出,无论如何,几率函数本身并不代表事件在时间过程中的经过。它只代表一些事件的倾向和我们对这些事件的知识。只有当满足一个主要条件时:例如作了决定系统的某种性质的新测量时,几率函数才能和实在联系起来。只有那时,几率函数才容许我们计算新测量的可能结果。而测量结果还是用经典物理学的术语叙述的。

由此可见,对一个实验进行理论解释需要有三个明显的步骤:(1)将初始实验状况转达成一个几率函数;(2)在时间过程中追踪这个几率函数;(3)关于对系统所作新测量的陈述,测量结果可以从几率函数推算出来。对于第一个步骤,满足测不难关系是一个必要的条件。第二步骤不能用经典概念的术语描述:这里没有关于初始观测和第二次测量之间系统所发生的事情的描述。只有到第三个步骤,我们才又从"可能"转变到"现实"。

让我们用了个简单的理想实验来演示这样三个步骤。前面已经说过,原子是由一个原子核和环绕原子核运动的电子所组成;前面也已论述过,电子轨道的概念是可疑的。人们或许会主张,至少原则上应当能够观察到轨道中的电子。人们可以简单地通过一个分辨本领非常高的显微镜来观看原子,这样就应该能看到在轨道中运动的电子。当然,使用普通光的显微镜是不能达到这样高的分辨本领的,因为位置测量的不准确度决不能小于光的波长。但是一个用波长小于原子大小的γ射线的显微镜将能做到这一点。这样的显微镜尚未被制造出来,但这不应当妨碍我们讨论这个理想实验。

第一个步骤,即将观测结果转达成一个几率函数,是可能做到的吗,只有在观测后满足测不准关系时,这才是可能的。电子的位置可以观测得这样准确,其准确度随 γ射线的波长而定。在观测前电子可以说实际上是静止的。但是在观测作用过程中,至少有一个γ射线的光量子必须通过显微镜,并且必须首先被电子所偏转。因此,电子也被光量子所撞击,这就改变了它的动量和速度。人们能够证明,这种变化的测不准性正好大到足以保证测不准关系的成立。因此,关于第一个步骤,没有丝毫困难。

同时,人们能够很容易理解没有观测电子环绕原子核的轨道的方法。第二个步骤在于显示一个不绕原子核运动而是离开原子的波包,因为第一个光量子已将电子从原子中打出。如果γ射线的波长远小于原子的大小,γ射线的光量子的动量将远大于电子的原始动量。因此,第一个光量子足以从原子中打出电子,并且人们决不能观测到电子轨道中另外的点;因此,也就没有通常意义的轨道了。下一次观测——第三个步骤——将显示电子离开原子的路线。两次相继观测之间所发生的事情,一般是完全无法描述的。当然,人们总想这样说:在两次观测之间,电子必定要处在某些地方,因而必定也描绘出某种路线或轨道,即使不可能知道是怎样一条路线。这在经典物理学中是一个合理的推论。但是,在量子论中,我们将在后面看出,这是语言的不合理的误用。我们可以暂时不去管这个警告究竟是指我们谈论原子事件的方法还是指原子事件本身,究竟它所涉及的是认识论还是本体论。但在任何情况下,我们对原子粒子的行为作任何陈述时,措辞都必须非常小心。

实际上我们完全不需要说什么粒子。对于许多实验,说物质波却更为便利;譬如,说环绕原子核的驻立物质波就更为便利。但是,如果不注意测不准关系所给出的限制,这样一种描述将和另一种描述直接矛盾。通过这些限制,矛盾就避免了。使用"物质波"是便利的,举例说,处理原子发射的辐射时就是这样。辐射以它的频率和强度提供了原子中振荡着的电荷分布的信息,因而波动图象比粒子图象更接近于真理。因此,玻尔提倡两种图象一并利用,他称它们是"互补"的。这两种图象当然是相互排斥的,因为一个东西不能同时是一个粒子(即限制平很小体积内的实体〕而又是一个波(即扩展到一个大空间的场),但二者却互相补充。摆弄这两种图象,从一种图象转到另一种图象,然后又从另一种图象转回到原来的图象,我们最终得到了隐藏在我们的原子实验后面的奇怪的实在的正确印象。玻尔在量子论解释的好几个地方使用了"互补性"概念。关于粒子位置的知识是和关于它的速度或动量的知识互补的。如果我们以高度的准确性知道了其中一个,我们就不能以高度的准确性知道另一个;但为了决定系统的行为,我们仍须两个都知道。原子事件的空间时间描述是和它们的决定论描述互补的。几率函数服从一个运动方程,就象坐标在牛顿力学中那样;它随时间的变化是被量子力学方程完全决定了的,但它不容许对原子事件在空间和时间中进行描述。另一方面,观测要求在空间和时间中对系统进行描述,但是,由于观测改变了我们对系统的知识,它也就破坏了几率函数的已定的连续性。

一般地讲,关于同一实在的两种不同描述之间的二象性已不再是一个困难了,因为我们已经从量子论的数学形式系统得知,矛盾是不能产生的。两种互补图象—一波和粒子——间的二象性也很清楚地表现在数学方案的灵活性中。数学形式系统通常是仿照牛顿力学中关于粒子的坐标和动量的运动方程写出的。但通过简单的变换,就能把它改写成类似于关于普通三维物质波的波动方程。因此,摆弄不同的互补国象的这种可能性类似于数学方案的不同变换;它并不给量子论的哥本哈根解释带来任何困难。

然而,当人们提出了这样一个著名的问题:"但是在原子事件中‘真正'发生了什么呢?"这时,了解这种解释的真正困难就产生了。前面说过,一次观测的机构和结果总是能用经典概念的术语来陈述的。但是,人们从一次观测推导出来的是一个几率函数,它是把关于可能性(或倾向)的陈述和关于我们对事实的知识的陈述结合起来的一种数学表示式。所以我们不能够将一次观测结果完全客观化,我们不能描述这一次和下一次观测间"发生"的事情。这看来就象我们已把一个主观论因素引入了这个理论,就象我们想说:所发生的事情依赖于我们观测它的方法,或者依赖于我们观测它这个事实。在讨论这个主观论的问题之前,必须完全解释清楚,为什么当一个人试图描述两次相继进行的观测之间所发生的事情时,他会陷入毫无希望的困难。

为此目的,讨论下述理想实验是有好处的,我们仅沿一个小单色光源向一个带有两个小孔的黑屏辐射。孔的直径不可以比光的波长大得太多,但它们之间的距离远远大于光的波长。在屏后某个距离有一张照相底片记录了人射光。如果人们用波动图象描述这个实验,人们就会说,初始波穿过两个孔;将有次级球面波从小孔出发并互相干涉,而干涉将在照相底片上产生一个强度有变化的图样。

照相底片的变黑是一个量子过程,化学反应是由单个光量子所引起的。因此,用光量子来描述实验必定也是可能的。如果容许讨论单个光量子在它从光源发射和被照相底片吸收之间所发生的事情的话,人们就可以作出如下的推论:单个光量子能够通过第一个小孔或通过第二个小孔。如果它通过第一个小孔并在那里被散射,它在照相底片某点上被吸收的几率就不依赖于第二个孔是关着或开着。底片上的几率分布就应当同只有第一个孔开着的情况一样。如果实验重复多次,把光量子穿过第一个小孔的全部情况集中起来,底片由于这些情况而变黑的部分将对应于这个几率分布。如果只考虑通过第二个小孔的那些光量子,变黑部分将对应于从只有第二个小孔是开着的假设推导出来的几率函数。因此,整个变黑部分将正好是两种情况下变黑部分的总和;换句话说,不应该有干涉图样。但是我们知道,这是不正确的,因为这个实验必定会出现干涉图样。由此可见,说任一光量子如不通过第一个小孔就必定通过第二个小孔,这种说法是有问题的,并且会导致矛盾。这个例子清楚地表明,几率函数的概念不容许描述两次观测之间所发生的事情。任何寻求这样一种描述的企图都将导致矛盾;这必定意味着"发生"一词仅限于观测。

这确是一个非常奇怪的结果,因为它们似乎表明,观测在事件中起着决定性作用,并且实在因为我们是否观测它而有所不同。为了更清楚地表明这一点,我们必须更仔细地分析观测过程。

首先,记住这一点是重要的:在自然科学中,我们并不对包括我们自己在内的整个宇宙感到兴趣,我们只注意宇宙的某一部分,并将它作为我们研究的对象。在原子物理学中,这一部分通常是一个很小的对象,一个原子粒子或是一群这样的粒子,有时也可能要大得多——大小是不关紧要的;但是,重要的是,包括我们在内的大部分宇宙并不属于这个对象。

现在,从已经讨论过的两个步骤开始对实验作理论的解释。第一步,我们必须用经典物理学的术语来描述最后要和第一次观测相结合的实验装置,并将这种描述转译成几率函数。这个几率函数服从量子论的定律,并且它在连续的时间过程中的变化能从初始条件计算出来;这是第二步。几率函数结合了客观与主观的因素。它包含了关于可能性或较大的倾向(亚里土多德哲学中的"潜能")的陈述,而这些陈述是完全客观的,它们并不依赖于任何观测者;同时,它也包含了关于我们对系统的知识的陈述;这当然是主观的,因为它们对不同的观测者就可能有所不同。在理想的情形中,几率函数中的主观因素当与客观因素相比较时,实际上可以被忽略掉。这时,物理学家就称它为"纯粹情态"。

现在,当我们作第二次观测时,它的结果应当从理论预言出来;认识到这一点是十分重要的,即我们的研究对象在观测前或至少在观测的一瞬间必须和世界的另一部份相接触,这世界的另一部份就是实验装置、量尺等等。这表示几率函数的运动方程现在包含了与测量仪器的相互作用的影响。这种影响引入一种新的测不准的因素,因为测量仪器是必须用经典物理学的术语描述的;这样一种描述包含了有关仪器的微观结构的测不准性,这是我们从热力学认识到的;然而,因为仪器又和世界的其余部份相联系,它事实上还包含了整个世界的微观结构的测不准性。从这些测不准性仅仅是用经典物理学术语描述的后果而并不依赖于任何观察者这一点说,它们可以称为客观的。而从这些测不准性涉及我们对于世界的不完全的知识这一点说,它们又可以称为主观的。

在发生了这种相互作用之后,几率函数包含了倾向这一客观因素和知识的不完整性这一主观因素,即令它以前曾经是一个"纯粹情态",也还是如此。正是由于这个原因,观测结果一般不能准确地预料到Z能够预料的只是得到某种观察结果的几率,而关于这种几率的陈述能够以重复多次的实验来加以验证。几率函数不描述一个确定事件(即不象牛顿力学中那种正常的处理方法),而是种种可能事件的整个系综,至少在观测的过程中是如此。

观测本身不连续地改变了几率国数Z它从所有可能的事件中选出了实际发生的事件。因为通过观测,我们对系统的知识已经不连续地改变了,它的数学表示也经受了不连续的变化,我们称这为"量子跳变"。当一句古老的谚语"自然不作突变"被用来作为批评量子论的根据时,我们可以回答说:我们的知识无疑是能够突然地变化的,而这个事实证明使用"量子跳变"这个术语是正确的。

因此,在观测作用过程中,发生了从"可能"到"现实"的转变。如果我们想描述一个原子事件中发生了什么,我们必须认识到,"发生"一词只能应用于观测,而不能应用于两次观测之间的事态。它只适用于观测的物理行为,而不适用于观测的心理行为,而我们可以说,只有当对象与测量仪器从而也与世界的其余部分发生了相互作用时,从"可能"到"现实"的转变才会发生;它与观测者用心智来记录结果的行为是没有联系的。然而,几率函数中的不连续变化是与记录的行为一同发生的,因为正是在记录的一瞬间我们知识的不连续变化在几率函数的不连续变化中有了它的映象。

那么,我们对世界,特别是原子世界的客观描述最绔能达到什么样的程度呢,在经典物理学中,科学是从信仰开始的——或者人们应该说是从幻想开始的?——这就是相信我们能够描述世界,或者至少能够描述世界的某些部分,而丝毫不用牵涉到我们自己。这在很大程度上是实际可能做到的。我们知道伦敦这个城市存在着,不管我们看到它与否。可以说,经典物理学正是那种理想化情形,在这种理想化情形中我们能够谈论世界的某些部分,而丝毫不涉及我们自己。它的成功把对世界的客观描述引导到普遍的理想化。客观性变成评定任何科学结果的价值时的首要标准。量子论的哥本哈根解释仍然同意这种理想化吗 人们或许会说,量子论是尽可能地与这种理想化相一致的。的确,量子论并不包含真正的主观特征,它并不引进物理学家的精神作为原子事件的一部分。但是,量子论的出发点是将世界区分为"研究对象"和世界的其余部分,此外,它还从这样一个事实出发,这就是至少对于世界的其余部分,我们在我们的描述中使用的是经典概念。这种区分是任意的,并且从历史上看来,是我们的科学方法的直接后果;而经典概念的应用终究是一般人类思想方法的后果。但这已涉及我们自己,这样,我们的描述就不是完全客观的了。

在开始时已说过,量子论的哥本哈根解释是从一个佯谬开始的。它从我们用经典物理学术语描述我们的实验这样一个事实出发,同时又从这些概念并不准确地适应自然这样一个认识出发。这样两个出发点间的对立关系,是量子论的统计特性的根源。因此,不时有人建议,应当统统摒弃经典概念,并且由于用来描述实验的概念的根本变化,或许可能使人们回到对自然界作非静态的、完全客观的描述。

然而,这个建议是立足于一种误解之上的。经典物理学概念正是日常生活概念的提炼,并且是构成全部自然科学的基础的语言中的一个主要部分。在科学中,我们的实际状况正是这样的,我们确实使用了经典概念来描述实验,而量子论的问题是在这种基础上来找出实验的理论解释。讨论假如我们不是现在这样的人,我们能做些什么这样的问题,是没有用处的。在这一点上,我们必须认识到,正如冯·威扎克尔(von Webzsacker〕所指出的,"自然比人类更早,而人类比自然科学更早。"这两句话的前一句证明了经典物理学是具有完全客观性的典型。后一句告诉我们,为什么不能避免量子论的佯谬,即指出了使用经典概念的必要性。

我们必须在原子事件的量子理论解释中给实际程序加上若干注释。已经说过,我们的出发点总是把世界区分为我们将进行研究的对象和世界的其余部分,并且这种区分在某种程度上是任意的。举例说吧,如果我们将测量仪器的某些部分或是整个仪器加到对象上去,并对这个重复杂的对象应用量子论定律,在最终结果上确实不应有任何差别。能够证明,理论处理方法这样的一种改变不会改变对已定实验的预测。在数学上这是由于这样一个事实,就是对于能把普朗克常数看作是极小的量的那些现象,量子论的定律近似地等价于经典定律。但如果相信将量子理论定律对测量仪器这样应用时,能够帮助我们避免量子论中的基本佯谬,那就错了。

只有当测量仪器与世界的其余部分密切接触时,只有当在仪器和观测者之间有相互作用时,测量仪器才是名符其实的。因此,就象在第一种解释中一样,这里关于世界的微观行为的测不准性也将进入量子理论系统。如果测量仪器与世界的其余部分隔离开来,它就既不是一个测量仪器,也就根本不能用经典物理学的术语来描述了。

白色的椭圆形舞台,白色的墙壁,嵌在白色墙壁里可以随时打开的两扇门。这两扇门隔开了两个世界,门外是金色的白桦林,那是人的世界;门内是白色的冥界,灵魂游走聚首之地。一株枯索的白桦树,三只象牙般洁白的椅子,三个死后聚首的灵魂。

德国物理学家海森堡来到丹麦首都哥本哈根,看望他的同行兼师长波尔。海森堡、波尔、玛格瑞特三个幽灵谈论了1941年的战争,谈论了哥本哈根9月的一个雨夜、纳粹德国的核反应堆、同盟国正在研制的原子弹;谈论量子、粒子、铀裂变和测不准原理,谈论贝多芬、巴赫的钢琴曲;谈论战争时期个人为国家履行的责任和义务、原子弹爆炸后城市里狼藉扭曲的尸体。

海森堡爱他的祖国,他视他的祖国是他的亲人、妻子、孩子,他想为他的国家贡献自己的力量,可是他的祖国是德国———一个被世界视为恶魔的国家。他的选择,是两难的。“一个有道义良心的科学家应不应该从事原子弹的研究?”他问波尔,更是问他自己。当原子弹在广岛爆炸的时候,他视自己的双手同样沾满了鲜血。研制出原子弹的波尔赢得全世界的掌声,而没有研制出原子弹的海森堡却背负了三十年的质疑,解释了三十年……

因为房间里被安装窃听器,他们的谈话无法展开无法深入。这次神秘的会见对以后的原子弹研究和制造,对以后的战争进程产生了重大影响。但海森堡到底跟波尔说了什么,他们的亡魂无法说清楚。

“哥本哈根会见”被三个幽灵演绎了4次,每一次都提出不同的可能性。他们不断地重回1941年的傍晚,面对当年的困惑,但结果总是陷于迷雾,直到最后都没能找到确切的答案。

《哥》剧当年在伦敦首演之后,编剧麦克弗雷恩连获普利策、托尼两项大奖,在欧美剧坛曾引起广泛轰动,并成为了2002年百老汇最佳戏剧奖的获奖剧目。

《哥本哈根》这个戏无论从内容还是话剧艺术上来讲都带有神秘的色彩,内容上它讲述的是一个世界之谜,从艺术上讲它给了艺术工作者极大的艺术创作空间。据说该剧在国外演出时,大多数国家都采用了三把椅子的舞台布置,王晓鹰的中国版本也不例外,但全剧抽象、现实和诗意三个空间不仅扩大了演区,还为全世界对该剧的氛围设置又增加了一种表现方式。剧中在某些关键场景还运用了投影手法,让观众仿佛亲历了真实历史事件的回放。

只有当测量仪器与世界的其余部分密切接触时,只有当在仪器和观测者之间有相互作用时,测量仪器才是名符其实的。因此,就象在第一种解释中一样,这里关于世界的微观行为的测不准性也将进入量子理论系统。如果测量仪器与世界的其余部分隔离开来,它就既不是一个测量仪器,也就根本不

哥本哈根位于丹麦,是一个北欧大城市。这里的自然环境保护绝对是世界一流的,空气格外清新,可以满足你基本的生理需求,体验大自然的魅力和人类文明的创意与服务。这是哥本哈根自由行指南。

飞往哥本哈根并不容易。浦东机场等了12个小时,上海到米兰12个小时,米兰等后续航班18个小时。我从米兰飞到慕尼黑,出发48小时后终于抵达哥本哈根。

我们乘火车从机场到市区。一出火车站,对面就是曲阜里公园。一抬头,看到了蓝天白云下悬挂的摩天轮和突然呼啸而过的过山车。有恐惧和喜悦的哭喊声,一切都变成了童话。

童话世界的机场,地板是实木的,行李托盘的涂装风格是这样的。

欢迎来到我们国王的管辖范围。

火车站全开放,不安检,不检票,不出站。自律和诚信是一个国家文明的标志。

哥本哈根火车站建于1911年,已有百年历史。它的钢架结构和红砖房风格都很有特色,很特别。午后的阳光,透过欧式拱形彩色玻璃窗,洒在橘**的地板上,暖洋洋的。

风沉闷的火车头

一、自行车王国的魅力

初到这座城市,第一眼就被这组吸引住了。

哥本哈根,被称为自行车王国,在丹麦,2-100岁的人都可以骑自行车。十个丹麦人和九个人都有一辆自行车。一个500多万人口的国家有420万辆自行车,这是一个真正的“童话”。骑自行车是他们休闲和锻炼的一种时尚。

美丽的花朵和狐狸背包

在街上,你还可以看到各种各样的自行车。年轻帅哥一般都是骑着时尚轻便的越野车。女生一般前面都有花篮,时不时能看到里面有一束花。

自行车队和其他交通信号灯

最好玩的就是大叔大妈改装的自行车。铲斗可能在前面或后面。水桶里可能装满了可爱的婴儿、小狗,甚至是新买的马桶。

每到一处,爸爸都带着孩子散步。

狗的专属汽车

改版东北骑驴

供游客租用的家用汽车

哥本哈根的自行车道有两种:一种是独立的专用车道,路面覆盖蓝色塑料,没有机动车和红绿灯的干扰。另一种是伴有机动车道,但机动车道、自行车道和人行道在高度上依次分开,互不干扰。

专用车道

一路上,看着身高超过28寸的北欧美女帅哥骑着自行车,风一般从你身边掠过(速度可达20公里/小时),真的是一件很惬意的事情。

第二,公主和王子的彩色城堡

在哥本哈根,到处都是尖顶和五颜六色的建筑。走过这样的街道,你仿佛能成为童话里的大师。

童话王国里的路灯

哥本哈根的建筑风格是腓特烈国王给的(具体几代忘了)。据说他是从东欧留学回来的,因为很喜欢那里的房子,所以要求哥本哈根的房子从此都要建这个风格。

能认出这面旗的是个高个子。

邮箱梦达

在这么美的城市里闲逛,很难让人视觉疲劳,所以我们早上8点就离开了酒店,可以逛到晚上10点才回去。

这一天,我们从城市西南角的酒店出发,穿过市政厅,来到城市北部的哥本哈根大学植物园。饿了,在哈根大学吃午饭,步行去玻尔研究所。然后从北边的玻尔研究所往南到克里斯蒂安堡。

克里斯蒂安堡

克里斯蒂安堡是克里斯蒂安六世国王的卧室,是18世纪欧洲的一座洛可可风格的宫殿。城堡宫殿始建于1773-1775年。1794年和1884年两次毁于大火,王室搬出了克里斯蒂安堡。经过1907年至1928年的两次重建,它现在是丹麦王国议会的所在地,也是首相办公室和最高法院的所在地。

来自网络,目前正面正在维修中,无法获得如此完美的。

皇家贵族的餐馆。

皇室向外界宣布重要事件的平台。

走廊

宫廷挂毯上的名人,都有亮点。

据我们的导游说,有一次她的游客在这里下车,他们碰巧遇到了骑自行车上班的哥本哈根市长。数十名游客甚至挡住了市长老师的去路,市长老师耐心地等所有游客下车后再去上班。如果你有这样的礼貌,你会觉得这趟旅行值得吗?

阿米林堡宫

参观完旧皇宫后,你必须去见皇后现在居住的皇帝。阿梅林堡宫是现任国王玛格利特二世女王的现居地。

18世纪,国王腓特烈五世计划建立一个新的市中心。他选择了这个亲水的地方(100米外就是波罗的海湾),并请四大贵族建造了四座一模一样的宫殿,形成了现在的八角形广场。

怎么知道现在的皇后是不是真的在宫里?国旗是最大的秘密:当女王在宫殿里时,屋顶上的丹麦国旗会高高升起。可惜我们去的那天女王不在家(空空的白色旗杆)。

阿弥陀佛宫的部分区域是开放参观的,但是我们去的时候已经是下午6点了,不能再进去了。巧合的是,警卫整点换岗。

魏兵孟达

这些皇家生命卫士穿着黑色或红色束腰外衣、蓝色裤子和高高的熊皮海军帽。看着那些警卫,大热天戴着厚重的熊皮帽子,我真想笑。他们的换岗步伐也超级可爱,看不出来是什么样子。反正不是正常人类走路的步伐。

面向宫殿的波罗的海海湾。

当我们乘坐游轮离开哥本哈根的时候,就在我们站在甲板上向这个童话王国挥手告别的时候,旁边的一位外国大叔指着海湾上一艘亮**的游艇不停地和我们说话。后来我们才知道,大叔跟我们说:“看,那是女王的皇家游艇!”

小美人鱼

从阿莫林堡宫出来,沿着波罗的海港口向北走,就能看到小美人鱼铜像。看着远处这条长着鱼尾的美人鱼,她坐在一块巨大的花岗岩上,安静优雅,悠闲自得;走近这座铜像,你看到的是一个神情忧伤、苦苦思索的少女。

来自简氏图书App

安徒生的《小美人鱼》愿意为爱牺牲自己,但现实中的原型几乎就是安徒生本人。

安徒生年轻时有过青梅竹马的初恋,也曾疯狂追求过邻家女孩vogt。但由于家庭条件的悬殊,最终没能走到一起。安徒生26岁时,沃格特嫁给了当地的一个富家公子。从此,安徒生因爱情而心灰意冷,决心孤独终老。

为了雕刻这座铜像,现实生活中上演了一系列爱情故事。据说铜像的原型是芭蕾舞女主角艾伦佩里斯。慢慢的埃里克森对佩里斯有了感情,佩里斯也有了埃里克森的骨肉。埃里克森的未婚妻艾琳(Eileen)得知后非常生气,佩里斯不得不带着孩子嫁给别人。艾琳把佩里斯和埃里克森的事告诉了佩里斯的丈夫,佩里斯遭到了丈夫的虐待,最后死于精神分裂症。

后来,埃里克森以妻子为模特,铸造了这座美人鱼铜像。然而,埃里克森虽然换了模型,但心里总有另一个模型是他碰不到的。只有peris家的人才知道,这个住在海边的女人,从面部表情到气质,分明就是peris的化身。

每天傍晚,波罗的海上都会出现一位白发苍苍的老人,他和人鱼,尤其是非常想念他的佩里斯,并肩望着大海。

爱情总是存在于童话和现实中,但总会带来些许悲伤。

盖菲昂大型喷泉

在长堤公园,不仅有著名的小美人鱼,还有著名的格芬喷泉。

女神的光环

据说北欧神话中的女神盖菲昂从未结婚,但她与赫拉克勒斯生下了四个儿子。相传古代瑞典有一个叫高尔夫的国王,他向格芬承诺,她可以从瑞典的土地上挖一块地,但在有限的时间内,她能挖多少就挖多少。

于是女神把四个儿子变成四头牛,用犁从瑞典挖了一大块地,搬到海里。此后,瑞典留下了一个维南湖,挖掘出的土地就是现在哥本哈根所在的西兰岛。

长体公园附近的一座古教堂

纽波特

暴烈的一天过后,我终于可以坐下来安静地吃顿饭了。晚上8点,我看着夕阳在新港缓缓落下,余晖散落在五颜六色的屋顶和流淌的河水上,宁静而静谧。

左边灰蓝色的房子是最古老的房子,有500多年的历史。

新港是一条人工运河。河边的老房子色彩斑斓。现在,向阳的一面变成了步行街,老海员酒吧被赏心悦目的餐厅取代。安徒生故居在最右边。

右边墙上居然堆着救生衣。

3萌娃,国家的未来和希望。

据说孩子是国家的未来。在世界上最幸福的国家,他们喝着免费的牛奶,读着免费的学校,做着自己喜欢的事情。他们都很阳光,有一个快乐的童年。

北欧国家对待生育的态度通常是,要么不生,要么生一堆。母亲产假最长可达两年,第一年可享受全薪假期,第二年享受80%工资。通常如果有生两三个孩子的计划,这个时候继续生就好了。反正工资不会少(中国保姆只有羡慕嫉妒恨)。

人家不仅产假长,更重要的是有个帅爹。看着帅气的老头带着娃走,我不知道她赢了多少条街,比起国内老男人老女人带着娃走的街景。

北欧男人为什么这么顾家?只是因为这些国家的福利太好,女性太独立,所以不需要依靠男性来获得长期的饭票,从出生到死亡都已经为他们做好了准备。

所以当女人说愿意嫁给你的时候,男人是那么的感激,愿意用全部的体力照顾家庭和孩子。据说现在娶不到本地女人的男人有个方便的办法,就是去东南亚买个老婆回去住,至少在漫长的冬夜里有个暖脚器。

这幅画非常漂亮

喜欢这个娃娃的耳环。

路上的沙子是孩子们的世界。

享受阳光浴的奶妈

哥本哈根在丹麦。哥本哈根位于丹麦最大的岛西兰岛上,与瑞典的马尔默隔海相望。城市的一小部分位于阿玛格尔岛上。哥本哈根和哥本哈根县是两回事,哥本哈根并不属于哥本哈根县,而是一个独立的市。

哥本哈根曾被联合国人居署选为“全球最宜居的城市”,并给予“最佳设计城市”的评价。哥本哈根也是全世界最幸福的城市之一。从地质上来看哥本哈根位于冰川时期留下来的冰碛层上(丹麦大多数地区是冰碛层)。

哥本哈根的气候。

哥本哈根气候温和,从图上可以看出大温度计最高温度为摄氏30度,最低温度为零下20度,哥本哈根的历史上从来没有超过这个温度范围。

哥本哈根属于温带海洋性气候,四季温和。夏季平均气温最高约为22℃(72℉),最低约为14℃(57℉),而冬季的低温约在0℃(32℉)左右。降雨量也十分适中,但全年四季皆有雨。冬季仅有少量降雪。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3270802.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-13
下一篇2023-08-13

发表评论

登录后才能评论

评论列表(0条)

    保存