矩阵的拉普拉斯展开公式怎么写?

矩阵的拉普拉斯展开公式怎么写?,第1张

设两方阵A(nn),B(mm)在副对角线上,通过矩阵的列变换将A,B移到主对角线上,然后用拉普拉斯展开。A的第一列列变换m次,A的第二列列变换也是m次,依此类推,A的第n列的列变换也是m次,可以得知列变换共进行了mn次,列变换完成后,B已经移到主对角线上了,所以要乘(-1)^(mn)。

设两方阵A(nn),B(mm)在副对角线上,通过矩阵的列变换将A,B移到主对角线上,然后用拉普拉斯展开。A的第一列列变换m次,A的第二列列变换也是m次,依此类推,A的第n列的列变换也是m次,可以得知列变换共进行了mn次,列变换完成后,B已经移到主对角线上了,所以要乘(-1)^(mn)。

对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的`一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

有下面三种情况:

1、如果你所要求的是一般矩阵的高次幂的话,是没有捷径可走的,只能够一个个去乘出来。

至于低次幂,如果能够相似对角化,即:存在简便算法的话,在二阶矩阵的情况下简便算法未必有直接乘来得快,所以推荐直接乘。

2、如果你要求的是能够相似对角化的矩阵的高次幂的话,是存在简便算法的。

设要求矩阵A的n次幂,且A=Q^(-1)ΛQ,其中Q为可逆阵,Λ为对角阵。

即:A可以相似对角化。那么此时,有求幂公式:A^n=Q^(-1)(Λ)^nQ,而对角阵求n次方,只需要每个对角元素变为n次方即可,这样就可以快速求出二阶矩阵A的的高次幂。

3、如果矩阵可以相似对角化,求相似对角化的矩阵Q的具体步骤为:

求|λE-A|=0 (其中E为单位阵)的解,得λ1和λ2(不管是否重根),这就是Λ矩阵的对角元素。

依次把λ1和λ2带入方程(如果λ是重根只需代一次,就可求得两个基础解)[λE-A][x]=[0],求得两个解向量[x1]、[x2],从而矩阵Q的形式就是[x1 x2]。

接下来的求逆运算是一种基础运算,这里不再赘述。

下面可以举一个例子:

二阶方阵:

1 a

0 1

求它的n次方矩阵

方阵A的k次幂定义为 k 个A连乘: A^k = AAA (k个)

一些常用的性质有:

1 (A^m)^n = A^mn

2 A^mA^n = A^(m+n)

一般计算的方法有:

1 计算A^2,A^3 找规律, 然后用归纳法证明

2 若r(A)=1, 则A=αβ^T, A^n=(β^Tα)^(n-1)A

注: β^Tα =α^Tβ = tr(αβ^T)

3 分拆法: A=B+C, BC=CB, 用二项式公式展开

适用于 B^n 易计算, C的低次幂为零矩阵: C^2 或 C^3 = 0

4 用对角化 A=P^-1diagP

A^n = P^-1diag^nP

扩展资料:

幂等矩阵的主要性质:

1幂等矩阵的特征值只可能是0,1;

2幂等矩阵可对角化;

3幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A);

4可逆的幂等矩阵为E;

5方阵零矩阵和单位矩阵都是幂等矩阵;

6幂等矩阵A满足:A(E-A)=(E-A)A=0;

7幂等矩阵A:Ax=x的充要条件是x∈R(A);

8A的核N(A)等于(E-A)的列空间R(E-A),且N(E-A)=R(A)。考虑幂等矩阵运算后仍为幂等矩阵的要求,可以给出幂等矩阵的运算:

1)设 A1,A2都是幂等矩阵,则(A1+A2) 为幂等矩阵的充分必要条件为:A1·A2 =A2·A1=0,且有:R(A1+A2) =R (A1) ⊕R (A2);N(A1+A2) =N(A1)∩N(A2);

2)设 A1, A2都是幂等矩阵,则(A1-A2) 为幂等矩阵的充分必要条件为:A1·A2=A2·A1=A2,且有:R(A1-A2) =R(A1)∩N (A2);N (A1- A2) =N (A1)⊕R (A2);

3)设 A1,A2都是幂等矩阵,若A1·A2=A2·A1,则A1·A2为幂等矩阵,且有:R (A1·A2) =R(A1) ∩R (A2);N (A1·A2) =N (A1) +N (A2)。

a矩阵乘以a的转置仍然是一个矩阵,是不能和数值0比大小的。

由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:

这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

扩展资料:

矩阵的运算:

1、矩阵的加法满足下列运算律(A,B,C都是同型矩阵):

2、矩阵的数乘满足以下运算律:

3、矩阵的转置满足以下运算律:

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/466085.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-30
下一篇2023-06-30

发表评论

登录后才能评论

评论列表(0条)

    保存