宇宙简介

宇宙简介,第1张

宇宙,是我们所在的空间,“宇”字的本义就是指“上下四方”。

地球是我们的家园;

而地球仅是太阳系的第三颗行星;

而太阳系又仅仅定居于银河系巨大旋臂的一侧;

而银河系,在宇宙所有星系中,也许很不起眼……

这一切,组成了我们的宇宙:

宇宙,是所有天体共同的家园。

宇宙,又是我们所在的时间,“宙”的本意就是指“古往今来”。

因为,我们的宇宙不是从来就有的,它也有着诞生和成长的过程。现代科学发现,我们的宇宙大概形成于二百亿年以前。在一次无比壮观的大爆炸中,我们的宇宙诞生了!(这就是著名的“大爆炸”理论。)

宇宙一经形成,就在不停地运动着。科学家发现,宇宙正在膨胀着,星体之间的距离越来越大。

宇宙的明天会怎样?许多的科学家正为此辛勤工作着。这也许永远是一个谜,一个令人无限神往的谜。

“为什么天上的星星会一闪一闪的?”、“为什么地球是圆的?”、“为什么……”。孩童时,总有那么多的“为什么?”,但那时我们得到的回答总是那么模糊。天空的深邃,宇宙的神秘,古老的天文充满了诱人的情趣,新的天文发现更是妙趣横生、引人入胜。

有人说,谁要是对天文一无所知,他就不能算已经受到了完美的教育。朋友,如果你想进入天文学这座神圣的殿堂,请打开这本书--走进宇宙,它将带您遨游在浩瀚无垠的宇宙中,以丰富、详实的图文资料为您解答曾经困扰着您的问题,揭开宇宙神秘的面纱。同时带您领略人类不断探索宇宙的科技成果:冲出地球、太空行走、登月、火星登陆、卡西尼土星探索等等……

近日公布的一项最新研究结果显示,又有新证据证明火星上曾经一度是一片汪洋,这意味着火星上有过生命出现的可能性大大增加。这项新研究还表明,火星每平方英里拥有的水量曾经超过地球。

为颂扬钱学森对科学技术事业做出的杰出贡献,经国际小行星中心和国际小行星命名委员会批准,中科院紫金山天文台将其发现的国际编号为3763号的小行星命名为“钱学森星”。命名仪式今天在人民大会堂举行。

11月27日,美国航天局宣布,天文学家利用哈勃太空望远镜首次直接观测到太阳系以外一颗行星的大气层。这颗大小近似木星的行星位于距地球约150光年的飞马座,围绕一颗与太阳类似的恒星旋转。这再次引起了人们对太阳系外行星探测的关注。

行星本身不会发光,而且相对于恒星来说,

宇宙

universe;cosmos

物质现象的总和。广义上指无限多样、永恒发展的物质世界,狭义上指一定时代观测所及的最大天体系统。后者往往称作可观测宇宙、我们的宇宙,现在相当于天文学中的“总星系”。

词源考察 在中国古籍中最早使用宇宙这个词的是《庄子·齐物论》。“宇”的含义包括各个方向,如东西南北的一切地点。“宙”包括过去、现在、白天、黑夜,即一切不同的具体时间。战国末期的尸佼说:“四方上下曰宇,往古来今曰宙。”“宇”指空间,“宙”指时间,“宇宙”就是时间和空间的统一。后来“宇宙”一词便被用来指整个客观实在世界。与宇宙相当的概念有“天地”、“乾坤”、“六合”等,但这些概念仅指宇宙的空间方面。《管子》的“宙合”一词,“宙”指时间,“合”(即“六合”)指空间,与“宇宙”概念最接近。

在西方,宇宙这个词在英语中叫cosmos,在俄语中叫кocMoc ,在德语中叫kosmos ,在法语中叫cosmos。它们都源自希腊语的κoσμoζ,古希腊人认为宇宙的创生乃是从浑沌中产生出秩序来,κoσμoζ其原意就是秩序。但在英语中更经常用来表示“宇宙”的词是universe。此词与universitas有关。在中世纪,人们把沿着同一方向朝同一目标共同行动的一群人称为universitas。在最广泛的意义上,universitas 又指一切现成的东西所构成的统一整体,那就是universe,即宇宙。universe和cosmos常常表示相同的意义,所不同的是,前者强调的是物质现象的总和,而后者则强调整体宇宙的结构或构造。

宇宙观念的发展 宇宙结构观念的发展 远古时代,人们对宇宙结构的认识处于十分幼稚的状态,他们通常按照自己的生活环境对宇宙的构造作了幼稚的推测。在中国西周时期,生活在华夏大地上的人们提出的早期盖天说认为,天穹像一口锅,倒扣在平坦的大地上;后来又发展为后期盖天说,认为大地的形状也是拱形的。公元前7世纪 ,巴比伦人认为,天和地都是拱形的,大地被海洋所环绕,而其中央则是高山。古埃及人把宇宙想象成以天为盒盖、大地为盒底的大盒子,大地的中央则是尼罗河。古印度人想象圆盘形的大地负在几只大象上,而象则站在巨大的龟背上,公元前7世纪末,古希腊的泰勒斯认为,大地是浮在水面上的巨大圆盘,上面笼罩着拱形的天穹。

最早认识到大地是球形的是古希腊人。公元前6世纪,毕达哥拉斯从美学观念出发,认为一切立体图形中最美的是球形,主张天体和我们所居住的大地都是球形的。这一观念为后来许多古希腊学者所继承,但直到1519~1522年,葡萄牙的F麦哲伦率领探险队完成了第一次环球航行后 ,地球是球形的观念才最终证实。

公元2世纪,C托勒密提出了一个完整的地心说。这一学说认为地球在宇宙的中央安然不动,月亮、太阳和诸行星以及最外层的恒星天都在以不同速度绕着地球旋转。为了说明行星视运动的不均匀性,他还认为行星在本轮上绕其中心转动,而本轮中心则沿均轮绕地球转动。地心说曾在欧洲流传了1000多年。1543年,N哥白尼提出科学的日心说,认为太阳位于宇宙中心,而地球则是一颗沿圆轨道绕太阳公转的普通行星。1609年,J开普勒揭示了地球和诸行星都在椭圆轨道上绕太阳公转,发展了哥白尼的日心说,同年,G伽利略则率先用望远镜观测天空,用大量观测事实证实了日心说的正确性。1687年,I牛顿提出了万有引力定律,深刻揭示了行星绕太阳运动的力学原因,使日心说有了牢固的力学基础。在这以后,人们逐渐建立起了科学的太阳系概念。

在哥白尼的宇宙图像中,恒星只是位于最外层恒星天上的光点。1584年,G布鲁诺大胆取消了这层恒星天,认为恒星都是遥远的太阳。18世纪上半叶,由于E哈雷对恒星自行的发展和J布拉得雷对恒星遥远距离的科学估计,布鲁诺的推测得到了越来越多人的赞同。18世纪中叶,T赖特、I康德和JH朗伯推测说,布满全天的恒星和银河构成了一个巨大的天体系统。FW赫歇尔首创用取样统计的方法,用望远镜数出了天空中大量选定区域的星数以及亮星与暗星的比例,1785年首先获得了一幅扁而平、轮廓参差、太阳居中的银河系结构图,从而奠定了银河系概念的基础。在此后一个半世纪中,H沙普利发现了太阳不在银河系中心、JH奥尔特发现了银河系的自转和旋臂,以及许多人对银河系直径、厚度的测定,科学的银河系概念才最终确立。

18世纪中叶,康德等人还提出,在整个宇宙中,存在着无数像我们的天体系统(指银河系)那样的天体系统。而当时看去呈云雾状的“星云”很可能正是这样的天体系统。此后经历了长达170年的曲折的探索历程,直到1924年,才由EP哈勃用造父视差法测仙女座大星云等的距离确认了河外星系的存在。

近半个世纪,人们通过对河外星系的研究,不仅已发现了星系团、超星系团等更高层次的天体系统,而且已使我们的视野扩展到远达200亿光年的宇宙深处。

宇宙演化观念的发展 在中国,早在西汉时期,《淮南子·俶真训》指出:“有始者,有未始有有始者,有未始有夫未始有有始者”,认为世界有它的开辟之时,有它的开辟以前的时期,也有它的开辟以前的以前的时期。《淮南子·天文训》中还具体勾画了世界从无形的物质状态到浑沌状态再到天地万物生成演变的过程。在古希腊,也存在着类似的见解。例如留基伯就提出,由于原子在空虚的空间中作旋涡运动,结果轻的物质逃逸到外部的虚空,而其余的物质则构成了球形的天体,从而形成了我们的世界。

太阳系概念确立以后,人们开始从科学的角度来探讨太阳系的起源。1644年,R笛卡尔提出了太阳系起源的旋涡说;1745年,GLL布丰提出了一个因大彗星与太阳掠碰导致形成行星系统的太阳系起源说;1755年和1796年,康德和拉普拉斯则各自提出了太阳系起源的星云说。现代探讨太阳系起源z的新星云说正是在康德-拉普拉斯星云说的基础上发展起来。

1911年,E赫茨普龙建立了第一幅银河星团的颜色星等图;1913年,HN罗素则绘出了恒星的光谱-光度图,即赫罗图。罗素在获得此图后便提出了一个恒星从红巨星开始,先收缩进入主序,后沿主序下滑,最终成为红矮星的恒星演化学说。1924年 ,AS爱丁顿提出了恒星的质光关系;1937~1939年,CF魏茨泽克和贝特揭示了恒星的能源来自于氢聚变为氦的原子核反应。这两个发现导致了罗素理论被否定,并导致了科学的恒星演化理论的诞生。对于星系起源的研究,起步较迟,目前普遍认为,它是我们的宇宙开始形成的后期由原星系演化而来的。

1917年,A爱因斯坦运用他刚创立的广义相对论建立了一个“静态、有限、无界”的宇宙模型,奠定了现代宇宙学的基础。1922年,GD弗里德曼发现,根据爱因斯坦的场方程,宇宙不一定是静态的,它可以是膨胀的,也可以是振荡的。前者对应于开放的宇宙,后者对应于闭合的宇宙。1927年,G勒梅特也提出了一个膨胀宇宙模型。1929年,哈勃发现了星系红移与它的距离成正比,建立了著名的哈勃定律。这一发现是对膨胀宇宙模型的有力支持。20世纪中叶,G伽莫夫等人提出了热大爆炸宇宙模型,他们还预言,根据这一模型,应能观测到宇宙空间目前残存着温度很低的背景辐射。1965年微波背景辐射的发现证实了伽莫夫等人的预言。从此,许多人把大爆炸宇宙模型看成标准宇宙模型。1980年,美国的古斯在热大爆炸宇宙模型的 基础上又进一步提出了暴涨宇宙模型。这一模型可以解释目前已知的大多数重要观测事实。

宇宙图景 当代天文学的研究成果表明,宇宙是有层次结构的、物质形态多样的、不断运动发展的天体系统。

层次结构 行星是最基本的天体系统。太阳系中共有九大行星:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。除水星和金星外,其他行星都有卫星绕其运转,地球有一个卫星——月球,土星的卫星最多,已确认的有17颗。行星、小行星、彗星和流星体都围绕中心天体太阳运转,构成太阳系。太阳占太阳系总质量的9986%,其直径约140万千米,最大的行星木星的直径约14万千米。太阳系的大小约120亿千米。有证据表明,太阳系外也存在其他行星系统。2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。银河系中大部分恒星和星际物质集中在一个扁球状的空间内,从侧面看很像一个“铁饼”,正面看去�则呈旋涡状。银河系的直径约10万光年,太阳位于银河系的一个旋臂中,距银心约3万光年。银河系外还有许多类似的天体系统,称为河外星系,常简称星系。现已观测到大约有10亿个。星系也聚集成大大小小的集团,叫星系团。平均而言,每个星系团约有百余个星系,直径达上千万光年。现已发现上万个星系团。包括银河系在内约40个星系构成的一个小星系团叫本星系群。若干星系团集聚在一起构成更大、更高一层次的天体系统叫超星系团。超星系团往往具有扁长的外形,其长径可达数亿光年。通常超星系团内只含有几个星系团,只有少数超星系团拥有几十个星系团。本星系群和其附近的约50个星系团构成的超星系团叫做本超星系团。目前天文观测范围已经扩展到200亿光年的广阔空间,它称为总星系。

多样性 天体千差万别,宇宙物质千姿百态。太阳系天体中,水星、金星表面温度约达700K,遥远的冥王星向日面的温度最高时也只有50K;金星表面笼罩着浓密的二氧化碳大气和硫酸云雾,气压约50个大气压,水星、火星表面大气却极其稀薄,水星的大气压甚至小于2×10-9毫巴;类地行星(水星、金星、火星)都有一个固体表面,类木行星却是一个流体行星;土星的平均密度为070克/厘米3,比水的密度还小,木星、天王星、海王星的平均密 度略大于水的密度,而水星、金星、地球等的密度则达到水的密度的5倍以上;多数行星都是顺向自转,而金星是逆向自转;地球表面生机盎然,其他行星则是空寂荒凉的世界。

太阳在恒星世界中是颗普遍而又典型的恒星。已经发现,有些红巨星的直径为太阳直径的几千倍。中子星直径只有太阳的几万分之一;超巨星的光度高达太阳光度的数百万倍,白矮星光度却不到太阳的几十万分之一。红超巨星的物质密度小到只有水的密度的百万分之一,而白矮星、中子星的密度分别可高达水的密度的十万倍和百万亿倍。太阳的表面温度约为6000K,O型星表面温度达30000K,而红外星的表面温度只有约600K。太阳的普遍磁场强度平均为1×10-4特斯拉,有些磁白矮星的磁场通常为几千、几万高斯(1高斯=10-4特斯拉),而脉冲星的磁场强度可高达十万亿高斯。有些恒星光度基本不变,有些恒星光度在不断变化,称变星。有的变星光度变化是有周期的,周期从1小时到几百天不等。有些变星的光度变化是突发性的,其中变化最剧烈的是新星和超新星,在几天内,其光度可增加几万倍甚至上亿倍。

恒星在空间常常聚集成双星或三五成群的聚星,它们可能占恒星总数的1/3。也有由几十、几百乃至几十万个恒星聚在一起的星团。宇宙物质除了以密集形式形成恒星、行星等之外,还以弥漫的形式形成星际物质。星际物质包括星际气体和尘埃,平均每立方厘米只有一个原子,其中高度密集的地方形成形状各异的各种星云。宇宙中除发出可见光的恒星、星云等天体外,还存在紫外天体、红外天体、X射线源、γ射线源以及射电源。

星系按形态可分为椭圆星系、旋涡星系、棒旋星系、透镜星系和不规则星系等类型。60年代又发现许多正在经历着爆炸过程或正在抛射巨量物质的河外天体,统称为活动星系,其中包括各种射电星系、塞佛特星系、N型星系、马卡良星系、蝎虎座BL型天体,以及类星体等等。许多星系核有规模巨大的活动:速度达几千千米/秒的气流,总能量达1055焦耳的能量输出,规模巨大的物质和粒子抛射,强烈的光变等等。在宇宙中有种种极端物理状态:超高温、超高压、超高密、超真空、超强磁场、超高速运动、超高速自转、超大尺度时间和空间、超流、超导等。为我们认识客观物质世界提供了理想的实验环境。

运动和发展 宇宙天体处于永恒的运动和发展之中,天体的运动形式多种多样,例如自转、各自的空间运动(本动)、绕系统中心的公转以及参与整个天体系统的运动等。月球一方面自转一方面围绕地球运转,同时又跟随地球一起围绕太阳运转。太阳一方面自转,一方面又向着武仙座方向以20千米/秒的速度运动,同时又带着整个太阳系以250千米/秒的速度绕银河系中心运转,运转一周约需22亿年。银河系也在自转,同时也有相对于邻近的星系的运动。本超星系团也可能在膨胀和自转。总星系也在膨胀。

现代天文学已经揭示了天体的起源和演化的历程。当代关于太阳系起源学说认为,太阳系很可能是50亿年前银河系中的一团尘埃气体云(原始太阳星云)由于引力收缩而逐渐形成的(见太阳系起源)。恒星是由星云产生的,它的一生经历了引力收缩阶段、主序阶段、红巨星阶段、晚期阶段和临终阶段。星系的起源和宇宙起源密切相关,流行的看法是:在宇宙发生热大爆炸后40万年,温度降到4000K,宇宙从辐射为主时期转化为物质为主时期,这时或由于密度涨落形成的引力不稳定性,或由于宇宙湍流的作用而逐步形成原星系,然后再演化为星系团和星系。热大爆炸宇宙模型描绘了我们的宇宙的起源和演化史:我们的宇宙起源于200亿年前的一次大爆炸,当时温度极高、密度极大。随着宇宙的膨胀,它经历了从热到冷、从密到稀、从辐射为主时期到物质为主时期的演变过程,直至10~20亿年前,才进入大规模形成星系的阶段,此后逐渐形成了我们当今看到的宇宙。1980年提出的暴涨宇宙模型则是热大爆炸宇宙模型的补充。它认为在宇宙极早期,在我们的宇宙诞生后约10-36秒的时候,它曾经历了一个暴涨阶段。

哲学分析 宇宙概念 有些宇宙学家认为,我们的宇宙是唯一的宇宙;大爆炸不是在宇宙空间的哪一点爆炸,而是整个宇宙自身的爆炸。但是,新提出的暴涨模型表明,我们的宇宙仅是整个暴涨区域的非常小的一部分,暴涨后的区域尺度要大于1026厘米,而那时我们的宇宙只有10厘米。还有可能这个暴涨区域是一个更大的始于无规则混沌状态的物质体系的一部分。这种情况恰如科学史上人类的认识从太阳系宇宙扩展到星系宇宙,再扩展到大尺度宇宙那样,今天的科学又正在努力把人类的认识进一步向某种探索中的“暴涨宇宙”、“无规则的混沌宇宙”推移。我们的宇宙不是唯一的宇宙,而是某种更大的物质体系的一部分,大爆炸不是整个宇宙自身的爆炸,而是那个更大物质体系的一部分的爆炸。因此,有必要区分哲学和自然科学两个不同层次的宇宙概念。哲学宇宙概念所反映的是无限多样、永恒发展的物质世界;自然科学宇宙概念所涉及的则是人类在一定时代观测所及的最大天体系统。两种宇宙概念之间的关系是一般和个别的关系。随着自然科学宇宙概念的发展,人们将逐步深化和接近对无限宇宙的认识。弄清两种宇宙概念的区别和联系,对于坚持马克思主义的宇宙无限论,反对宇宙有限论、神创论、机械论、不可知论、哲学代替论和取消论,都有积极意义。

宇宙的创生 有些宇宙学家认为,暴涨模型最彻底的改革也许是观测宇宙中所有的物质和能量从无中产生的观点,这种观点之所以在以前不能为人们接受,是因为存在着许多守恒定律,特别是重子数守恒和能量守恒。但随着大统一理论的发展,重子数有可能是不守恒的,而宇宙中的引力能可粗略地说是负的,并精确地抵消非引力能,总能量为零。因此就不存在已知的守恒律阻止观测宇宙从无中演化出来的问题。这种“无中生有”的观点在哲学上包括两个方面:①本体论方面。如果认为“无”是绝对的虚无,则是错误的。这不仅违反了人类已知的科学实践,而且也违反了暴涨模型本身。按照该模型,我们所研究的观测宇宙仅仅是整个暴涨区域的很小的一部分,在观测宇宙之外并不是绝对的“无”。现在观测宇宙的物质是从假真空状态释放出来的能量转化而来的,这种真空能恰恰是一种特殊的物质和能量形式,并不是创生于绝对的“无”。如果进一步说这种真空能起源于“无”,因而整个观测宇宙归根到底起源于“无”,那么这个“无”也只能是一种未知的物质和能量形式。②认识论和方法论方面。暴涨模型所涉及的宇宙概念是自然科学的宇宙概念。这个宇宙不论多么巨大,作为一个有限的物质体系 ,也有其产生、发展和灭亡的历史。暴涨模型把传统的大爆炸宇宙学与大统一理论结合起来,认为观测宇宙中的物质与能量形式不是永恒的,应研究它们的起源。它把“无”作为一种未知的物质和能量形式,把“无”和“有”作为一对逻辑范畴,探讨我们的宇宙如何从“无”——未知的物质和能量形式,转化为“有”——已知的物质和能量形式,这在认识论和方法论上有一定意义。

时空起源 有些人认为,时间和空间不是永恒的,而是从没有时间和没有空间的状态产生的。根据现有的物理理论,在小于10-43秒和10-33厘米的范围内,就没有一个“钟”和一把“尺子”能加以测量,因此时间和空间概念失效了,是一个没有时间和空间的物理世界。这种观点提出已知的时空形式有其适用的界限是完全正确的。正像历史上的牛顿时空观发展到相对论时空观那样,今天随着科学实践的发展也必然要求建立新的时空观。由于在大爆炸后10-43秒以内,广义相对论失效,必须考虑引力的量子效应,因此有些人试图通过时空的量子化的途径来探讨已知的时空形式的起源。这些工作都是有益的,但我们决不能因为人类时空观念的发展或者在现有的科学技术水平上无法度量新的时空形式,而否定作为物质存在形式的时间、空间的客观存在。

人和宇宙 从本世纪60年代开始,由于人择原理的提出和讨论,出现了人类存在和宇宙产生的关系问题。人择原理认为 ,可能存在许多具有不同物理参数和初始条件的宇宙,但只有物理参数和初始条件取特定值的宇宙才能演化出人类,因此我们只能看到一种允许人类存在的宇宙。人择原理用人类的存在去约束过去可能有的初始条件和物理定律,减少它们的任意性,使一些宇宙学现象得到解释,这在科学方法论上有一定的意义。但有人提出,宇宙的产生依赖于作为观测者的人类的存在。这种观点值得商榷。现在根据暴涨模型,那些被传统大爆炸模型作为初始条件的状态,有可能从极早期宇宙的演化中产生出来,而且宇宙的演化几乎变得与初始条件的一些细节无关。这样就使上述那种利用初始条件的困难来否定宇宙客观实在性的观点失去了基础。但有些人认为,由于暴涨引起的巨大距离尺度,使得从整体上去观测宇宙的结构成为不可能。这种担心有其理由,但如果暴涨模型正确的话,随着科学实践的发展,一定有可能突破人类认识上的困难。

有7个做强盗的兄弟,常常游荡在地球北方的森林中,以打劫为生。有一天,7个强盗听说在北方大地的边缘,居住著7个漂亮迷人的姑娘,於是,7个兄弟决定抢夺7姐妹做妻子。他们备了7匹骏马,急匆匆地奔向遥远的北疆去抢亲。当他们赶到大地边缘之後便停下来,隐蔽好,伺机下手。

那是一个夏日的黄昏,7姐妹饭後出来散步。强盗们突然出击,像7只凶恶的黑鹰扑向7姐妹。奇怪的是,7姐妹好像早有防备,她们急忙奔逃回家,唯有最小的妹妹因弱小逃得慢些,一个强盗捉住了她,放到马鞍上飞驰而去。第二天夜晚,强盗们准备再去抢亲,但是他们的阴谋没有得逞。

後来,天神严厉地惩罚了这7个强盗,命令他们永远呆在天上看守一颗亮星——北极星。那7个受到惩罚的强盗兄弟就是我们看到的北斗星,他们从那时起至今一直在围绕著北极星旋转,寸步不离。

视力好的少年朋友们,在晴朗的夜晚,当你抬头观看北斗七星的时候,可以看到北斗七星斗柄的第二颗星上,有一颗光度微弱的小星星。据传说它就是被强盗抢到手的那个最小的姑娘,至今还背在强盗身上呢。

古代的阿拉伯国家在招收新兵时,常让应徵者观看那颗小星星,如果能够看到就说明他的视力很好,便可以应徵入伍了。每逢秋季来临时,7姐妹中的6位姐姐——6颗小星星在一起从北方升起,遥望她们的小妹妹。

这团小星星就是著名的昴星团。其实昴星团有200多颗星星(用天文望远镜观看),只不过我们用肉眼只能看到六七颗。

扩展资料

北斗七星又称“北斗”,属大熊星座的一部分,从图形上看,北斗七星位于大熊的背部和尾巴。这七颗星中有6颗是2等星,一颗是3等星。他们的名称是:天枢、天璇、天玑、天权、玉衡、开阳、摇光。前四颗星叫“斗魁”,又名“璇玑”;后三颗星叫“斗杓”“斗柄”。

从图形上看,北斗七星位于大熊的背部和尾巴。通过斗口的两颗星连线,朝斗口方向延长约5倍远,就找到了北极星。认星歌有:“认星先从北斗来,由北往西再展开。”初学认星者可以从北斗七星依次来找其它星座了。

道教称北斗七星为七元解厄星君,居北斗七宫,即:天枢宫贪狼星君、天璇宫巨门星君、天玑宫禄存星君、天权宫文曲星君、玉衡宫廉贞星君、开阳宫武曲星君、摇光宫破军星君季节不同,北斗七星在天空中的位置也不尽相同。

因此,我国古代人民就根据它的位置变化来确定季节:“斗柄东指,天下皆春;斗柄南指,天下皆夏;斗柄西指,天下皆秋;斗柄北指,天下皆冬。”北斗七星中,“玉衡”最亮,亮度几乎接近一等星。“天权”最暗,是一颗三等星。

其他五颗都是二等星。在“开阳”附近有一颗很小的伴星,叫“辅”,它一向以美丽、清晰的外貌引起人们的注意。据说,古代阿拉伯人征兵时,把它当做测验士兵视力的“试验星”。

北斗七星始终在天空中作缓慢的相对运动。其中五颗星以大致相同的速度朝着一个方向运动,而“天枢”和“摇光”则朝着相反的方向运动。因此,在漫长的宇宙变迁中,北斗星的形状会发生较大的变化,10万年后,我们就看不到这种柄杓形状了。

-北斗七星

问题一:伴星是什么意思 围绕卫星运转的叫伴星。天狼星的伴星β星,是人类最早发现的白矮星。

在双星系统中,组成双星的两颗恒星都称为双星的子星,其中较亮的一颗称为主星;较暗的一颗,称为伴星。

问题二:“卫星”与“伴星”有什么区别? 卫星是指在围绕行星轨道上运行的天然天体或人造天体 两颗或两颗以上卫星在同一轨道上围绕行星运行的卫星系统中,主卫星绕行星转圈时,携带着另一颗次卫星同行,这颗次卫星好像是主卫星的伙伴,就被称为卫星伴星

问题三:牛郎星的伴星 1978年之后,科学家观测到河鼓二是有3颗伴星的四重联星。其三颗伴星分别被命名为WDS 19508+0852B,WDS 19508+0852C,WDS 19508+0852D。但是后来发现此三者很可能是在河鼓二附近出现的不相关恒星,因此尚且有争议。该三个恒星可能是红矮星,也可能是褐矮星。2007年,NASA再次宣布:该三个恒星只是河鼓二(牛郎星)的光学伴星。如今河鼓二已经被认定为单星,不存在伴星系统。另外此三个假的河鼓二伴星视星等全部为9等以下,可以推测它们和太阳距离比较遥远。

问题四:水委一的伴星 天文学家使用欧洲南方天文台的甚大望远镜观测水委一后,发现水委一拥有一颗伴星。这颗伴星为一颗A型星,恒星光谱介于A0V与A3V之间,质量可能是太阳的两倍。水委一与伴星之间距离约为123天文单位,公转周期至少是14至15年。

问题五:“卫星”与“伴星”有什么区别? 伴星

组成双星的两颗恒星都称为双星的子星其中较亮的一颗,称为主星;较暗的一颗,称为伴星

卫星

以一定周期,绕某星体或星系椭圆转动的物体称为卫星,其中由人工制造的卫星称为人造卫星

月亮是地球的卫星

问题六:太阳伴星的二者关系 天文学家曾有过太 有伴星的想法是很正常的事。当人们发现天王星和海王星的运行轨道与理论计算值不符合时,曾设想在外层空间可能另有一个天体的引力在干扰天王星和海王星的运动。这个天体可能是一颗未知的大行星(有一些自己的卫星一些比地球大),也可能是太阳系的另一颗恒星――太阳伴星,他有着一些自己的行星,其中第七颗与地球差不多大,第八颗是人类所说的尼比鲁,当然这是假说,还未被证实。为了解释美国那两位古生物学家的发现,1984年,美国物理学家穆勒在和他的同事,共同提出了太阳存在着一颗伴星的假说。与此同时,另外的两位天体物理学者维特密利和杰克逊,也独立地提出了几乎完全相同的假说。穆勒在和他的同事们讨论生物周期性绝灭的问题时说:“银河系中一半以上的恒星都属于双星系统。如果太阳也属于双星,那么我们就可以很容易解决这个问题了。我们可以说,由于太阳伴星的轨道周期性地和小行星带相交,引起流星雨袭击地球。”他的同事哈特灵机一动,说:“为什么太阳不能是双星呢?同时,假设太阳的伴星轨道与彗星云相交岂不是更合理一些?”于是,他们在当天就写出了论文的草稿。他们用希腊神话中“复仇女神”的名字,把这颗推想出来的太阳伴星称为“复仇星”(Nemesis)。前面所提到的彗星云一般称为“奥尔特云”,它是以荷兰天文学家奥尔特的名字命名的绕日运行的一团太阳系碎片,奥尔特曾认为它距离太阳15万天文单位(日地平均距离),可能是一个“彗星储库”,其中至少有1000亿颗彗星。由于太阳伴星在彗星云附近经过,使彗星运动轨道发生变化,因此引起彗星撞向地球,结果引起了生存条件的变化。穆勒说,这种彗星雨可能持续100万年。这一观点与某些古生物学家设想物种绝灭并不是那么突如其来的意见是一致的。人们考虑到,如果太阳有伴星的话,在几千年中似乎却没有人发现过,想必它是既遥远又暗淡的天体,而且体积不大。这是很有可能的情况,因为在1982~1983年,天文学家利用红外干涉测量法,测知离太阳最近的几颗恒星都有小伴星,这种小伴星的质量仅相当于太阳质量的1/15~1/10。此外,在某些双星中,确实还有比这更小的伴星存在着。

问题七:有谁能举一例说明世界上没有鬼 应该由说有顶的人来举例证明有鬼才对!

说有鬼的人举不出例子,就证明没有鬼

这是许多年以前雪莱的逻辑

问题八:“伴星”是什么意思 地球姐妹行星 围绕恒星运转的非行星叫做伴星。

伴星可以是另一颗恒星组成双星系统。

伴星也可以是白矮星、中子星、黑洞。

因此地球的姐妹行星不是地球的伴星。

问题九:太阳到底有没有伴星,涅墨西斯星到底存在吗 我觉得不太可能存在。人类目前的观测技术下都没有发现,那么基本上可以认为这颗星质量小到不会对我们产生什么影响。

问题十:冥王星是不是有个伴星啊 恩,有,体积大约是本星的三分之一,二星围绕两者的质量中心旋转

不是月亮的伴星,而是一颗星运动到了月亮的旁边。

楼主说的这颗星应该是木星,现在是木星冲日的阶段,是一年中观测木星最好的时间,现在木星整夜可见,黄昏后出现在东南方向,子夜在这南方向,天亮前在西南方向。木星的位置和楼主所说的符合。

而且今天是木星合月,木星和月亮相距很近,和楼主说的位置也相符。不过再过几天楼主在观测,就会发现月亮在木星以东几十度。

此外,木星现在非常明亮,亮度可达-27等,全天除了太阳月亮之外没有一颗星的亮度可以和木星相匹敌(特别是木星附近的天区,在木星附近30的范围内,没有一颗星的亮度是木星的1/10),因此误认的可能性几乎不存在。

因为有一个天文学名词“洛希极限”,是指天文学上两个天体互相以引力牵制的最短距离,如果再靠近,其中一个天体就会粉碎。

所以,地球只有唯一的一颗卫星月球,他们各自独立,又互相吸引。

为什么地球不能带着月球走?

因为月球一直守护在地球身边,但由于“洛希极限”的存在,永远都只能在9500KM之外的空间相望着,一旦靠近,月亮就会被撕裂,成为地球美丽的光环。

如果你喜欢一个人,就和他的关系保持在你和他的洛希半径内,永远不要靠得太近,才是最好的保护,否则终有一方会粉身碎骨。

一直觉得,世界上最浪漫的学科是天文学,用天体物理来解释爱情很梦幻更多于文科生信手拈来的甜蜜语。

但我实在是很喜欢那一句:土星环是太空的戒指

我相信每个女孩也都会等到那一天,某个男孩将他宇宙里的土星环送给你,问你是否愿意成为他宇宙里的行星。

”洛希极限“在哲学中的体现

马克思主义哲学认为:事物存在的质、量、度,度是事物保持自己质和量的范围、幅度和限度,认识”度“才能确切地把握事物的“质”,掌握适度原则是做好工作的必要条件。这句话中,“度”即体现了“洛希极限”的道理,物极必反,只有在“洛希极限”的范围内,事物才能正确地被完成。

洛希极限是法国人洛希提出的,大小两星球间的引力,在小星球表面出现等引力点时,两星球间的距离,即在洛希极限下,大星球对小星球表面上的(在大小星球连线上的一点)引力,与小星球对其表面的引力相等。也就是说,当大小星球靠的再近点,小于洛希极限了,则小星球就“护不住食”了,其表面物质将有被大星球引力“吸”走的趋势。所以说,洛希极限也就是小星球靠近大星球时,理论上被“撕碎”的距离。

现在洛希极限的估计都是用牛万公式列方程求出。实际上,小星球靠近大星球被撕碎距离,还应考虑许多因素,如大小星球互绕而具有的角动量,以及大小星球自旋角动量之间的“耦合”;小星球表面物质强度等因素。

实际上,我们应该用广义相对论建立起两星球时空曲率梯度场,利时空等曲率曲面上的能流密度,与等曲率面上的曲率梯度给出的引力源关系,建立方程,可精细求出全引力场中的“撕裂极限”。其实我们就是将洛希极限,拓展到所谓时空拓扑“解体极限”,考虑在时空拓扑超过其“拓扑非完备阀值”,时空拓扑解体情形。

1、《伴星》歌词:

星空浩瀚无垠

迷途之中找你

穿过所有森林海屿去追寻

浪漫至死不渝

把温柔献给你

给你心动不能自禁就悬溺

他们笑我痴迷

无畏当做勇气

一往情深坠入你迷人陷阱

是迷信是幻境是虔心是贪心

就算呼吸暂停不会停止爱你

我是你的伴星等你倾心

怕你阴晴不定

我错过感应

你错过相遇

坚定绕你的轨迹

我是你的伴星等你倾心

怕你阴晴不定

我不能触及

你不能唤醒

赠我一场空欢喜

星空浩瀚无垠

迷途之中找你

穿过所有森林海屿去追寻

浪漫至死不渝

把温柔献给你

对你心动不能自禁就悬溺

他们笑我痴迷

无畏当做勇气

一往情深坠入你迷人陷阱

是迷信是幻境是虔心是贪心

就算呼吸暂停不会停止爱你

我是你的伴星等你倾心

怕你阴晴不定

我错过感应

你错过相遇

坚定绕你的轨迹

我是你的伴星等你倾心

怕你阴晴不定

我不能触及

你不能唤醒

赠我一场空欢喜

我是你的伴星等你倾心

怕你阴晴不定

我错过感应

你错过相遇

坚定绕你的轨迹

我是你的伴星等你倾心

怕你阴晴不定

我不能触及

你不能唤醒

赠我一场空欢喜

2、《伴星》是晴小瑶演唱的歌曲,发行于2022年2月16日,收录于同名专辑《伴星》中。

科学家们可能已经探测到了一颗行星在银河系外穿越恒星的迹象,这可能是在我们银河系外发现的第一颗行星。

美国宇航局在周一的新闻发布会上称,这颗可能的系外行星是由美国宇航局钱德拉X射线天文台在漩涡星系中发现的。

到目前为止,所有其他系外行星都是在银河系中发现的,其中大多数都是在距地球不到3000光年的地方发现的。这颗新发现的可能的系外行星距离我们大约2800万光年——比银河系的距离远数千倍。

如果这颗行星真的存在,专家们说它必须在超新星爆炸后幸存下来,而超新星爆炸产生了中子星或黑洞。在未来,伴星也可能以超新星的形式爆炸,并再次以极高的辐射水平对行星进行爆炸。

研究人员将搜索钱德拉(Chandra)和欧洲航天局(European Space Agency)卫星XMM牛顿(XMM Newton)的档案,寻找其他星系中更多的系外行星候选者。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/485759.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-01
下一篇2023-07-01

发表评论

登录后才能评论

评论列表(0条)

    保存