石墨烯是一种二维晶体,人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。石墨烯的最新发现是人们在防腐蚀方面最有效的方法。常用的聚合物涂层很容易被刮伤,降低了保护性能;而石墨烯来做保护膜,显著延缓了金属的腐蚀速度,更加坚固抗损伤。石墨烯不仅是电子产业的新星,应用于传统工业的前途也不可限量。其应用方向:海洋防腐、金属防腐、重防腐等领域。石墨烯具有良好的导热、导电性能。然而利用石墨烯其研制生产的柔性石墨烯散热薄膜能帮助现有笔记本电脑、智能手机、LED显示屏等,石墨烯能有助于大大提升散热性能。
基本信息
中文名:石墨烯
英文名:graphene
构成:碳原子构成
提取时间:2004
发现人:Geim、 Novoselov
电子迁移率:15000cm2/(v s)
杨氏模量:1100GPa
断裂强度:130GPa
导热系数:5000W/(m K)
理论比表面积:2630m2/g
可见光透过率:≥97%
应用领域:能源、材料、电子、生物医药
厚度:一个原子层
特性
导电性
石墨烯稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。
机械特性
石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。哥伦比亚大学的物理学家对石墨烯的机械特性进行了全面的研究。他们选取了一些10—20微米的石墨烯微粒。研究人员先是将这些石墨烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在1—15微米之间。之后,他们用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,以测试它们的承受能力。
在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约29微牛。据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂。如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。
饱和吸收
当输入的光波强度超过阈值时,这独特的吸收性质会开始变得饱和。这种非线性光学行为称为可饱和吸收,阈值称为饱和流畅性。给予强烈的可见光或近红外线激发,因为石墨烯的整体光波吸收和零能隙性质,石墨烯很容易就变得饱和。石墨烯可以用于光纤激光器的锁模运作。用石墨烯制备成的可饱和吸收器能够达成全频带锁模。由于这特殊性质,在超快光子学里,石墨烯有很广泛的应用空间。
自旋传输
科学家认为石墨烯会是理想的自旋电子学材料,因为其自旋-轨道作用很小,而且碳元素几乎没有核磁矩。使用非局域磁阻效应,可以测量出,在室温状况,自旋注入于石墨烯薄膜的可靠性很高,并且观测到自旋相干长度超过1微米。使用电闸,可以控制自旋电流的极性。
电子的相互作用
石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。
视频加载中
美国政府以一国之力打压华为公司的消息,经媒体报道之后,相信大家都非常了解华为目前面临的处境了,但最近中科院率先牵头,将要强势入局芯片领域的消息,也让大家都松了一口气,甚至有媒体报道说,目前中科院已经突破了5毫米的激光光刻机技术,那这是真的吗?对于中科院的 科技 实力,大家还是比较相信和认同的,但是在这么短的时间里就突破这么尖端的高 科技 技术,显然是有些媒体哗众取宠,有些不切实际的报道。以我国现有的科研水平,若想完全突破5毫米光刻机技术,恐怕都还有很长一段路要走,更别说突破5毫米激光光刻机技术了,任何一项科研项目都需要时间的积累,实践的反复研究,经过不懈的努力,才能够最终达成。
就目前而言,中国虽然有最聪明勤奋的科学研究工作者,也还没有攻克5毫米的光刻机技术。世界上目前能够生产和制造最为先进的EUV光刻机,是荷兰的ASML公司,原本中国几年前就打算从该公司购入光刻机,但是因为美国方面的种种阻挠,这件事情最终变得不了了之。而美国这种“强盗“行径,也让许多中国人看清了美国的真正丑恶面目,也激起了许多国人的愤慨和爱国情绪。
不过好消息是,中科院的科学家目前正准备“换条赛道”,开始研究“碳基芯片”,相比于传统的硅材料芯片,碳基芯片的好处就在于不需要光刻机,采用的是石墨烯材料,其各方面性能都比硅材料要领先许多,但是否可以行得通还是一个未知数,但是作为科学道路上的先行者,相信中国科学家们也深深知道开拓和创新才是他们前行的动力,虽然道路异常艰难,他们也一定会想办法克服的。
因此,对于那些报道不实消息的新闻媒体,大家千万不要相信,尤其是那些妄言激光光刻机横空出世,从此告别荷兰制造的报道,要坚决给予抵制。但同时也要相信我国科学家的科研实力,虽然目前距离突破5毫米的芯片技术,以及与其他国家的 科技 水平还有很大的差距,但随着国家层面的重视,在众多科研工作人员的共同努力下,一定会有质的飞跃和提升。对此,大家怎么认为呢?
强度与柔韧性:抗拉强度和弹性模量分别为 125 GPa 和 11TPa,其强度约为普通钢的100倍,用石墨烯制成的包装袋,可以承受大约2吨的重量,是目前已知的强度最大的材料。导电导热性:其电子迁移率可达到2×2625px2/V·s,约为硅中电子迁移率的140倍,砷化镓的20倍,温度稳定性高,电导率可达108Ω/ m,面电阻约为31Ω/sq(310Ω/m2),比铜或银更低,是室温下导电最好的材料。光学性质:单层石墨烯对可见光以及近红外波段光垂直的吸收率仅为 23%,对所有波段的光无选择性吸收。线性光学性质:单层石墨烯的吸光率很高,对从可见光到太赫兹宽波段每层吸收 23% 光。非线性光学性质:当入射光的强度超过某一临界值时,石墨烯对其的吸收会达到饱和。这些特性可以使得石墨烯可以用来做被动锁模激光器。石墨烯是一种二维晶体,人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
力学特性
石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,石墨烯的理论杨氏模量达10TPa,固有的拉伸强度为130GPa。而利用氢等离子改性的还原石墨烯也具有非常好的强度,平均模量可大025TPa。由石墨烯薄片组成的石墨纸拥有很多的孔,因而石墨纸显得很脆,然而,经氧化得到功能化石墨烯,再由功能化石墨烯做成石墨纸则会异常坚固强韧。
电子效应
石墨烯在室温下的载流子迁移率约为15000cm2/(V·s),这一数值超过了硅材料的10倍,是目前已知载流子迁移率最高的物质锑化铟(InSb)的两倍以上。在某些特定条件下如低温下,石墨烯的载流子迁移率甚至可高达250000cm2/(V·s)。与很多材料不一样,石墨烯的电子迁移率受温度变化的影响较小,50~500K之间的任何温度下,单层石墨烯的电子迁移率都在15000cm2/(V·s)左右。
热性能
石墨烯具有非常好的热传导性能。纯的无缺陷的单层石墨烯的导热系数高达5300W/mK,是目前为止导热系数最高的碳材料,高于单壁碳纳米管(3500W/mK)和多壁碳纳米管(3000W/mK)。当它作为载体时,导热系数也可达600W/mK。此外,石墨烯的弹道热导率可以使单位圆周和长度的碳纳米管的弹道热导率的下限下移。
光学特性
石墨烯具有非常良好的光学特性,在较宽波长范围内吸收率约为23%,看上去几乎是透明的。在几层石墨烯厚度范围内,厚度每增加一层,吸收率增加23%。这是单层石墨烯所具有的不寻常低能电子结构。室温下对双栅极双层石墨烯场效应晶体管施加电压,石墨烯的带隙可在0~025eV间调整。施加磁场,石墨烯纳米带的光学响应可调谐至太赫兹范围。
当入射光的强度超过某一临界值时,石墨烯对其的吸收会达到饱和。这些特性可以使得石墨烯可以用来做被动锁模激光器。这种独特的吸收可能成为饱和时输入光强超过一个阈值,这称为饱和影响,石墨烯可饱和容易下可见强有力的激励近红外地区,由于环球光学吸收和零带隙。由于这种特殊性质,石墨烯具有广泛应用在超快光子学。
溶解性:在非极性溶剂中表现出良好的溶解性,具有超疏水性和超亲油性。
熔点:科学家在2015年的研究中表示约4125K,有其他研究表明熔点可能在5000K左右。
其他性质:可以吸附和脱附各种原子和分子。
在人类 科技 发展的历程中,每一种新材料的发现,都把人类支配自然的能力提升到一个新的高度,追溯 历史 的长河,无论哪个时期,哪个国家,只要拥有了先进的材料基础,就会引领世界的发展方向。
七十多年前,美国物理学家费曼提出了一个伟大的构想:
“如果有一天,可以按人的意志排列一个个原子,将会产生怎样的奇迹?”
费曼不愧为最伟大的量子力学大师,因为他知道在微观粒子尺度上,物质的物理、化学和生物学特性都会和宏观尺度下的原物质大相径庭。因此,若能重建物质的原子排列方式,就能彻底改变物质的属性,这将对未来的 科技 、工程和医学等领域产生极为深远的影响。
01
碳是一种非常神奇的元素, 它既有一定的金属性(原子失去电子的能力),也有一定的非金属性(原子得到电子的能力),但两种属性都不强,所以碳元素具有“模棱两可”的状态。
这种中性的原子状态,消除了碳原子的化学极性。失去了极性,就有了更多的可能:
碳不是地球上含量最多的元素(排名第十二),但其拥有的化合物种类却是所有元素中最丰富的。
因而地球上绝大多数的重要化合物,都离不开碳的身影,比如 氨基酸 就是以碳元素为基础的碳链,DNA的基本组成单位 脱氧核苷酸 ,也是长长的碳链,所有地球生命都可以叫做碳基生命。
在日常生活中,我们也会常常接触到许多含碳的物质,从较软的石墨到最硬的钻石,尽管组成物质都是碳元素,但是由于 碳原子排列方式 不同,它们展现出的 材质特性 也完全不同。
钻石的产量和价格决定了它并不能走入寻常百姓家。而科学家在分离石墨时发现,它们的碳原子会紧密连接而成二维蜂窝状晶格结构,科学家将这种碳原子结构称为 石墨烯 ,其具有一大堆的神奇特性:
比如发生破损时,只需要用含有碳原子的物质接触,它就能进行自我修复;有超高的透光率,看起来几乎就是透明的;有极高的力学、导电和导热的性能等等。
所有这些优异的特性,都让科学家们垂涎欲滴, 可是即便我们完全清楚这种材料的特性——在微观尺度上有着不同寻常的结构,但想要把它们制造出来,却是一件非常困难的事情。
简单说来,若能从石墨片表面撕下1个碳原子那么厚的薄薄一层,我们就获得了石墨烯。
可是,即便科学家们想尽了各种办法,其中包括氧化还原法、取向附生法、化学气相沉积法等等。但这些方法制造出来的石墨烯,要么是不够均匀,要么就是成本过于高昂。
直到2004 年 ,英国科学家 安德烈·盖姆 和 康斯坦丁·诺沃瑟洛夫 发明了一种非常简单的方法——“机械剥离法”:
就是从高定向热解石墨中剥离出石墨片,然后将石墨片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地重复这样的操作,石墨片越来越薄,最后,再用溶液把胶带溶解掉,得到仅由一层碳原子构成的薄片,这就是石墨烯。
凭借这种简单有效的“撕胶带”方法,两位科学家获得了2010年度的诺贝尔物理学奖 。
但是,这种制取石墨烯的方法依然有缺陷:
理论上使用胶带总是可以把石墨一分为二,可是胶带上的胶也并不总是均匀的,这会导致石墨烯的完整性被破坏,所以这种方法制取的石墨烯通常都是几微米大小的碎片。
看来人类若想在微观状态下获取新型材料,此时仅仅是看到了一丝曙光而已……
不过,值得庆幸的是,如今有一种加工精度已到纳米级的(1原子约为01纳米)技术—— “光刻”, 已经发展得非常成熟可靠:
这种方法是将半导体硅材料在 紫外光 的照射作用下,利用 光学 化学反应 和 化学 物理刻蚀 的方法,将细微到纳米级的电路图复刻到硅单晶表面。
经过光刻加工的硅芯片也可以算作是一种特殊材料,因为通过加工精度细微到纳米级的微观结构,可以使硅芯片在通电后可以具备传递、计算和存储等神奇的功能(需要软件的配合)。
但目前有一个难点是,当硅芯片的加工精度突破5纳米后,便已经到达它的物理极限——引发电子的隧穿效应,此时的芯片便会不受控制地产生漏电现象,导致芯片的功耗明显增加。
因此, 除了撕胶带法和光刻技术,我们还需要寻找另外一种制造具备神奇特性新材料的方向 :
“ 比如直接操纵原子得到所需的新结构材质。”
02
实际上,我们对单个原子的操纵早就实现了。1989年9月28日,IBM阿尔马登研究中心的物理科学家、IBM院士 多恩·艾格勒 成为人类 历史 上第一个控制和移动单个原子的人。
当年11月11日, 艾格勒 和他的团队用扫描隧道显微镜操控35个氙原子,拼写出了“I、B、M”三个字母,由此开启了人类操纵原子的新纪元。
扫描隧道显微镜发明于1981年,作为一种扫描探针显微术(分辨率为纳米级)工具,它其实是没有镜片的,靠的是一个针尖和样品之间的隧道电流来测量样品表面。它可以观察和定位单个原子。此外,扫描隧道显微镜的最大贡献是:
在4K(-26915 )低温的超高真空下可以利用探针尖端精确操纵单个原子:
利用导电探针尖与样品表面的隧穿电流,为探针尖端原子和衬底原子提供可控的相互作用力。
可是,扫描隧道显微镜所观察的材料必须具有一定程度的 导电性 ,这便决定了它的局限性:
“对半导体材料的观测效果要差于导体,而对于绝缘体则根本无法直接观察。”
1985年,物理学家格尔德·宾宁又“魔力上身”,联合IBM公司苏黎世研究中心的 克里斯托夫·格贝尔、斯坦福大学的加尔文·奎特共同 发明出了一种使非导体也可以采用类似扫描探针显微镜观测的机器——原子力显微镜。
这是一种可用来研究包括绝缘体在内的材料表面结构的分析仪器,属于一种接触式的显微镜,它利用探针与样品间的接触力,得到样品的表面形貌。原子力显微镜同样具有诸多优点:
“可以提供真正的三维表面图;不需要对样品作任何特殊处理,在常压下甚至在液体环境下都可以良好工作;可以用来研究生物宏观分子,甚至是活的生物组织。”
那么,把二者相互结合在一起便会产生大于1+1 2的效果,2017年2月13日,IBM的科学家们用扫描隧道显微镜结合原子力显微镜突破了一项重大科研成果:
他们用扫描隧道显微镜的针尖手工“敲打”原子,首次成功合成并捕捉到能稳定存在4天之久的三角烯分子。
长期以来,科学家们一直认为三角烯分子根本无法以晶体形式合成,因为它们会不受控制地聚合。
三角烯是一种由六边形 碳原子 环状构成的分子材料,与石墨烯极为相似,不过和成片状展开的石墨烯不同,三角烯中仅含六个六边形碳环,并呈现出类似于三角形的形状。
由于这种不寻常的排列方式会产生两个不成对的电子,使得三角烯极易被氧化,难以稳定存在。所以三角烯分子自1950年被捷克科学家埃里希·克拉尔首次预测以来,一直未能被人工合成。
因此,为了验证实验是否成功,IBM团队成员对生成物的形状、对称性、磁性等特性进行研究。结果发现,生成物确实呈现出三角形结构,而且能在铜表面稳定存在。另外两个未配对的电子也表现出一种特别的电子自旋现象,使得三角烯在分子水平上呈现出磁性。
那么,自从石墨烯面世后,研究者普遍认为石墨烯是一种抗磁材料——即 石墨烯没有磁性 以及不能被磁化。现在碳原子呈三角烯结构竟然具有非常独特的 磁性性能 。这无疑颠覆了人们的固有认知,甚至可以带动一个改写 历史 的领域兴起——碳基磁性材料的时代来临:
“这意味着碳原子的三角烯结构可以用来构建量子计算机及自旋电子器件等。并且 这一操作结果可进一步带来更多颠覆性的技术,最终目标便是能够制造任意的分子结构。”
03
当然,操纵原子这一设想不能只有一种方法,1970年,美国物理学家亚瑟·阿什金发现:
“激光束产生的力可以推动分布在水或者空气中的微小粒子,并且散射的激光也会对微粒产生明显的推力。”
1986年, 阿什金 做了一个实验:
他用一束聚焦的激光来照射粒子,激光的散射光与激光本身组成了一个陷阱,像镊子一样把粒子固定住了,这就是著名的 光镊 ,阿什金也因此被称为“光镊之父”。
在观看了这个实验后,阿什金在贝尔实验室的同事,华裔科学家 朱棣文 大受启发,他立即投入了相关的研究。
朱棣文发现,激光的压力可以让高速运动的原子和分子减速,并且让它们冷却下来。他用来自不同方向的多束激光,把原子控制住。1997年,朱棣文幸运地凭借着激光冷却和捕获原子的方法,先于阿什金获得了诺贝尔物理学奖,成为第五位获得诺奖的华裔科学家。
一直到2018年,已经96岁高龄的阿什金,终于等来了他的诺贝尔奖。他发明的光镊,也是目前最有希望参与活体细胞甚至是基因编辑的技术原理:
“”光镊可以非接触、无损伤地操纵活体物质,并且它产生的压力适合于生物细胞、亚细胞以及原子物理的研究。”
每当我们认为科学的发展已经到了瓶颈的时候,这些可爱的科学家们总会让我们看到新的希望。未来可期!
#2021生机大会#
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)