牛顿和莱布尼茨创立的微积分有什么异同

牛顿和莱布尼茨创立的微积分有什么异同,第1张

zhangxx55,你好:

11 牛顿的“流数术”

牛顿(INewton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。

1661年牛顿进入剑桥大学三一学院,受教于巴罗。

笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。

牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。

1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。

在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。

这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。

正是在这种意义下,牛顿创立了微积分。

牛顿对于发表自己的科学著作持非常谨慎的态度。

1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。

而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。

12 莱布尼茨的微积分工作

莱布尼茨(WLeibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。

1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。

这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。

1684年,莱布尼茨整理、概括自己1673年以来微积分研究的成果,在《教师学报》上发表了第一篇微分学论文《一种求极大值与极小值以及求切线的新方法》(简称《新方法》),它包含了微分记号以及函数和、差、积、商、乘幂与方根的微分法则,还包含了微分法在求极值、拐点以及光学等方面的广泛应用。

1686年,莱布尼茨又发表了他的第一篇积分学论文,这篇论文初步论述了积分或求积问题与微分或切线问题的互逆关系,包含积分符号并给出了摆线方程:

莱布尼茨对微积分学基础的解释和牛顿一样也是含混不清的,有时他的是有穷量,有时又是小于任何指定的量,但不是零。

13 牛顿和莱布尼兹各自独立创立了微积分

牛顿和莱布尼茨就微积分的创立而言,尽管二者在背景、方法和形式上存在差异、各有特色,但二者的功绩是相当的。

然而,一个局外人的一本小册子却引起了“科学史上最不幸的一章”:微积分发明优先权的争论。

瑞士数学家德丢勒在这本小册子中认为,莱布尼茨的微积分工作从牛顿那里有所借鉴,进一步莱布尼茨又被英国数学家指责为剽窃者。

这样就造成了支持莱布尼茨的欧陆数学家和支持牛顿的英国数学家两派的不和,甚至互相尖锐地攻击对方。

这件事的结果,使得两派数学家在数学的发展上分道扬镳,停止了思想交换。

在牛顿和莱布尼茨二人死后很久,事情终于得到澄清,调查证实两人确实是相互独立地完成了微积分的发明,就发明时间而言,牛顿早于莱布尼茨;就发表时间而言,莱布尼茨先于牛顿。

“微积分基本定理”也称为牛顿—莱布尼茨定理,牛顿和莱布尼茨各自独立地发现了这一定理。

微积分基本定理是微积分中最重要的定理,它建立了微分和积分之间的联系,指出微分和积分互为逆运算。

2严格微积分的奠基者:柯西和魏尔斯特拉斯

21 先驱的努力

微积分学创立以后,由于运算的完整性和应用的广泛性,使微积分学成了研究自然科学的有力工具。

但微积分学中的许多概念都没有精确的定义,特别是对微积分的基础—无穷小概念的解释不明确,在运算中时而为零,时而非零,出现了逻辑上的困境。

多方面的批评和攻击没有使数学家们放弃微积分,相反却激起了数学家们为建立微积分的严格而努力。

从而也掀起了微积分乃至整个分析的严格化运动。

18世纪,欧陆数学家们力图以代数化的途径来克服微积分基础的困难,这方面的主要代表人物是达朗贝尔(d’Alembert,1717-1783)、欧拉和拉格朗日。

达朗贝尔定性地给出了极限的定义,并将它作为微积分的基础,他认为微分运算“仅仅在于从代数上确定我们已通过线段来表达的比的极限”;欧拉提出了关于无限小的不同阶零的理论;拉格朗日也承认微积分可以在极限理论的基础上建立起来,但他主张用泰勒级数来定义导数,并由此给出我们现在所谓的拉哥朗日中值定理。

欧拉和拉格朗日在分析中引入了形式化观点,而达朗贝尔的极限观点则为微积分的严格化提供了合理内核。

微积分的严格化工作经过近一个世纪的尝试,到19世纪初已开始见成效。

首先是捷克数学家波尔察诺(B Bolzano,1781-1848)1817年发表的论文《纯粹分析证明》,其中包含了函数连续性、导数等概念的合适定义、有界实数集的确界存在性定理、序列收敛的条件以及连续函数中值定理的证明等内容。

22 柯西对严格微积分的贡献

19世纪分析的严密性真正有影响的先驱则是法国数学家柯(A-LCauchy,1789-1857)。

从1821年到1829年,柯西相继出版了《分析教程》、《无穷小计算教程》以及《微分计算教程》,它们以分析的严格化为目标,对微积分的一系列基本概念给出了明确的定义,在此基础上,柯西严格地表述并证明了微积分基本定理、中值定理等一系列重要定理,定义了级数的收敛性,研究了级数收敛的条件等,他的许多定义和论述已经非常接近于微积分的现代形式。

柯西的工作在一定程度上澄清了微积分基础问题上长期存在的混乱,向分析的全面严格化迈出了关键的一步。

然而,柯西的理论只能说是“比较严格”,不久人们便发现柯西的理论实际上也存在漏洞。

比如柯西定义极限为:“当同一变量逐次所取的值无限趋向于一个固定的值,最终使它的值与该定值的差可以随意小,那么这个定值就称为所有其它值的极限”,其中“无限趋向于”、“可以随意小”等语言只是极限概念的直觉的、定性的描述,缺乏定量的分析,这种语言在其它概念和结论中也多次出现。

应该指出,微积分计算是在实数领域中进行的,但到19世纪中叶,实数仍没有明确的定义,对实数系仍缺乏充分的理解,而在微积分的计算中,数学家们却依靠了假设:任何无理数都能用有理数来任意逼近。

当时,还有一个普遍持有的错误观念就是认为凡是连续函数都是可微的。

基于此,柯西时代就不可能真正为微积分奠定牢固的基础。

所有这些问题都摆在当时的数学家们面前。

23 威尔斯特拉斯之严格微积分

另一位为微积分的严密性做出卓越贡献的是德国数学家魏尔斯特拉斯。

他定量地给出了极限概念的定义,这就是今天极限论中的“ε-δ”方法。

魏尔斯特拉斯用他创造的这一套语言重新定义了微积分中的一系列重要概念,特别地,他引进的一致收敛性概念消除了以往微积分中不断出现的各种异议和混乱。

另外,魏尔斯特拉斯认为实数是全部分析的本源,要使分析严格化,就先要使实数系本身严格化。

而实数又可按照严密的推理归结为整数。

因此,分析的所有概念便可由整数导出。

这就是魏尔斯特拉斯所倡导的“分析算术化”纲领。

基于魏尔斯特拉斯在分析严格化方面的贡献,在数学史上,他获得了“现代分析之父”的称号。

1857年,魏尔斯特拉斯在课堂上给出了第一个严格的实数定义,但他没有发表。

1872年,戴德金(R Dedekind, 1831-1916)、康托尔(B Cantor,1829-1920)几乎同时发表了他们的实数理论,并用各自的实数定义严格地证明了实数系的完备性。

这标志着由魏尔斯特拉斯倡导的分析算术化运动大致宣告完成。

3结论

牛顿和莱布尼兹两人独自创立了微积分,柯西和威尔斯特拉斯使严格微积分诞生。

莱布尼兹判别法如下:

若交错级数Σ(-1)n-1u(nun>0)满足下述n=1两个条件:

(I)limn→∞un=0;

(II)数列{un}单调递减则该交错级数收敛。

一个级数收敛的必要条件是n趋于无穷时,通项趋于零。而这个条件是对任何一个级数均成立的。如果一个交错级数的通项(去掉符号后)不趋于零,那么加上符号后也肯定不趋于零,那么这个交错级数一定是发散的。

由级数收敛的柯西准则,级数收敛的充要条件是:任给正数ε,总存在正整数N,使得当m>N以及任意的正整数p,都有

|Uм+1+Uм+2+Uм+3+。。。。+Uм+p|<ε

则有推论

若级数收敛,则

limn→∞Un=0

使用条件

常用莱布尼茨判别法来判断级数的收敛性,即若交错级数各项的绝对值单调递减且极限是零,则该级数收敛;此外,由莱布尼茨判别法可得到交错级数的余项估计。最典型的交错级数是交错调和级数。

另外,对一些复杂的交错级数用莱布尼兹判别法就很难判断其敛散性。为了解决这些问题,在莱布尼兹判别法和阿贝尔判别法的基础上,引进另外一种交错级数的判别法。

以上内容来源:-交错级数

柯西,1789年8月21日出生生于巴黎,他的父亲路易弗朗索瓦柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。

柯西在幼年时,他的父亲常带领他到法国参议院内的办公室,并且在那里指导他进行学习,因此他有机会遇到参议员拉普拉斯和拉格朗日两位大数学家。他们对他的才能十分常识;拉格朗日认为他将来必定会成为大数学家,但建议他的父亲在他学好文科前不要学数学。

柯西于1802年入中学。在中学时,他的拉丁文和希腊文取得优异成绩,多次参加竞赛获奖;数学成绩也深受老师赞扬。他于1805年考入综合工科学校,在那里主要学习数学和力学;1807年考入桥梁公路学校,1810年以优异成绩毕业,前往瑟堡参加海港建设工程。

柯西去瑟堡时携带了拉格朗日的解析函数论和拉普拉斯的天体力学,后来还陆续收到从巴黎寄出或从当地借得的一些数学书。他在业余时间悉心攻读有关数学各分支方面的书籍,从数论直到天文学方面。根据拉格朗日的建议,他进行了多面体的研究,并于1811及1812年向科学院提交了两篇论文,其中主要成果是:

(1)证明了凸正多面体只有五种(面数分别是4,6,8,12,20),星形正多面体只有四种(面数是12的三种,面数是20的一种)。

(2)得到了欧拉关于多面体的顶点、面和棱的个数关系式的另一证明并加以推广。

(3)证明了各面固定的多面体必然是固定的,从此可导出从未证明过的欧几里得的一个定理。

这两篇论文在数学界造成了极大的影响。柯西在瑟堡由于工作劳累生病,于1812年回到巴黎他的父母家中休养。

柯西于1813年在巴黎被任命为运河工程的工程师,他在巴黎休养和担任工程师期间,继续潜心研究数学并且参加学术活动。这一时期他的主要贡献是:

(1)研究代换理论,发表了代换理论和群论在历史上的基本论文。

(2)证明了费马关于多角形数的猜测,即任何正整数是个角形数的和。这一猜测当时已提出了一百多年,经过许多数学家研究,都没有能够解决。以上两项研究是柯西在瑟堡时开始进行的。

(3)用复变函数的积分计算实积分,这是复变函数论中柯西积分定理的出发点。

(4)研究液体表面波的传播问题,得到流体力学中的一些经典结果,于1815年得法国科学院数学大奖。

以上突出成果的发表给柯西带来了很高的声誉,他成为当时一位国际上著名的青年数学家。

1815年法国拿破仑失败,波旁王朝复辟,路易十八当上了法王。柯西于1816年先后被任命为法国科学院院士和综合工科学校教授。1821年又被任命为巴黎大学力学教授,还曾在法兰西学院授课。这一时期他的主要贡献是:

(1)在综合工科学校讲授分析课程,建立了微积分的基础极限理论,还阐明了极限理论。在此以前,微积分和级数的概念是模糊不清的。由于柯西的讲法与传统方式不同,当时学校师生对他提出了许多非议。

柯西在这一时期出版的著作有《代数分析教程》《无穷小分析教程概要》和《微积分在几何中应用教程》。这些工作为微积分奠定了基础,促进了数学的发展,成为数学教程的典范。

(2)柯西在担任巴黎大学力学教授后,重新研究连续介质力学。在1822年的一篇论文中,他建立了弹性理论的基础。

(3)继续研究复平面上的积分及留数计算,并应用有关结果研究数学物理中的偏微分方程等。

他的大量论文分别在法国科学院论文集和他自己编写的期刊“数学习题”上发表。

1830年法国爆发了推翻波旁王朝的革命,法王查理第十仓皇逃走,奥尔良公爵路易菲力浦继任法王。当时规定在法国担任公职必须宣誓对新法王效忠,由于柯西属于拥护波旁王朝的正统派,他拒绝宣誓效忠,并自行离开法国。他先到瑞士,后于1832~1833年任意大利都灵大学数学物理教授,并参加当地科学院的学术活动。那时他研究了复变函数的级数展开和微分方程(强级数法),并为此作出重要贡献。

1833~1838年柯西先在布拉格、后在戈尔兹担任波旁王朝“王储”波尔多公爵的教师,最后被授予“男爵”封号。在此期间,他的研究工作进行得较少。

1838年柯西回到巴黎。由于他没有宣誓对法王效忠,只能参加科学院的学术活动,不能担任教学工作。他在创办不久的法国科学院报告“和他自己编写的期刊分析及数学物理习题”上发表了关于复变函数、天体力学、弹性力学等方面的大批重要论文。

1848年法国又爆发了革命,路易菲力浦倒台,重新建立了共和国,废除了公职人员对法王效忠的宣誓。柯西于1848年担任了巴黎大学数理天文学教授,重新进行他在法国高等学校中断了18年的教学工作。

1852年拿破仑第三发动政变,法国从共和国变成了帝国,恢复了公职人员对新政权的效忠宣誓,柯西立即向巴黎大学辞职。后来拿破仑第三特准免除他和物理学家阿拉果的忠诚宣誓。于是柯西得以继续进行所担任的教学工作,直到1857年他在巴黎近郊逝世时为止。柯西直到逝世前仍不断参加学术活动,不断发表科学论文。

柯西是一位多产的数学家,他的全集从1882年开始出版到1974年才出齐最后一卷,总计28卷。他的主要贡献如下;

(一)单复变函数

柯西最重要和最有首创性的工作是关于单复变函数论的。18世纪的数学家们采用过上、下限是虚数的定积分。但没有给出明确的定义。柯西首先阐明了有关概念,并且用这种积分来研究多种多样的问题,如实定积分的计算,级数与无穷乘积的展开,用含参变量的积分表示微分方程的解等等。

(二)分析基础

柯西在综合工科学校所授分析课程及有关教材给数学界造成了极大的影响。自从牛顿和莱布尼茨发明微积分(即无穷小分析,简称分析)以来,这门学科的理论基础是模糊的。为了进一步发展,必须建立严格的理论。柯西为此首先成功地建立了极限论。

在柯西的著作中,没有通行的语言,他的说法看来也不够确切,从而有时也有错误,例如由于没有建立一致连续和一致收敛概念而产生的错误。可是关于微积分的原理,他的概念主要是正确的,其清晰程度是前所未有的。例如他关于连续函数及其积分的定义是确切的,他首先准确地证明了泰勒公式,他给出了级数收敛的定义和一些判别法。

(三)常微分方程

柯西在分析方面最深刻的贡献在常微分方程领域。他首先证明了方程解的存在和唯一性。在他以前,没有人提出过这种问题。通常认为是柯西提出的三种主要方法,即柯西—利普希茨法,逐渐逼近法和强级数法,实际上以前也散见到用于解的近似计算和估计。柯西的最大贡献就是看到通过计算强级数,可以证明逼近步骤收敛,其极限就是方程的所求解。

(四)其他贡献

虽然柯西主要研究分析,但在数学中各领域都有贡献。关于用到数学的其他学科,他在天文和光学方面的成果是次要的,可是他却是数理弹性理论的奠基人之一。除以上所述外,他在数学中其他贡献如下:

1.分析方面:在一阶偏微分方程论中行进丁特征线的基本概念;认识到傅立叶变换在解微分方程中的作用等等。

2.几何方面:开创了积分几何,得到了把平面凸曲线的长用它在平面直线上一些正交投影表示出来的公式。

3.代数方面:首先证明了阶数超过了的矩阵有特征值;与比内同时发现两行列式相乘的公式,首先明确提出置换群概念,并得到群论中的一些非平凡的结果;独立发现了所谓“代数要领”,即格拉斯曼的外代数原理。

  欧拉

  欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.

  欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".

  欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.

  欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."

  欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点数学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.

  1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.

  沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.

  欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.

  欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".

  欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.

  欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。

  1707年4月15日,欧拉诞生于瑞士的巴塞尔。小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学。这在当时是个奇迹,曾轰动了数学界。小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。

  欧拉大学毕业后到了俄国的首都彼得堡。在他26岁时,担任了彼得堡科学院的数学教授。1735年,年仅28岁的欧拉,由于要计算一个彗星的轨道,奋战了三天三夜,最后用他自己发明的新方法圆满地解决了这个难题。过度的工作,使欧拉得了眼病,就在那一年他右眼失明了。疾病没有吓倒他,他更加勤奋地工作,写出了几百篇论文,大量出色的研究成果,使他在欧洲科学界享有很高的声望。在他59岁时,仅剩的一只左眼视力衰退,只能模糊地看到物体,最后双目失明。但是工作就是他的生命,他决心用加倍的努力,来回答命运对他的挑战。眼睛看不见,他就口述,由他的儿子记录,继续写作。欧拉凭着他惊人的记忆力和心算能力,在黑暗中整整工作了17年。

  1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁。欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲。

约翰·伯努利是欧拉老师,欧拉是拉格朗日的重要影响者,拉格朗日是柯西的重要指导者。

1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。欧拉13岁时进入了巴塞尔大学,主修哲学和法律,但在每周星期六下午便跟当时欧洲最优秀的数学家约翰·伯努利学习数学 。

18岁时,拉格朗日用意大利语写了第一篇论文,是用牛顿二项式定理处理两函数乘积的高阶微商,他又将论文用拉丁语写出寄给了当时在柏林科学院任职的数学家欧拉。1755年拉格朗日19岁时,以欧拉的思路结果为依据,纯分析方法求变分极值。发展了欧拉变分法,为变分法奠定了理论基础。

柯西1789年8月21日出生于巴黎。父亲是一位精通古典文学的律师,与当时法国的大数学家拉格朗日与拉普拉斯交往密切。1807年至1810年柯西在工学院学习,曾当过交通道路工程师。由于身体欠佳,接受了拉格朗日和拉普拉斯的劝告,放弃工程师而致力于纯数学的研究。

扩展资料:

欧拉的相关成就:

1、数论:欧拉的一系列成奠定作为数学中一个独立分支的数论的基础。欧拉的著作有很大一部分同数的可除性理论有关。欧拉在数论中最重要的发现是二次反律。

2、代数:欧拉《代数学入门》一书,是16世纪中期开始发展的代数学的一个系统总结。

3、无穷级数:欧拉的《微分学原理》(Introductio calculi differentialis,1755)是有限差演算的第一部论著,他第一个引进差分算子。欧拉在大量地应用幂级数时,还引进了新的极其重要的傅里叶三角级数类。

-欧拉

-拉格朗日

-柯西

柯西中值定理的证明:

因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:

若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。

若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理推知:f'(ξ)=0。

另证:若 M>m ,不妨设f(ξ)=M,ξ∈(a,b),由可导条件知,f'(ξ+)<=0,f'(ξ-)>=0,又由极限存在定理知左右极限均为 0,得证。

扩展资料:

范例解析

用罗尔中值定理证明:方程

3

在 (0,1) 内有实根。

证明: 设

则 F(x) 在 [0,1] 上连续,在 (0,1) 内可导,

,所以由罗尔中值定理,至少存在一点

,使得

,所以

,所以ξ是方程

在 (0,1) 内的一个实根。

结论得证。

“我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”

----王菊珍

“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。” ----托尔斯泰

"数学的本质在於它的自由”---- 康扥尔(Cantor)

“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要”---- 康扥尔(Cantor)

"没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明”---- 希尔伯特(Hilbert)

“数学是无穷的科学”----赫尔曼外尔

"问题是数学的心脏”---- PRHalmos

“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡” ----Hilbert

“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深”---- 高斯

“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” ----雷巴柯夫

“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” ----华罗庚

“天才=1%的灵感+99%的血汗。”---- 爱迪生

“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” ----季米特洛夫

“近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” ----爱因斯坦

“数学是无穷的科学” ----赫尔曼外尔

“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深 数学是科学之王” ----高斯

“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要” ----康扥尔

“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡”

----希尔伯特

“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么” ----毕达哥拉斯

“一门科学,只有当它成功地运用数学时,才能达到真正完善的地步” ----马克思

“一个国家的科学水平可以用它消耗的数学来度量” ----拉奥

“数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。” ---- 巴罗

“在奥林匹斯山上统治著的上帝,乃是永恒的数。” ----雅可比

“如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。” ----尼采

“不懂几何者免进。” ----柏拉图

“几何无王者之道!” ---- 欧几里得

“数学家实际上是一个著迷者,不迷就没有数学。” ---- 诺瓦利斯

“没有大胆的猜测,就做不出伟大的发现。” ---- 牛顿

“数统治着宇宙。”----毕达哥拉斯

“数学,科学的女皇;数论,数学的女皇。”----高斯

“上帝创造了整数,所有其余的数都是人造的。” ----克隆内克

“上帝是一位算术家” ----雅克比

“一个没有几分诗人气的数学家永远成不了一个完全的数学家。”----维尔斯特拉斯

“纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海

“可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”----麦克斯韦

“数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯

“无限!再也没有其他问题如此深刻地打动过人类的心灵。”----希尔伯特

“发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文

“宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”----京斯

“这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----AN怀德海

“给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”----柯西

“纯数学是魔术家真正的魔杖。”----诺瓦列斯

“如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”----柏拉图

“整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫

“数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”----A埃博

“生命只为两件事,发展数学与教授数学” ----普尔森

“用心智的全部力量, 来选择我们应遵循的道路。”----笛卡儿

“我不知道, 世上人会怎样看我; 不过, 我自己觉得, 我只像一个在海滨玩耍的孩子, 一会捡起块比较光滑的卵石, 一会儿找到个美丽的贝壳; 而在我前面, 真理的大海还完全没有发现。” ----牛顿

“我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上。” ----牛顿

“不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。 甚至在数学中有些事情也要冒险。”

----贺拉斯兰姆

“前进吧, 前进将使你产生信念。”----达朗贝尔

“读读欧拉, 读读欧拉, 他是我们大家的老师。” ----拉普拉斯

“如果我继承可观的财产, 我在数学上可能没有多少价值了。”----拉格朗日

“我把数学看成是一件有意思的工作, 而不是想为自己建立什么纪念碑。 可以肯定地说, 我对别人的工作比自己的更喜欢。 我对自己的工作总是不满意。 ”----拉格朗日

“一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。 ”----拉格朗日

“看在上帝的份上, 千万别放下工作!这是你最好的药物。 ”----达朗贝尔

“我的成功只依赖两条。 一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来。”

----蒙日

“天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。 因为社会秩序必须建立在这种关系之上, 所以这类错误就更具灾难性。 真理和正义是社会秩序永恒不变的基础。 但愿我们摆脱这种危险的格言, 说什么进行欺骗和奴役有时比保障他们的幸福更有用! 各个时代的历史经验证明, 谁破坏这些神圣的法则, 必将遭到惩罚。”

----拉普拉斯

“有时候, 你一开始未能得到一个最简单,最美妙的证明, 但正是这样的证明才能深入到高等算术真理的奇妙联系中去。 这是我们继续研究的动力, 并且最能使我们有所发现。” ----高斯

“如果别人思考数学的真理像我一样深入持久, 他也会找到我的发现。” ----高斯

“人死了, 但事业永存。 ” ----柯西

“精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。 我也是慢慢学来的,而且还要继续不断的学习。” ----阿贝尔

“数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯

“无限!再也没有其他问题如此深刻地打动过人类的心灵。”----希尔伯特

“发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文

“宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”----京斯

“这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----AN怀德海

“给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”----柯西

“纯数学是魔术家真正的魔杖。”----诺瓦列斯

“如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”----柏拉图

“整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫

“数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”----A埃博

“生命只为两件事,发展数学与教授数学” ----普尔森

“用心智的全部力量, 来选择我们应遵循的道路。”----笛卡儿

“我不知道, 世上人会怎样看我; 不过, 我自己觉得, 我只像一个在海滨玩耍的孩子, 一会捡起块比较光滑的卵石, 一会儿找到个美丽的贝壳; 而在我前面, 真理的大海还完全没有发现。” ----牛顿

“我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上。” ----牛顿

“不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。 甚至在数学中有些事情也要冒险。”

----贺拉斯兰姆

“前进吧, 前进将使你产生信念。”----达朗贝尔

“读读欧拉, 读读欧拉, 他是我们大家的老师。” ----拉普拉斯

“如果我继承可观的财产, 我在数学上可能没有多少价值了。”----拉格朗日

“我把数学看成是一件有意思的工作, 而不是想为自己建立什么纪念碑。 可以肯定地说, 我对别人的工作比自己的更喜欢。 我对自己的工作总是不满意。 ”----拉格朗日

“一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。 ”----拉格朗日

“看在上帝的份上, 千万别放下工作!这是你最好的药物。 ”----达朗贝尔

“我的成功只依赖两条。 一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来。”

----蒙日

“天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。 因为社会秩序必须建立在这种关系之上, 所以这类错误就更具灾难性。 真理和正义是社会秩序永恒不变的基础。 但愿我们摆脱这种危险的格言, 说什么进行欺骗和奴役有时比保障他们的幸福更有用! 各个时代的历史经验证明, 谁破坏这些神圣的法则, 必将遭到惩罚。”

----拉普拉斯

“有时候, 你一开始未能得到一个最简单,最美妙的证明, 但正是这样的证明才能深入到高等算术真理的奇妙联系中去。 这是我们继续研究的动力, 并且最能使我们有所发现。” ----高斯

“如果别人思考数学的真理像我一样深入持久, 他也会找到我的发现。” ----高斯

“人死了, 但事业永存。 ” ----柯西

“精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。 我也是慢慢学来的,而且还要继续不断的学习。” ----阿贝尔

“到底是大师的著作, 不同凡响!”----伽罗瓦

“异常抽象的问题, 必须讨论得异常清楚。 ” - ---笛卡儿

“我思故我在。”----笛卡儿

“我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”----笛卡儿

"数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。”----笛卡儿

“直接向大师们而不是他们得的学生学习。” ----阿贝尔

“挑选好一个确定得研究对象, 锲而不舍。 你可能永远达不到终点, 但是一路上准可以发现一些有趣的东西。” ---克莱因

“我决不把我的作品看做是个人的私事, 也不追求名誉和赞美。 我只是为真理的进展竭尽所能。 是我还是别的什么人, 对我来说无关紧要, 重要的是它更接近于真理。 ” ----维尔斯特拉斯

“思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究。”----庞加莱

“人生就是持续的斗争, 如果我们偶尔享受到宁静, 那是我们先辈顽强地进行了斗争。 假使我们的精神, 我们的警惕松懈片刻, 我们将失去先辈为我们赢得的成果。 ” ----庞加莱

“如果我们想要预见数学的将来, 适当的途径是研究这门学科的历史和现状。 ”----庞加莱

“我们必须知道, 我们必将知道。” ----希尔伯特

“扔进冰水, 由他们自己学会游泳, 或者淹死。 很多学生一直要到掌握了其他人做过的, 与他们问题有关的一切,才肯试着靠自己去工作, 结果是只有极少数人养成了独立工作的习惯。 ” ----ET贝尔

“一个人如果做了出色的数学工作, 并想引起数学界的注意, 这实在是容易不过的事情, 不论这个人是如何位卑而且默默无闻, 他只需做一件事:把他对结果的论述寄给 处于领导地位的权威就行了。”

----莫德尔

“数学家通常是先通过直觉来发现一个定理; 这个结果对于他首先是似然的, 然后他再着手去制造一个证明。” ----哈代

“一个做学问的人, 除了学习知识外, 还要有“tast”, 这个词不太好翻译, 有的译成品味, 喜爱。 一个人要有大的成就, 就要有相当清楚的“tast”。 ”----杨振宁

“数学是科学之王 ” ----高斯

“如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。”----柯西

“数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身

“科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。”

---陈省身

“数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。”

----陈省身

“我们欣赏数学,我们需要数学。”----陈省身

“一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。”

----陈省身

“虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。”----欧拉

“因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。”----欧拉

“迟序之数,非出神怪,有形可检,有数可推。”----祖冲之

“事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。”----刘徽

“虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。”----莱布尼茨

“不发生作用的东西是不会存在的。”----莱布尼茨

“考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。” ----莱布尼茨

“几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。”----西尔维斯特

“也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。 ”----西尔维斯特

“一个没有几分诗人才能的数学家决不会成为一个完全的数学家。”----魏尔斯特拉斯

“……古往今来,为数众多的悖论为逻辑思想的发展提供了食粮。”

——N·布尔巴基

什么是悖论?笼统地说,是指这样的推理过程:它看上去是合理的,但结果却得出了矛盾。悖论在很多情况下表现为能得出不符合排中律的矛盾命题:由它的真,可以推出它为假;由它的假,则可以推出它为真。由于严格性被公认为是数学的一个主要特点,因此如果数学中出现悖论会造成对数学可靠性的怀疑。如果这一悖论涉及面十分广泛的话,这种冲击波会更为强烈,由此导致的怀疑还会引发人们认识上的普遍危机感。在这种情况下,悖论往往会直接导致“数学危机”的产生。按照西方习惯的说法,在数学发展史上迄今为止出现了三次这样的数学危机。

希帕索斯悖论与第一次数学危机

希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈起。勾股定理是欧氏几何中最著名的定理之一。天文学家开普勒曾称其为欧氏几何两颗璀璨的明珠之一。它在数学与人类的实践活动中有着极其广泛的应用,同时也是人类最早认识到的平面几何定理之一。在我国,最早的一部天文数学著作《周髀算经》中就已有了关于这一定理的初步认识。不过,在我国对于勾股定理的证明却是较迟的事情。一直到三国时期的赵爽才用面积割补给出它的第一种证明。

在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。因而国外一般称之为“毕达哥拉斯定理”。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。

毕达哥拉斯

毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

欧多克索斯

二百年后,大约在公元前370年,才华横溢的欧多克索斯建立起一套完整的比例论。他本人的著作已失传,他的成果被保存在欧几里德《几何原本》一书第五篇中。欧多克索斯的巧妙方法可以避开无理数这一“逻辑上的丑闻”,并保留住与之相关的一些结论,从而解决了由无理数出现而引起的数学危机。但欧多克索斯的解决方式,是借助几何方法,通过避免直接出现无理数而实现的。这就生硬地把数和量肢解开来。在这种解决方案下,对无理数的使用只有在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。或者说无理数只被当作是附在几何量上的单纯符号,而不被当作真正的数。一直到18世纪,当数学家证明了基本常数如圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学园地中才真正扎下了根。无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。

贝克莱悖论与第二次数学危机

第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。

贝克莱主教

1734年,贝克莱以“渺小的哲学家”之名出版了一本标题很长的书《分析学家;或一篇致一位不信神数学家的论文,其中审查一下近代分析学的对象、原则及论断是不是比宗教的神秘、信仰的要点有更清晰的表达,或更明显的推理》。在这本书中,贝克莱对牛顿的理论进行了攻击。例如他指责牛顿,为计算比如说 x2 的导数,先将 x 取一个不为0的增量 Δx ,由 (x + Δx)2 - x2 ,得到 2xΔx + (Δx2) ,后再被 Δx 除,得到 2x + Δx ,最后突然令 Δx = 0 ,求得导数为 2x 。这是“依靠双重错误得到了不科学却正确的结果”。因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是“已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。

数学史上把贝克莱的问题称之为“贝克莱悖论”。笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。但从形式逻辑而言,这无疑是一个矛盾。这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。

牛顿与莱布尼兹

针对贝克莱的攻击,牛顿与莱布尼兹都曾试图通过完善自己的理论来解决,但都没有获得完全成功。这使数学家们陷入了尴尬境地。一方面微积分在应用中大获成功,另一方面其自身却存在着逻辑矛盾,即贝克莱悖论。这种情况下对微积分的取舍上到底何去何从呢?

“向前进,向前进,你就会获得信念!”达朗贝尔吹起奋勇向前的号角,在此号角的鼓舞下,十八世纪的数学家们开始不顾基础的不严格,论证的不严密,而是更多依赖于直观去开创新的数学领地。于是一套套新方法、新结论以及新分支纷纷涌现出来。经过一个多世纪的漫漫征程,几代数学家,包括达朗贝尔、拉格朗日、贝努力家族、拉普拉斯以及集众家之大成的欧拉等人的努力,数量惊人前所未有的处女地被开垦出来,微积分理论获得了空前丰富。18世纪有时甚至被称为“分析的世纪”。然而,与此同时十八世纪粗糙的,不严密的工作也导致谬误越来越多的局面,不谐和音的刺耳开始震动了数学家们的神经。下面仅举一无穷级数为例。

无穷级数S=1-1+1-1+1………到底等于什么?

当时人们认为一方面S=(1-1)+(1-1)+………=0;另一方面,S=1+(1-1)+(1-1)+………=1,那么岂非0=1?这一矛盾竟使傅立叶那样的数学家困惑不解,甚至连被后人称之为数学家之英雄的欧拉在此也犯下难以饶恕的错误。他在得到

1 + x + x2 + x3 + = 1/(1- x)

后,令 x = -1,得出

S=1-1+1-1+1………=1/2!

由此一例,即不难看出当时数学中出现的混乱局面了。问题的严重性在于当时分析中任何一个比较细致的问题,如级数、积分的收敛性、微分积分的换序、高阶微分的使用以及微分方程解的存在性……都几乎无人过问。尤其到十九世纪初,傅立叶理论直接导致了数学逻辑基础问题的彻底暴露。这样,消除不谐和音,把分析重新建立在逻辑基础之上就成为数学家们迫在眉睫的任务。到十九世纪,批判、系统化和严密论证的必要时期降临了。

柯西

使分析基础严密化的工作由法国著名数学家柯西迈出了第一大步。柯西于1821年开始出版了几本具有划时代意义的书与论文。其中给出了分析学一系列基本概念的严格定义。如他开始用不等式来刻画极限,使无穷的运算化为一系列不等式的推导。这就是所谓极限概念的“算术化”。后来,德国数学家魏尔斯特拉斯给出更为完善的我们目前所使用的“ε-δ ”方法。另外,在柯西的努力下,连续、导数、微分、积分、无穷级数的和等概念也建立在了较坚实的基础上。不过,在当时情况下,由于实数的严格理论未建立起来,所以柯西的极限理论还不可能完善。

柯西之后,魏尔斯特拉斯、戴德金、康托尔各自经过自己独立深入的研究,都将分析基础归结为实数理论,并于七十年代各自建立了自己完整的实数体系。魏尔斯特拉斯的理论可归结为递增有界数列极限存在原理;戴德金建立了有名的戴德金分割;康托尔提出用有理“基本序列”来定义无理数。1892年,另一个数学家创用“区间套原理”来建立实数理论。由此,沿柯西开辟的道路,建立起来的严谨的极限理论与实数理论,完成了分析学的逻辑奠基工作。数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这座人类数学史上空前雄伟的大厦建在了牢固可靠的基础之上。重建微积分学基础,这项重要而困难的工作就这样经过许多杰出学者的努力而胜利完成了。微积分学坚实牢固基础的建立,结束了数学中暂时的混乱局面,同时也宣布了第二次数学危机的彻底解决。

罗素悖论与第三次数学危机

十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”

康托尔

可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。

罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。

罗素

其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。

危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。

以上简单介绍了数学史上由于数学悖论而导致的三次数学危机与度过,从中我们不难看到数学悖论在推动数学发展中的巨大作用。有人说:“提出问题就是解决问题的一半”,而数学悖论提出的正是让数学家无法回避的问题。它对数学家说:“解决我,不然我将吞掉你的体系!”正如希尔伯特在《论无限》一文中所指出的那样:“必须承认,在这些悖论面前,我们目前所处的情况是不能长期忍受下去的。人们试想:在数学这个号称可靠性和真理性的模范里,每一个人所学的、教的和应用的那些概念结构和推理方法竟会导致不合理的结果。如果甚至于数学思考也失灵的话,那么应该到哪里去寻找可靠性和真理性呢?”悖论的出现逼迫数学家投入最大的热情去解决它。而在解决悖论的过程中,各种理论应运而生了:第一次数学危机促成了公理几何与逻辑的诞生;第二次数学危机促成了分析基础理论的完善与集合论的创立;第三次数学危机促成了数理逻辑的发展与一批现代数学的产生。数学由此获得了蓬勃发展,这或许就是数学悖论重要意义之所在吧。

参考资料:

http://wwwszjtorg/fjwh/contents/kexue28htm

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/lianai/9945042.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-25
下一篇2023-10-25

发表评论

登录后才能评论

评论列表(0条)

    保存