世界上什么石头最硬

世界上什么石头最硬,第1张

金刚石最硬,金刚石是自然界中天然存在的最坚硬的物质。

金刚石硬度:摩氏硬度10,新摩氏硬度15,显微硬度10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。金刚石硬度具有方向性,八面体晶面硬度大于菱形十二面体晶面硬度,菱形十二面体晶面硬度大于六面体晶面硬度。

依照摩氏硬度标准(Mohs hardness scale)共分10级,钻石(金刚石)为最高级第10级;如小刀其硬度约为55、铜币约为35至4、指甲约为2至3、玻璃硬度为6。

由于硬度最高,金刚石的切削和加工必须使用钻石粉或激光(比如532nm或者1064nm波长激光)来进行。金刚石的密度为352g/立方厘米,折射率为2417(在500纳米光波下),色散率为0044。

扩展资料

天然金刚石一直被公认为自然界中最硬的材料。1955年美国通用电气公司利用高温高压技术在实验室合成人造金刚石单晶后,合成出比天然金刚石更硬的新材料就成为科学界和产业界的共同梦想。

2013年,田永君团队首先利用洋葱结构氮化硼前驱物在高压下成功地合成出纳米孪晶结构立方氮化硼,其硬度超过了人造金刚石单晶。

人民网-中国极硬材料合成再获突破 硬度两倍于金刚石

-金刚石

这个世界上最硬的石头是金刚石,石墨能够在高温、高压的条件下形成人造金刚石,金刚石的用途很广泛。

石头在这个世界上可以说是随处可见,这个世界的石头种类有很多,那么这个世界上最硬的石头是哪一种石头呢?下面让我们一起去了解吧。

详细内容 01

金刚石硬度:摩氏硬度10,新摩氏硬度15,显微硬度10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。金刚石硬度具有方向性,八面体晶面硬度大于菱形十二面体晶面硬度,菱形十二面体晶面硬度大于六面体晶面硬度。

02

依照摩氏硬度标准(Mohs hardness scale)共分10级,钻石(金刚石)为最高级第10级;如小刀其硬度约为55、铜币约为35至4、指甲约为2至3、玻璃硬度为6。

03

由于硬度最高,金刚石的切削和加工必须使用金刚石粉或激光(比如532nm或者1064nm波长激光)来进行。金刚石的密度为352g/立方厘米,折射率为2417(在500纳米光波下),色散率为0044。

04

金刚石有各种颜色,从无色到黑色都有,以无色的为特佳。它们可以是透明的,也可以是半透明或不透明。许多金刚石带些**,这主要是由于金刚石中含有杂质。 金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。金刚石在X射线照射下会发出蓝绿色荧光

05

金刚石原生矿仅产出于金伯利岩筒或少数钾镁煌斑岩中。金伯利岩等是它们的母岩,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。如果将金刚石加热到1000℃时,它会缓慢地变成石墨。

自然界中最硬的物质就是碳的同素异形体,说的简单点就是金刚石,也就是钻石!这是我们地球上能找到的天然的最硬的物质了!同素异形体是同一化学元素因结构排列不一样而形成物理属性迥异的两种物质,而碳和金刚石就是其中典型的代表!

金刚石是自然界中天然存在的最坚硬的物质。金刚石的用途非常广泛,例如:工艺品、工业中的切割工具。石墨可以在高温、高压下形成人造金刚石。也是贵重宝石。

摩氏硬度10,新摩氏硬度15,显微硬度10000kg/mm^2,显微硬度比石英高1000倍,比刚玉高150倍。金刚石硬度具有方向性,八面体晶面硬度大于菱形十二面体晶面硬度,菱形十二面体晶面硬度大于六面体晶面硬度。

依照摩氏硬度标准共分10级,钻石(金刚石)为最高级第10级;如小刀其硬度约为55、铜币约为35至4、指甲约为2至3、玻璃硬度为6。

由于硬度最高,金刚石的切削和加工必须使用钻石粉或激光(比如532nm或者1064nm波长激光)来进行。金刚石的密度为352g/cm,折射率为2417(在500纳米光波下),色散率为0044。

扩展资料:

金刚石有各种颜色,从无色到黑色都有,以无色的为特佳。它们可以是透明的,也可以是半透明或不透明。许多金刚石带些**,这主要是由于金刚石中含有杂质。 金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。

金刚石在X射线照射下会发出蓝绿色荧光。金刚石原生矿仅产出于金伯利岩筒或少数钾镁煌斑岩中。金伯利岩等是它们的母岩,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。如果将金刚石加热到1000℃时,它会缓慢地变成石墨。

在钻石晶体中,碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。由于钻石中的C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以钻石不仅硬度大,熔点极高,而且不导电。

鉴别钻石的简单方法

一、钻石的单折射

钻石的单折射是由钻石的本质特性决定的。而其他天然宝石或人造宝石大多是双折射的。在10倍放大镜的观察下,很容易看到钻石的棱角出现重叠的影像,同时呈现两个底光。如果双折射的差异较小,比如锆石,也可以看到底光重叠的图像。

B钻石的吸附

对钻石油脂和污垢有一定的亲和力,即油污容易被钻石吸附。所以用手指摸钻石会有黏黏的感觉,手指好像也有黏黏的感觉。这是任何宝石都没有的。这种方法需要训练才能掌握其中的细微差别。

c、直线的特性。

这颗钻石有一个光滑的抛光表面。用钢笔蘸墨水,在钻石上画一圈。如果是真钻石,表面会留下光滑连续的线条,特点是直线。假冒产品会留下一行点。你应该用放大镜用这种方法观察。

d、独特的钻石光泽

在100度左右的白炽灯光下,与赝品对比,很容易看出哪颗钻石有钻石光泽。这种方法不应在太暗或强光下进行。

你也许不曾想到,黑色的石墨和亮闪闪的金刚石其实是由同一种元素——碳构成的,只是它们的外表和性质大不相同。

石墨的质地非常软,只要在纸上轻轻一划,就会留下灰黑色的痕迹,铅笔芯就是用石墨制造的。金刚石是所有自然物质中硬度最高的:人们用镶着金刚石的刀来切割玻璃,无不“迎刃而解”;钻探机的钻头上镶着金刚石,能大大加快向地下钻进的速度;金刚石还能用来加工各种硬度较高的金属。

石墨和金刚石都是碳元素构成的,为什么它们的性质相差如此悬殊呢?

原来,石墨中的碳原子是成层排列的,每层原子之间的A合力很小,就像一副叠起来的扑克牌,很容易滑动、散开。而金刚石中的碳原子是整齐排列的立体结构,每个碳原子都紧密地与其他4个碳原子连接,构成一个牢固的结晶体,因而显得特别坚硬。

天然金刚石的产量很少,只有在非常高的温度和巨大的压力之下,地下熔岩里的碳才有可能形成金刚石。由于它产量少、价格贵,人们往往会利用高温高压来合成人造金刚石。

密度和硬度都是描述物体物理性质的,基本上没什么联系。

硬度和物质的原子结构有关系,比如金刚石和石墨都是碳元素(同一种物质)组成的,但硬度不一样。

密度和物质的种类有关,比如水和冰。

硬度是一个关乎原子分子结构的概念比如石墨和钻石:石墨的碳原子是层状结构,而钻石则是网状结构,钻石的硬度就很大

密度是关于原子分子距离的量说的是单位体积内含原子/分子的质量个数

干冰

固态二氧化碳。为白色分子晶体;熔点-56.6℃(5.2´ 101325Pa),-78.477℃升华(101325Pa),密度1.56g/cm3(-79℃);具有面心立方晶格。

在室温下,将二氧化碳气体加压到约60´ 101325Pa时,当一部分蒸气被冷却到-56℃左右时,就会冻结成雪花伏的固态二氧化碳。固态二氧化碳的气化热很大,在-60℃时为364.5J/g,在常压下气化时可使周围温度降到-78℃左右,并且不会产生液体,所以叫“干冰”。常见的干冰呈块状或丸状。

干冰主要用做制冷剂。在低温实验、人工降雨、模制橡胶部件去毛刺和高速研磨等场合,都用干冰做制冷剂。干冰还可做食品的速冻保鲜剂。在实验室里,干冰与一种挥发性液体(如乙醚、丙酮或三氯甲烷等)组成的混合物,可形成-77℃左右的低温浴。

钻石原石在没有打磨前,和普通的石头一样,默默无闻。

很多人会在出游的时候捡到比价漂亮的石头,有时候会想,这会不会是一颗宝石呢?毕竟中国现存最大的钻石“常林钻石”就是在菜地里面发现的。

那钻石原石如何鉴别真假呢?主要从以下几方面。

从宝石结晶形态鉴别

钻石的单晶体矿物,属于等轴晶系,常见的晶体形状是八面体、菱形十二面体、立方体或者八面体跟菱形十二面体的聚形等。

最常见的就是八面体,认准这个形状,大部分钻石原石是这个形状。

从晶面生长台阶鉴别

三角形的生长台阶,沿着八面体上面的三角形一层一层往外面生长

从晶面溶蚀坑鉴别

一般来说,晶面上的三角形的溶蚀坑,跟八面体上面的三角形是刚好相反的

从硬度鉴别

钻石的摩氏硬度10,是自然界最高的,所以如果拿钻石原石磨其他东西是可以轻易磨动的,如果一颗可能是钻石原石的石头,去磨其他石头磨不动并且它掉粉碎下来,可以肯定不是钻石原石了。当然还有一种方法是在红宝石上划一下,红宝石会出现划痕。

事实上,我们基本上捡到的都是水晶或者石英岩或者一些未知岩石。特别是在非钻石原产地。

在我国有钻石原石发现大概就三个地方,一个是湖南沅江的砂矿地区,一个是辽宁的瓦房店,一个是山东的蒙阴,这三个地方历史以来有发现过钻石原石,所以在这几个地方能捡到钻石原石的概率大一些,其他地方很难捡到钻石原石。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/7728667.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存