这样的钻石如果算来应该在8千到一万二之间,就看商家的价格是怎么样了,据了解他们的钻石都是在外面批发去卖的,所以价格的浮动是很大的,首先你要看他是什么证书,一般到了46份的钻石都应该是有GIA国际证书的,还有你上面说的放大检查 可见天然包裹体是要看在几倍的放大镜下面看,一克拉的钻石重量是02克,所以你自己计算一下有多少克,G750是18K金来的,是含有75%的黄金所以又称G750,由于18K金硬度较高所以用来镶嵌比较稳固,我建议购买钻石还是要去大品牌购买,比如周生生,周大福这样的,你购买起来也比较放心而且售后也很方便!如果在周大福和周生生选择的话我建议你去周生生购买,他们基本上销售是以钻石为主,相比下来在香港品牌里面他们家的钻石是最好的,品质也是最高的!
本文利用实体显微镜和微分干涉显微镜对83片山东、63片辽宁和134片湖南砂矿钻石薄片中的包裹体进行显微放大观察,采用的仪器分别为中山大学地球科学系岩矿显微鉴定室和西北大学地质系特种显微镜室的实体显微镜(型号分别为Nikon SMZ1000和Nikon SIMZS00)、国家珠宝玉石质量监督检验中心的微分干涉显微镜(型号为Nikon LV100),结果如下:
6221 常见包裹体的形貌特征
三产地的钻石中橄榄石包裹体出现的频率较高,在辽宁发现13颗,山东发现18颗,湖南发现14颗,出现频率在分析的钻石样品中分别为206%、217%和104%。橄榄石包裹体大多数为无色透明的浑圆球状、柱状晶体(图61,图版Ⅵ)。湖南钻石中的橄榄石还具有哑铃状外形,哑铃状橄榄石显示浑圆的外形,晶体一头大一头小,中部线状内凹收窄,周围派生片状的内部裂隙和微裂纹(图62);山东钻石中还出现有钉头状橄榄石(图版Ⅵ)。橄榄石周围常环绕黑色石墨包裹体,部分晶体与石墨、裂隙相连接(图63,图版Ⅵ),辽宁钻石中的橄榄石包裹体晶面上还有细密的蚀像(图64),在山东和湖南钻石中的多颗橄榄石包裹体晶面上都发现有黑色石墨斑点的覆盖,如山东钻石23-SD-02的橄榄石晶体的部分晶面布有细小的黑色斑点,湖南钻石146-HN-01-A中三颗橄榄石包裹体晶面上都覆盖有黑色斑点(图65,图版Ⅵ)。石墨斑点以薄膜状覆盖在橄榄石的晶面上,同时对所在橄榄石晶体的拉曼测试造成影响。石墨斑点或分散或密集地在部分晶面上和晶棱上存在,斑点个体大多数呈拉长椭圆形,个体间沿拉长方向平行排列,拉长方向大致与包裹体晶体的延长、变形方向或晶体被熔蚀方向一致,如湖南钻石样品802-7中球状橄榄石晶面和晶棱上都有黑色拉长石墨斑点,晶棱上的石墨在熔蚀凹槽内出现,斑点整体平行排列(图66,图版Ⅵ);共生于同一钻石中的橄榄石上的石墨斑点在相同方向的晶面上出现,并且各个橄榄石晶体上斑点的拉长方向一致(图版Ⅵ)。
表63 中国钻石包裹体的类型特征统计表 Table 63 Statistics of inclusion types of diamonds in China
图61 山东钻石中的短柱状橄榄石
(样品23-SD-02,微分干涉显微镜下,500×)
Figure 61 Short columnar olivine inclusion in Shandong diamond
(sample 23-SD-02,Differential Interference Contrast Microscope,500×)
图62 湖南钻石中哑铃状橄榄石及周围的片状裂隙
(样品802-6-2,微分干涉显微镜下,100×)
Figure 62 Dumbbell-shaped olive inclusion with sheet fissure surrounded in Hunan diamond
(sample 802-6-2,Differential Interference Contrast Microscope,100×)
图63 湖南钻石中的橄榄石包裹体、状裂隙及其内的石墨
(样品177-HN-01,微分干涉显微镜下,500×)
Figure 63 Olivine inclusion and sheet fissure with graphite in Hunan diamond
(sample 177-HN-01,Differential Interference Contrast Microscope,500×)
图64 辽宁钻石中橄榄石包裹体晶面上布满蚀像
(样品3-LW-03,微分干涉显微镜下,500×)
Figure 64 Olivine inclusion fully covered with etched figures in Liaoning diamond
(sample 3-LW-03,Differential Interference Contrast Microscope,500×)
图65 湖南钻石中橄榄石包裹体上平行成行排列的黑色石墨
(样品146-HN-01-A,微分干涉显微镜下,500×)
Figure 65 Olivine inclusion covered with parallel graphite in Hunan diamond
(sample 146-HN-01-A,Differential Interference Contrast Microscope,500×)
图66 湖南钻石中橄榄石上定向拉长的石墨斑点
(样品802-7,微分干涉显微镜下,100×)
Figure 66 Olivine inclusion covered with oriented elongated graphite in Hunan diamond
(sample 802-7,Differential Interference Contrast Microscope,100×)
在三个产地的钻石中发现有两种类型的石榴子石:镁铝榴石和镁铝-铁铝榴石。
辽宁钻石中发现的镁铝榴石主要为灰白色拉长柱状(图67,图版Ⅵ),晶棱圆滑,周围有大量黑色包裹体,其中一个大型的黑色包裹体呈厚片状分布,放大观察可见其中包裹大量的浑圆晶体(图68,图版Ⅵ),同时在该钻石中分布许多熔蚀长轴状未准确鉴定的晶体;镁铝-铁铝榴石包裹体十分细小,以浑圆状晶体分布于大片状的内部裂隙和黑色石墨包裹体中,难于仔细观察(图版Ⅵ)。
图67 辽宁金刚石/钻石中拉长柱状镁铝榴石
(样品8-LW-02,实体显微镜下,250×)
Figure 67 Elongated columnar pyrope inclusion in Liaoning diamond
(sample 8-LW-02,Stereomicroscope,250×)
图68 厚片状黑色裂隙中浑圆晶体群
(样品8-LW-02,微分干涉显微镜下,200×)
Figure 68 Rounded crystal group in thick and black sheet fissure
(sample 8-LW-02,Differential Interference Contrast Microscope,200×)
辽宁钻石中的石榴子石包裹体周围有大量浑圆晶体包裹体,种类有辉石族矿物和其他镁铝榴石以及未确定的矿物(图69),晶体包裹体彼此之间都或近或远地独立分布。
山东钻石中镁铝榴石包裹体以紫色为主,呈现中间收小的哑铃状、葫芦状和复杂晶形的浑圆晶体(图610,图版Ⅵ),晶体周围黑色石墨包裹体较少,多是浑圆的晶体包裹体,镁铝榴石包裹体没有与裂隙连通,较为独立。山东钻石样品23-SD-02的哑铃状镁铝榴石显示出层状结构,晶体内部为紫色,外部则为无色透明(图611);镁铝-铁铝榴石包裹体有紫色、黄褐色和无色(图版Ⅵ),晶体外形基本完整,部分晶体的晶面上有黑色斑点、红色斑块和三角锥状蚀像(图612):其中黑色斑点所在的晶面显示面平棱直的形态,可判断此晶面是受外力导致的破裂面,非熔蚀过程导致,斑点为六边形,与所在晶面的形状一致,且取向和所在晶面一致,判断黑色斑点是在石榴子石破裂面生成后形成的,为后生成因;红色斑块外形多变,多散布在晶体的边棱,向中部减少,对周围的一颗熔蚀状晶体上的红色斑块的拉曼测试结果为黄铜矿,推测石榴子石上的红色斑点应为同样生长环境下的同种物质;三角锥状蚀像密集在一晶面上。根据镁铝-铁铝榴石的形貌特征可判断钻石247-SD的生长经历了外力撞击和后期熔蚀的过程,显示该区金伯利岩浆在上升侵位过程中钻石发生再结晶作用。
湖南钻石中的镁铝榴石包裹体为无色透明晶体,呈拉长浑圆状四角三八面体,常独立分布,很少与裂隙连通,晶体周围还常常有其他种类的浑圆晶体包裹体存在,如样品150-HN-01中3颗分散的镁铝榴石包裹体,包裹体显示浑圆拉长晶体(图613);镁铝-铁铝榴石有拉长柱状晶形,还发现有钉头状外形,白色钉头状晶体有单独分布,也有成行分布(图614)。
辽宁钻石中的顽火辉石包裹体呈无色,浑圆拉长变形晶体,晶体两端大小不一(图615),周围伴有裂隙和黑色包裹体。
山东钻石中辉石族矿物种类包括镁铁辉石、顽火辉石和绿辉石,为无色透明柱状浑圆晶体,环绕辉石包裹体周围的钻石内呈现明显的应变异常双折射现象(图616,图版Ⅵ),长柱状辉石晶体的平坦晶面上呈现小阶梯状(图617)。辉石包裹体周围有大量黑色云朵状包裹体和大量的晶体包裹体,种类包括绿辉石和石榴子石(图版Ⅵ)。
图69 辽宁钻石中的橄榄石和石榴子石包裹体
(样品LN-50-037B,微分干涉显微镜下,50×)
Figure 69 Olivine and garnet inclusions in Liaoning diamond
(sample LN-50-037B,Differential Interference Contrast Microscope,50×)
图610 山东钻石中的镁铝榴石
(样品247-SD-01,微分干涉显微镜下,500×)
Figure 610 Pyrope inclusion in Shandong diamond
(sample 247-SD-01,Differential Interference Contrast Microscope,500×)
图611 山东钻石中紫色哑铃状镁铝榴石
(样品23-SD-02,微分干涉显微镜下,200×)
Figure 611 Purple and dumbbell shaped pyrope inclusion in Shandong diamond
(sample 23-SD-02,Differential Interference Contrast Microscope,200×)
图612 山东钻石中浅**镁铝-铁铝榴石晶面上的黑色六边形斑点(右部)、拉长的三角形蚀像(左部)和红色斑块(中下部)
(样品247-SD-01,微分干涉显微镜下,500×)
Figure 612 Light yellow pyrope-almandine inclusion with black hexagon spots (right),elongated triangular etched figures (left) and red patches (lower center)
(sample 247-SD-01,Differential Interference Contrast Microscope,500×)
图613 湖南钻石样品150-HN-01中的镁铝榴石包裹体
Figure 613 Pyrope inclusion in Hunan diamond,sample 150-HN-01
图614 湖南钻石中的镁铝-铁铝榴石包裹体
Figure 614 Pyrope-almandine inclusion in Hunan diamond
图615 浑圆拉长变形的顽火辉石
(样品8-LW-01,拉曼探针显微镜下实测图)
Figure 615 Rounded,elongate and distorted enstatite
(sample 8-LW-01,Raman Microscope on-the-spot figure)
图616 浑圆状绿辉石及其周围的异常双折射现象
(样品247-SD-01,微分干涉显微镜下,500×)
Figure 616 Rounded omphacite with anomalous birefringence effect
(sample 247-SD-01,Differential Interference Contrast Microscope,500×)
图617 长柱状辉石,平行柱状体有阶梯纹理
(样品247-SD-02微分干涉显微镜下,200×)
Figure 617 Long columnar pyroxene with parallel stepped veins
(sample 247-SD-02,Differential Interference Contrast Microscope,200×)
湖南钻石中辉石族包裹体种类有顽火辉石、镁铁辉石和绿辉石。晶体为无色透明,呈浑圆状,晶形多样,有柱状、板状、膝状和针管状形态,平行晶体延伸方向常具有阶梯状纹理(图618,图版Ⅵ)。辉石包裹体在钻石中都是单独存在,部分晶体周围延伸微小的裂隙。如钻石样品802-2中的膝状的顽火辉石,周围延伸出细小羽状片状裂隙(图619),一个方向上显示浑圆光滑晶面,相对方向上则显示规则阶梯状晶面。在一颗绿辉石包裹体晶面上发现有黑色石墨斑块(图620),斑块在两个相对的晶面上存在,没有方向性,说明包裹体经历的温压环境改变不具定向性,这与包裹体本身的原始晶形较完整相一致。在一个针管状孔道的不同位置(样品802-7)测出绿辉石的拉曼峰,同时还测出氮气和石墨,此管道延伸至钻石晶体表面,管道的内壁为面棱状,底部呈尖灭状(图621)。
6222 特殊形貌特征的包裹体
图618 湖南钻石中的顽火辉石包裹体,平行柱状体有阶梯纹理
(样品127-HN,微分干涉显微镜下,500×)
Figure 618 Enstatite inclusion with parallel stepped veins in Hunan diamonds
(sample 127-HN,Differential Interference Contrast Microscope,500×)
图619 湖南钻石中的顽火辉石包裹体
(样品802-2,微分干涉显微镜下,500×)
Figure 619 Enstatite inclusion in Hunan diamond
(sample 802-2,Differential Interference Contrast Microscope,500×)
在研究的山东和湖南钻石多颗晶体包裹体上都附着黑色斑纹,包裹体种类包括橄榄石、镁铝榴石、镁铝-铁铝榴石、绿辉石和柯石英,各种包裹体晶体上的斑纹形态见图版Ⅵ,利用原位微区激光拉曼技术分析确定包裹体上的黑色斑点为石墨。分析发现,石墨大多数聚集成斑点状、条带状覆盖在包裹体的晶面上,但并不是在每个晶面上都存在,往往沿着拉长变形的晶面和受熔蚀的方向分布:石墨斑点个体大多数呈细长椭圆形,沿拉长方向平行排列,拉长方向大致与包裹体晶体的延长方向、变形方向或晶体被熔蚀方向一致,如样品802-7中的橄榄石包裹体的晶棱被熔蚀呈平行沟渠状,被拉长的石墨斑从熔蚀沟内延伸到晶面上(图622),但也有呈与包裹体晶形相同的形态,如247-SD-01中镁铝-铁铝榴石包裹体部分晶面上的六边形黑色斑点(图623),与所在晶面的形状一致,且取向和所在晶面一致;条带状的石墨沿着包裹体晶体延长方向分布,与晶棱平行(图624);也有的石墨呈非定向的分散斑块状在大晶面上分布,如样品801-11中的绿辉石包裹体上的石墨斑块(图625)。依此推断这些石墨斑点应该为晶体包裹体形成后,由于外部环境温压条件的变化产生,与所存在的包裹体种类无关。
图620 湖南钻石中的绿辉石包裹体,其上有石墨斑点
(样品801-11,微分干涉显微镜下,500×)
Figure 620 Omphacite inclusion with graphite spots in Hunan diamond
(sample 801-11,Differential Interference Contrast Microscope,500×)
图621 湖南钻石中的针管状包裹体,管内测出绿辉石
(样品802-7,微分干涉显微镜下,100×)
Figure 621 Tubular inclusions detected as omphacite in Hunan diamond
(sample 802-7,Differential Interference Contrast Microscope,100×)
图622 湖南钻石中的橄榄石包裹体,其上有拉长定向的黑色石墨
(样品802-7,微分干涉显微镜下,500×)
Figure 622 Olivine inclusion covered with elongated black graphite in Hunan diamond
(sample 802-7,Differential Interference Contrast Microscope,500×)
图623 山东钻石中的镁铝-铁铝榴石包裹体,其上有六边形黑色斑
(样品247-SD-01,微分干涉显微镜下,200×)
Figure 623 Pyrope-almandine inclusion covered with hexagon black spots in Shandong diamond
(sample 247-SD-01,Differential Interference Contrast Microscope,200×)
图624 辽宁钻石中的镁铝榴石包裹体,其上有石墨附着
(样品LN-50-037B(1-1),微分干涉显微镜下,100×)
Figure 624 Pyrope inclusion covered with graphite in Liaoning diamond
(sample LN-50-037B (1-1),Differential Interference Contrast Microscope,100×)
图625 湖南钻石中的绿辉石包裹体,其上有石墨斑块
(样品801-11,微分干涉显微镜下,500×)
Figure 625 Omphacite inclusion covered with graphite patches in Hunan diamond
(sample 801-11,Differential Interference Contrast Microscope,500×)
另外,在4片湖南钻石薄片样品802-3-1、802-3-2、802-7和111-HN-02以及一片山东钻石样品42-SD-01中都观察到针管状溶蚀孔道,它们在金刚石/钻石中呈一个方向或几个方向分布,如图626~629所示及图版Ⅵ。针管状包裹体有单独存在也有成排发育,形态为粗细和长短不等的管状,管道内部为面棱状,管壁显示阶梯或不规则形态,由钻石晶体内部延伸至晶面,或出露或在靠近晶面处被封闭,出露面为不规则形状。由于针管状孔道深入钻石内部,对钻石的整体均一性造成了影响,因此本文将其纳入钻石的包裹体范畴来分析。
含有针管状包裹体的钻石晶体都是强烈变形的歪晶或呈碎块状,晶体表面蚀像丰富多样,其中以熔蚀线和塑性变形滑移线最发育。针管状包裹体都发育在晶体滑移变形面的延伸方向和交汇处,内部裂隙发育,佐证了钻石中针管状包裹体与钻石生长环境中受应力作用有关。拉曼测试发现,针管状包裹体的不同地方分别显示出钻石(样品802-3-1)、绿辉石(样品802-7)、石墨、氮气(样品802-7)、黄铜矿(样品111-HN-02和802-7)和黄长石(样品42-SD-01)的拉曼峰。由此可以推断,钻石中的针管状包裹体主要与钻石内部晶格结构以及后期地质作用有关。当塑性变形区域形成了晶体内部缺陷(主要为线性晶格缺陷),钻石遭受熔蚀时沿塑性变形方向更易被改造而形成熔蚀通道,由表及里的熔蚀作用遇到其他形式的晶体缺陷会使通道扩大或终止,这取决于晶体缺陷对熔蚀介质的抵抗力,并会在钻石表面的通道露口处导致后期杂质物质的进入而形成次生包裹体。
从以上对湖南、山东和辽宁钻石中的包裹体形貌分析可以发现,三个产地钻石包裹体的形貌都是以浑圆晶体为主,包裹体遭受了不同程度的熔蚀,导致矿物包裹体显示圆滑晶面棱和变形拉长外形。
前人在研究山东八面体金刚石/钻石的透辉石包裹体时,沿解理方向也观察到细小黑色斑点(黄蕴慧等,1992);亓利剑等(1999)在观察辽宁钻石中的橄榄石包裹体时曾发现少数橄榄石表面被黑色斑点状薄膜所覆盖,但都未对此种黑色斑点状薄膜进行确定。项目组在山东和湖南金钻石包裹体观察中确认了这些晶体包裹体上的黑色斑点是石墨物质,同时发现,石墨对所在包裹体晶体的拉曼测试造成影响,会造成包裹体矿物本征拉曼峰强度变弱或缺失(图630)。石墨斑纹在不同种类包裹体晶面上和包裹体周围派生微裂隙中存在,并完好封闭在寄主钻石中。原生石墨包裹体的存在可能说明这些钻石形成过程恰好处于钻石与石墨稳定区边界附近,而次生石墨包裹体在晶体中可能和钻石形成后外界温压环境明显变化有关(Harris,1968,1972;Vance,1972)。
在湖南和山东钻石中发现多个钻石中有成排出现针管状孔道,大部分管道直且内壁具明显的面棱状,推断应该是钻石生长过程中留下的生长特征。早期研究表明,金刚石/钻石的熔蚀通道与晶体缺陷有关(Tolansky,1955;Orlov,1973)。两粒澳大利亚粉红色金刚石/钻石中出现熔蚀孔道引起了关注(etched dislocation channel)(Hofer,1985);Crowningshield(1992)在粉红色金刚石/钻石中也发现“之”字形熔蚀孔道;Taijin Lu(2001)利用光学显微镜和扫描电镜研究了7颗天然金刚石/钻石中的熔蚀管道的特征,这些管道以各种形式的平行线状、弯折状或者是蠕虫状等外形出现,在许多产地中的Ⅰ型和Ⅱ型金刚石/钻石中都会出现;杨明星等(2004)对湖南褐色金刚石/钻石中的直管状的熔蚀孔道进行研究后认为它们是与塑性变形有关的熔蚀特征。湖南钻石在形成后的上升阶段,可能经过了剪应力的作用和普遍的熔蚀过程。
图626 湖南钻石中平行排列的针管状包裹体
(样品802-3-1,微分干涉显微镜下,100×)
Figure 626 Parallel arranged tubular inclusions in Hunan diamond
(sample 802-3-1,Differential Interference Contrast Microscope,500×)
图627 湖南钻石中针管状包裹体,内壁显示多面棱形态
(样品802-7,微分干涉显微镜下,500×)
Figure 627 Tubular inclusion with multi-facet prism texture inwall in Hunan diamond
(sample 802-7,Differential Interference Contrast Microscope,500×)
图628 湖南钻石中平行排列的细长管状包裹体
(样品802-3-2,微分干涉显微镜下,100×)
Figure 628 Parallel arranged slender and tubular inclusions in Hunan diamond
(sample 802-3-2,Differential Interference Contrast Microscope,100×)
图629 山东钻石中密集的针管状包裹体
(样品42-SD-01,微分干涉显微镜下,200×)
Figure 629 Intensive tubular inclusions in Shandong diamond
(sample 42-SD-01,Differential Interference Contrast Microscope,200×)
金刚石/钻石在室温和较低温度下主要表现沿{111}解理,常具脆性,随温度的升高,塑性变形明显增加,溶蚀孔道可能和塑性形变有关。实验表明,金刚石/钻石要发生塑性变形必须有温度、压力条件相互配合(图631):天然金刚石/钻石生长的温度在 900~1300℃之间,压力为(45~70)×108Pa,因此在地幔高温高压下的金刚石/钻石生长环境中受应力作用时金刚石/钻石易产生塑性变形,从而产生一系列的晶体缺陷,进而对金刚石/钻石晶体的生长和光学性能等都产生极大的影响;如果环境温度太低(在900℃以下),则有可能发生脆性变形(Bursill,1995;Schmetzer,1999)。
图630 湖南钻石中的橄榄石及其上的石墨斑点拉曼测试图
Figure 630 Raman Microscope testing results of olivine inclusion and the graphite spots in Hunan diamond
图631 金刚石/钻石塑性变形的温度压力范围
(原图据Schmetzer,1999)
Figure 631 Temperature and pressure range of diamond plastic deformation
(Original drawing by Schmetzer,1999)
综上所述,山东和湖南钻石晶体包裹体中附着的同生石墨包裹体可能说明钻石生长环境经历了明显的温压变化,钻石的生长环境具有波动性。湖南钻石中出现的针管状孔道数量比例最多,排列更密集,表明相对于辽宁和山东钻石,湖南沅水流域钻石的形成环境中塑性变形作用更为强烈,使其内部结构产生了复杂、明显的三维溶蚀缺陷。
天然宝石是在复杂的地质环境中形成的,外来杂质的混入、成矿溶液的浓度及温度压力的变化都会对宝石的生长产生影响,同时也会在宝石的内部留下一定的痕迹,这就是我们常说的包体。宝石中包体的形成与矿物包体形成一样,往往与晶体生长过程中产生的晶体缺陷有关。晶体中缺陷的形成则和晶体的结构类型、晶核的数量、晶体的生长速度及环境(如温度、压力、介质浓度等)密切相关。19世纪初,人们就开始研究矿物中的包体,只是到了19世纪末和20世纪初,由于合成红宝石和蓝宝石的出现,人们才意识到宝石内部的包体的重要性。
研究宝石的包体极为重要,它可以帮助我们鉴定宝石品种、区分天然和合成宝石、判别宝石的优化处理、评价宝石的品质和了解宝石的成因甚至产地。
一、包体的概念
包体的概念来源于矿物学,在宝石学中给予了沿用和扩展。
宝石包体的概念有狭义和广义之分。狭义包体的概念是指宝石矿物生长过程中被包裹在晶格缺陷中的原始成矿熔浆,其至今仍存在于宝石矿物中,并与主体矿物有相的界线。
广义包体的概念是指影响宝石矿物整体均一性的所有特征。即除狭义包体外,还包括宝石的结构特征和物理特性的差异,如带状结构、色带、双晶、断口和解理,以及与内部结构有关的表面特征等。宝石学中多涵盖的是广义包体概念。
二、宝石中包体的分类
(一)依据包体与宝石形成的相对时间分类
依据包体与宝石形成的相对时间,可将包体分为原生包体、同生包体和次生包体。
1原生包体
原生包体是指比宝石形成更早,在宝石形成之前就已结晶或存在的一些物质,在宝石晶体形成过程中被包裹到宝石内部。原生包体的形成主要与介质环境(如成矿溶液成分和浓度的变化)及晶体的快速生长有关。宝石中的原生包体都是固态的,它可以与寄主矿物同种,也可以不同(见图1-2-1)。
图1-2-1 缅甸红宝石内的磷灰石晶体
合成宝石一般不存在原生包体,但对于有种晶的一些合成方法,也可把合成宝石中的种晶视为一种原生包体。
2同生包体
同生包体是指在宝石生成的同时所形成的包体,它们的形成主要与晶体的差异性生长、晶体的不规则生长结构、晶体的生长间断、溶液过饱和度的变化、外来杂质的出现、体系温度或压力的突然变化等因素有关。此类包体可以是固态的,也可以是含有呈各种组合关系的固体、液体和气体,甚至空洞或裂隙等,还可以是导致分带性的化学组分变化所形成的色带、幻晶等。
(1)同生固态包体
在某些情况下,若包体矿物与宝石晶体沿结合面的原子结构相似,当宝石晶体停止生长时,包体矿物可聚集和生长在宝石晶体的表面;晶体的重新生长会覆盖这些生长在表面的矿物,使之成为包体。
纤维状矿物的生长速度比主体宝石的生长速度快,因而可以形成长丝状的包体,如水晶中呈针状的金红石、闪石包体(见图1-2-2)。
在高温下结晶均匀的固溶体矿物,当温度缓慢下降时,固溶体的溶解度减小达到过饱和状态,而出溶成为两个彼此不同的矿物,可使宝石晶体中含有片状或针状矿物晶体,而且它们的方向往往与寄主晶体的某个结构方向平行。例如:从刚玉中出溶的金红石结晶成三组针状的晶体,相互的交角为120°,而且均平行于刚玉的底轴面。
图1-2-2 水晶中铁钠闪石包体(发晶)
图1-2-3 斯里兰卡蓝宝石的指纹状包体
钛化合物如金红石、榍石和钛铁矿是宝石中最常见的出溶矿物。这是由于Ti元素的丰度大,易于为寄主晶体所容纳并从寄主晶体晶格中出溶。大量的出溶针状物可在刚玉、石榴石和尖晶石等宝石中产生猫眼和星光效应。其他的出溶矿物有日光石、堇青石中的赤铁矿;月光石中的钠长石;拉长石中的针铁矿等。
(2)同生流体(气液)包体
产于某些地质环境的宝石可含有大量的气液包体。由于形成条件的制约,气液包体很少见于火成岩,常见于伟晶岩中。这是因为伟晶岩形成于较低的温度,并含有大量的水溶液。
晶体在生长过程中可能破裂,成矿溶液可以进入其裂隙中,直到裂隙在适当部位愈合为止。以这种方式形成的愈合裂隙在富含水溶液环境条件下生成的宝石中是常见的。愈合裂隙可以呈扁平状或弯曲状,常说的“指纹状包体”就属于此类(见图1-2-3)。
有的宝石内部可含有管状的孔道或具有规则形状的孔洞。这是由于宝石晶体在生长的过程中生长阻断或生长速度过快造成的。在生长过程中,孔道或孔洞的形状可能会发生改变或愈合。如海蓝宝石中的“管状”包体可以呈断断续续的“雨丝状”。
很多情况下,经常见到液态包体与气态、固态包体共存。
(3)同生的非物质性包体
宝石晶体中常见同生不均匀性包体,主要表现为下述几种分带现象。
包体分带 宝石晶体生长的暂时停顿使外来的晶体集结在寄主晶体的表面。若寄主晶体重新生长,便可形成或多或少的呈面状分布的薄层包体,即所谓的“幻晶”。
颜色分带 颜色分带通常取决于宝石中化学成分的变化,它反应了宝石生长环境和流体化学成分的变化,如红宝石、蓝宝石中的平直或角状色带。
结构分带 结构分带通常是由宝石中的双晶造成的,如钻石、长石和红蓝宝石中的生长纹和双晶纹。
合成宝石的包体大都属于同生包体,它们可以是固态、气态或液态。但它们往往从形态和组成上与天然宝石明显不同,可作为区分天然与合成宝石的主要或诊断性特征。如助熔剂法合成红宝石中的助熔剂残留(见图1-2-4),水热法中合成祖母绿中的铂金片、合成祖母绿中由硅铍石和空洞构成的“钉头”状包体,焰熔法合成红宝石中的弧形生长纹和气泡(见图1-2-5)等。
图1-2-4 助熔剂法合成红宝石中的助熔剂包体
图1-2-5 合成红宝石中的弧形生长纹及变形气泡
3次生包体
次生包体是指宝石形成后产生的包体,它是宝石晶体形成后由于环境的变化,如受应力作用产生裂隙,外来物质沿其渗入及裂隙充填所形成的包体,甚至可能是由于放射性元素的破坏作用所形成的包体。
(1)次生裂隙及外来物质充填胶结
宝石停止生长后产生的裂隙中可能会有外来物质进入并在其中沉淀。常见的外来物质是铁和锰的氧化物,如水晶或玛瑙中的黑色树枝状包体(见图1-2-6)。
(2)放射性元素的破坏作用
有些宝石经常含有微量的放射性元素,如锆石常含有放射性元素U和Th,由于它们的存在不但可以破坏宝石本身的晶体结构,同时,当锆石作为包体出现在其他宝石矿物中时,放射性元素在破坏锆石晶格的同时,还会使锆石的体积增大,也可对主晶宝石晶格产生破坏,产生的应力可导致在锆石周围形成放射状的裂隙等痕迹,这就是我们所说的“锆石晕”(见图1-2-7)。
合成宝石往往不存在次生包体。但对于优化处理的宝石,可含有一些次生包体。如,红蓝宝石的热处理,往往会导致内部固态包体的体积发生变化,使之发生爆裂而在周围产生次生裂隙(见图1-2-8);也会使宝石中存在的Fe、Ti出溶,而形成金红石针;也可使同生的针状金红石包体熔蚀,形成呈点状排列的金红石。这些也都可以作为宝石热处理的鉴定特征。另外,宝石的染色处理、充填处理也可视为次生的包体;扩散处理造成的颜色在刻面宝石的腰棱部位的颜色集中、激光打孔处理和KM处理钻石所留下的痕迹和裂隙也可视为次生包体。
图1-2-6 玛瑙中的树枝状包体
图1-2-7 斯里兰卡铁铝榴石中锆石包体周围的“锆石晕”
图1-2-8 蓝宝石热处理应力环
(二)依据包体的相态分类
根据包体的相态特征,可将包体分为固相包体、液相包体、气相包体。
固相包体主要指在宝石中呈固相存在的包体,如红宝石中的金红石、祖母绿中的黄铁矿和方解石等。
液相包体指单相、两相的流体为主的包体,最常见的液体为水、溶解盐(石盐水、含碳酸的水),有机液体也偶有出现(萤石中的石油液态包体,见图1-2-9)。例如蓝宝石中的指纹状包体、萤石和黄玉中的两相不混溶的液态包体等。
气相包体指主要由气体组成的包体,如琥珀中的气泡、祖母绿中的CO2气态包体、合成红蓝宝石和玻璃中的气泡等。
在实际宝石中,往往可见到两种或两种以上相态包体共存的现象,从而可将其分为单相、两相、三相或多相包体。单相包体指以固相、液相或气相单一相态存在的包体,其多为单相的固态包体,在合成宝石中也常见单相的气态包体(即气泡);两相包体可以是气-液(如指纹状包体多为气液两相包体)、液-液(如黄玉中的两相不混溶的液态包体)、液-固两相包体;三相包体主要指同一包体内含有气-液-固三相或液-液-气三相包体,如祖母绿中常见的由石盐-气泡-水构成的三相包体(见图1-2-10)。
两相或多相包体的形成往往都与前期形成的流体的液态包体有关。当流体被捕获到宝石晶体的孔洞时,流体可能是均一的(少数情况下由液体和悬浮晶体、液体和悬浮气体或两相不混溶液体组成),这种均一的流体会随着温度的下降而发生变化,分离出气体、固体或其他液体。
图1-2-9 萤石中的石油液态包体
图1-2-10 祖母绿中的固-气-液三相包体
天然宝石中存在于液态包体中的气态包体多为低压水蒸气、二氧化碳或甲烷。它们多为由于温度或压力的下降从溶液中逸出的气体。
存在于液态包体中的固态包体多为盐类晶体,它们也是液态包体温压的下降造成溶液过饱和从溶液中析出的晶体。主要晶体为钠、钾、钙、镁的氟化物、氯化物、碳酸盐或硫酸盐。其中最常见的是石盐(氯化钠)、钾盐(氯化钾)和石膏(硫酸钙)。
(三)依据包体成分分类
根据包体成分特点可将包体分为有机包体和无机包体两大类。
有机包体是指主要由有机物质组成的包体,如琥珀中的动植物包体(见图1-2-11)及萤石中的石油包体等。
图1-2-11 琥珀中的植物包体
无机包体是指各种晶体、熔体及气液流体包体,它们由无机物质组成,绝大部分宝石中的包体都是无机包体。
(四)依据包体存在形式分类
根据包体的存在形式,可将包体分为物质型包体和非物质型包体两大类。
1物质型包体
是指以实际物质形态存在的包体,如固态、液态和气态包体等。
2非物质型包体
是指由晶体缺陷及后期应力作用形成的内部缺陷所构成的包体,它们往往不是以实际的物质形式存在,而多呈一种现象出现,如空晶、双晶面、解理纹等。多是由晶体成分的变化、晶体缺陷、放射性蜕变所导致的与主体宝石颜色有明显差异的色带、色团、色晕等组成的包体,以及由宝石的物理性质引起的特征现象。
(1)颜色分布
宝石中颜色的分布特征对揭示宝石优化处理、合成和天然类型是非常有用的。平直的颜色分带是诸如茶晶、紫晶和蓝宝石等许多天然宝石的典型特征,但平直的色带并不一定就是天然宝石的特征。焰熔法合成宝石往往具有弯曲的色带。人工改色的宝石的颜色分布具有独特性,在染色宝石中,宝石的颜色集中在裂隙中和晶粒的边界处;扩散处理的宝石,颜色集中在尖角、棱线和表面的裂隙处。
(2)表面特征
表面特征能提供关于宝石结构和宝石定名的相关线索,如钻石中的双晶可在抛光面上产生“纹路”;处理的翡翠表面可显示“沟渠状”或“蛛网状”的现象。
(3)解理和断口
解理和断口对某些宝石的鉴别有一定价值。玻璃显示贝壳状断口,而可被玻璃仿制的绿松石则具暗淡平坦的断口;具阶梯状断口说明宝石的解理发育,如锂辉石、长石;解理对鉴定钻石意义重大,钻石腰围的须状腰、“V”形缺口、天然面是其仿制品所不具备的。
(4)双晶
刚玉、金绿宝石、长石中常可见到双晶。早期双晶被认为是天然成因的证据,但在助熔剂法合成的宝石中也已见到双晶。矿物中的双晶可以是同生的或次生的,如方解石的双晶可以在晶体停止生长后因形变而形成,刚玉中的双晶也可以此方式形成。
(5)重影
对于双折射率大的宝石来说,用10倍放大镜或显微镜,在适当的角度可以看到明显的后刻面棱线和内部包体的重影,如橄榄石、碧玺、锆石、合成金红石等(见图1-2-12)。
图1-2-12 合成金红石后刻面棱线的重影
以上不同的分类从不同的角度归纳了包体的特征,每一个分类都不可能涵盖宝石包体的全部特征,熟悉这些分类方法对宝石鉴定具有重要意义。
三、研究宝石包体的意义
宝石包体的研究在宝石学中具有重要意义,归纳起来有如下几点。
(1)了解天然宝石的生成条件,指导找矿和确定合成宝石实验条件
宝石中的包体是研究宝石形成条件最直接的证据,通过宝石中的包体我们可以测定宝石形成时的温度、压力、氧逸度等数据,这些数据对于宝石的找矿、勘探、开采及进行人工合成宝石具有重要意义。
(2)根据典型包体及包体的组合特征,确定宝石品种及优化处理方法
各种宝石之间各项物理常数有时是重叠的,这时宝石中的包体就具有重要意义。通过对宝石包体的观察,可以区分天然宝石、人工宝石,确定宝石品种,判别宝石的优化和处理方法。
(3)根据宝石的典型包体及包体组合确定宝石的产地
有时可以根据宝石中的特征包体来判断宝石的产地。但只有发现宝石中的确存在某些特殊的包体组合时,判断宝石产地的结果才会可靠。如祖母绿中含有氟碳钙铈矿或含有立方体石盐的三相包体时,我们可以判断该祖母绿的产地是哥伦比亚。
(4)根据宝石中包体的特点对宝石进行合理加工
某些宝石因为具有特征的包体,可以使宝石增值,如水胆玛瑙。若宝石中存在一组或多组平行排列的纤维状包体时,经过合理的加工,可使宝石产生猫眼效应或星光效应,也可提高宝石的价值。
(5)根据宝石包体的大小及分布特征对宝石进行评估和分级
宝石包体的存在有时会提高宝石的价值,有时会降低宝石的价值。根据包体的特征,可以对宝石的质量做出综合评价。例如根据钻石中包体的大小、位置、数量、可见度对钻石进行品质等级划分。
(6)了解宝石包体的性质,确定对宝石进行技术处理的可能性
如钻石的激光处理。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)