现代测试技术在有色宝石学研究中的作用

现代测试技术在有色宝石学研究中的作用,第1张

为了解决有色宝石学中不断出现的新问题,波谱分析、微束等现代测试技术得以引入及应用。表1-5-1列出了电磁波谱在宝石学中的应用,各种不同的电磁波与物质相互作用产生各种谱学信息,这类仪器大多称为分光光度计(光谱仪)。

表1-5-1 电磁波谱在宝石现代测试中的应用

微束是指用电子束、离子束、激光束、质子束或其他粒子束来激发样品的微区,微束分析中,微束激发源(即入射光束)与样品作用产生各种信息,产生的信息主要有:特征X射线、连续X射线、二次电子、二次离子、背散射电子、俄歇电子、透射电子、吸收电子、阴极荧光等。将这些信息收集、分析处理、放大、转换成各种图像、图谱或强度数字,可进行成分、形貌和结构的直接观察和测定。

在有色宝石学研究中采用的微束和谱学现代测试技术方法主要有紫外—可见光分光光度计、红外光谱仪、X射线粉晶衍射仪、X射线荧光光谱分析仪、电子探针、扫描电镜、拉曼光谱和阴极发光等。

一、傅立叶变换红外光谱仪

1基本原理

宝石在红外光的照射下,引起晶格(分子)、络阴离子团和配位基的振动能级发生跃迁并吸收相应的红外光而产生的光谱称为红外光谱(Infrared Spectra)。测量和记录红外吸收光谱的仪器称为红外分光光度计(或红外光谱仪)。它利用物质对红外光的选择性吸收,定性或定量分析有色宝石的组成或结构。

红外光谱是波长约为078~1000μm的电磁波,通常将整个红外光区分为以下3个部分:

1)远红外光区:波长为25~1000μm,波数为400~10cm-1。一般宝石分析不在此区范围内进行。

2)中红外光区:波长为25~25μm,波数为4000~400cm-1。该区的吸收带主要为基频吸收带,可分为两个区域,即基团频率区和指纹区。基团频率区(又称官能团区或特征频率区)分布在4000~1500cm-1区域内,出现的基团特征频率较稳定,可利用该区红外吸收特征峰鉴别宝石中可能存在的官能团。指纹区分布在1500~400cm-1区域,可以通过该区域的图谱来识别特定的分子结构。

3)近红外光区:波长为078~25μm,波数为12820~4000cm-1,该区的光谱可用于研究稀土和其他过渡金属离子的化合物,以及水、含氢原子团化合物的分析、检测O-H、N-H、C-H伸缩振动,可用于检测宝石充填的胶、蜡或有机染料。

2仪器组成

在宝石测试和研究中,主要采用傅立叶变换红外光谱仪。如图1-5-1所示,在傅立叶变换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品。经检测器(探测器—放大器—滤波器)获得干涉图,由计算机将干涉图进行傅立叶变换得到光谱。其特点是:扫描速度快,适合仪器联用;不需要分光,信号强,灵敏度高。

图1-5-1 傅立叶变换红外光谱仪工作原理示意

3测试方法

1)透射法:透射法包括粉末透射法、直接透射法两种。粉末透射法为有损检测方法,适用于宝石矿物原料,需按要求将样品粉末与溴化钾以1∶100~1∶200的比例混合,压制成一定直径或厚度的透明片,然后进行测定。直接透射法是将宝石直接置于样品台上进行测试。

2)反射法:红外反射光谱(镜、漫反射)在宝石鉴定与研究中具有重要意义。要求待测宝石样品至少有一个抛光良好的光面。对于半透明—不透明的玉石材料,如翡翠、软玉和绿松石,漫反射附件装置可提供令人满意的光谱。

4应用

红外光谱一般以波数(cm-1)作横坐标,以透过率或吸收率为纵坐标。根据红外光谱的谱带数目、位置、形状及强度等进行分析。主要用途有:

①确定宝石品种;②宝石中的羟基、水分子的检测;③划分钻石类型;④鉴别人工充填处理宝石,如翡翠A货和B货的区别。

二、紫外—可见分光光度计

紫外—可见吸收光谱是在电磁辐射作用下,由宝石中原子、离子或分子的价电子和分子轨道上的电子在电子能级间的跃迁而产生的一种分子吸收光谱。具不同晶体结构的各种有色宝石,其内所含的致色杂质离子对不同波长的入射光具有不同程度的选择性吸收,根据样品吸收波长(波长范围)及吸收程度,对样品中组成成分进行定性或定量分析。按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外—可见分光光度法。

1结构和工作原理

紫外—可见分光光度计类型很多,其工作原理见图1-5-2,宝石测试中常用的分光光度计如图1-5-3所示。光由单色器分光后经反射镜分解为强度相等的两束光,一束通过参比池,一束通过样品池。光度计能自动比较两束光的强度,此比值即为试样的透射比,经对数变换将它转换成吸光度并作为波长的函数记录下来。双光束分光光度计一般都能自动记录吸收光谱曲线。由于两束光同时分别通过参比池和样品池,还能自动消除光源强度变化所引起的误差。

图1-5-2 紫外可见光分光光度计原理框图

图1-5-3 紫外可见光分光光度计

2测试方法

用于宝石的测试方法可分为两类,即直接透射法和反射法。直接透射法是将宝石样品的光面或戒面直接置于样品台上,获取宝石的紫外可见吸收光谱,属无损测试方法,但从中获得的有关宝石的信息十分有限;反射法是利用紫外—可见分光光度计的反射附件(如镜反射和积分球装置),有助于解决直接透射法在测试过程中遇到的问题。

3宝石学应用

1)检测人工优化处理宝石。

2)区分某些天然与合成宝石。

3)探讨宝石呈色机理。

三、X射线荧光光谱仪(X-Ray Fluorescence Spectrometry,XRF)

X射线是一种波长在0001~10nm之间的电磁波。对已镶和未镶的宝石成品、原石、珠串以及宝石材料的粉末等,均可用X射线来进行检测。X射线荧光光谱分析与电子探针分析相似,但不同的是前者激发源使用X射线,后者使用电子束。

1原理

X射线荧光的波长λ与元素的原子序数Z有关,随着元素的原子序数的增加,特征X射线有规律地向短波长方向移动。各种不同的元素都有本身的特征X射线荧光波长,只要测出荧光X射线的波长,就可知道元素的种类,这是荧光X射线定性分析的基础,荧光X射线的强度与相应元素的含量有一定的关系,这就是用X射线荧光光谱仪进行定量分析的依据。

2仪器类型

(1)波长色散光谱仪

通过分光晶体对不同波长的X射线荧光进行衍射而达到分光的目的,然后用探测器探测不同波长处的X射线荧光强度。仪器由X射线发生器、晶体分光器、准直器、检测器、多道脉冲分析器、计算机等组成。

(2)能量色散X射线荧光光谱仪(EDXRF)

利用荧光X射线具有不同能量的特点,将其分开并检测,依靠半导体探测器来完成。仪器由X射线发生器、检测器、放大器、多道脉冲分析器、计算机组成。

X射线荧光能谱仪(EDXRF)对X射线的总检测效率比波谱高,在宝石学中应用最广泛。可同时测定样品中几乎所有的元素,分析速度快;缺点是能量分辨率差,探测器必须在低温下保存,对轻元素检测有困难。

3样品制备及测试适用性

样品要求表面抛光。X射线荧光光谱仪的适用性如下:①分析快速、准确、无损,适用于各种宝石;②分析的元素范围广,从4Be至92U均可检测;③荧光X射线谱线简单,相互干扰少,样品不必分离,分析方法比较简便;④分析浓度范围较宽,从常量到微量均可检测,重元素检测限可达10-6量级,轻元素稍差。

4应用

1)贵金属首饰成色检测。

2)鉴定宝石种属及亚种。

3)区分某些天然宝石和合成宝石。

4)鉴别某些人工优化处理的宝石。

5)判断宝石产地。

图1-5-4 新疆珊瑚化石的粉晶X射线衍射图C—方解石;D—白云石

四、X射线粉末衍射(X-ray Diffraction,XRD)

用于测定晶体结构的X射线,波长为0055~025nm,这个波长范围与晶体点阵面的间距大致相当。多晶衍射仪法是利用计数管和一套计数放大测量系统,把接收到的衍射光转换成一个大小与衍射光强成正比的讯号记录下来。多晶衍射所得的基本数据是“d-I”值(衍射面间距和衍射强度),每一种晶体因结构不同,会有不同的衍射样式和衍射强度,都有一套特征的“d-I”数据,图1-5-4所示为新疆吐鲁番珊瑚化石的X射线衍射分析结果,横坐标衍射角为2θ,对应衍射角θ可求d值,纵坐标表示强度I。根据特征的“d-I”数据可以查手册或X射线衍射数据库,得到其物相主要为方解石,还有少量的文石。

X射线粉末衍射法可以不破坏样品,如翡翠,软玉、石英岩玉等做的戒面、耳环和小的挂件等都可用X射线衍射进行物相鉴定。对于大的玉雕或宝石则只能破坏样品,从原石碎块或雕件底部刮下极少量的样品,碾成粉末,然后进行快速的分析以鉴别晶质材料。

五、电子探针(Electron Micro-probe)

电子探针主要用于定量或定性地分析宝石矿物的微区成分、近表面的宝石包裹体的成分、观察宝石表面形貌及结构特征。

1仪器组成和基本原理

电子探针一般由电子枪、电子透镜、样品室、信号检测、显示系统及真空系统等组成。电子枪用以发射具有一定能量的电子束轰击宝石样品待测微区,在样品表面产生特征X射线、二次电子、背散射电子等信息。通过测定特征X射线的波长,即可确定样品中所含元素的种类,将样品中所测得的某元素的特征X射线强度与标准样品中相同元素的特征X射线强度相比,从而得到该元素在样品中的实际含量。根据二次电子的强度还可作宝石样品的形貌分析。

2样品制备及要求

宝石样品大小一般要求直径Φ≤25mm,高度H≤10mm。用于定量分析的宝石,样品表面要磨平和抛光,样品表面应具有良好的导电性,若不导电,应在样品表面镀碳膜(金属膜)。

3分析仪器

电子探针根据收集特征X射线的仪器不同,分为波谱分析和能谱分析两种方法。能谱仪(EDS)中探测器可以接收到更多的X射线,因此检测效率较高。能谱仪的分辨率比波谱仪低,但测试速度快,仅需几分钟就可得到全谱定性分析结果,波谱仪(WDS)只能逐个测定每一元素的特征波长,一次全分析往往需要几个小时。波谱仪可以测量4Be—92U之间的所有元素,能谱仪一般只能分析原子序数在11以上的元素。

4分析方法

①点分析,用于测定样品上某个指定点的化学成分;②线分析,用于测定某种元素沿给定直线分布的情况;③面分析,用于测定某种元素的面分布情况。

5电子探针在宝石学中的应用

1)根据成分鉴定宝石的种类。

2)根据某些微量元素区分天然宝石与合成宝石。

3)根据成分变化特点区分某些优化处理的宝石。

4)研究宝石内部的包裹体成分。

5)根据背散射图像和二次电子图像分析宝石表面微形貌。

六、扫描电镜(Scanning Electronic Microscopy)

扫描电镜用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的信息对样品表面或断口形貌进行观察和分析,也可结合能谱仪对样品化学成分进行分析。

1基本原理

电子束在试样表面扫描,与样品相互作用产生二次电子像(SE)、背散射电子像(BE),特征X射线等信号,这些信号分别被不同的接收器接收而成像。

2样品制备

样品最大直径一般不超过15mm。如果单为观察形貌像,直径稍大一些(39mm)仍可以使用,但试样必须导电。若不导电,须在表面镀上一层厚约200Å碳或150Å的金。

3SEM在宝石学上的应用

1)根据二次电子图像或背散射图像观察宝石的表面微形貌。

2)利用扫描电镜所带的能谱仪对宝石的化学成分进行测试。

七、拉曼光谱(Raman Spectrum)

不同物质的分子或不同矿物结构具有不同的拉曼光谱特征。通过分析宝石拉曼光谱的特征峰位、峰强、线型、线宽而达到鉴定识别宝石的目的。

1基本原理

激光拉曼光谱是一种激光光子与宝石分子发生非弹性碰撞后,改变了原有入射频率的一种分子联合散射光谱,通常将这种非弹性碰撞的散射光光谱称为拉曼光谱。

拉曼散射中,当散射光的频率低于入射光的频率时,分子能量损失,这种类型的散射线称为斯托克斯线;若散射光的频率高于入射光的频率,则分子能量增加,这类散射线称为反斯托克斯线。前者是分子吸收能量跃迁到较高能级,后者是分子放出能量跃迁到较低能级。

由于常温下分子通常都处在振动基态,所以拉曼散射中以斯托克斯线为主,反斯托克斯线的强度较低,一般很难观察到。斯托克斯线和反斯托克斯线统称为拉曼光谱。一般情况下,拉曼位移由宝石分子结构中的振动能级所决定,而与其辐射光源无关。

2仪器结构

激光拉曼光谱仪的主要部件有:激光光源、样品室、分光系统、光电检测器、记录仪和计算机。如图1-5-5和图1-5-6所示。激光光源通常用5145nm绿色激光。

图1-5-5 激光拉曼光谱仪结构框图

图1-5-6 激光拉曼光谱仪

3仪器特点

1)测试精度高、灵敏,测量下限可达10-9g;微区微量检测,可实现1~2μm微区测试。

2)无损检测,无需特别制样。

3)固相、气相、液相均适用,可定性-定量分析气液相成分,分析CO2、N2、CH4等挥发组分,也可测气液包体的盐度。

4)可测距离表面5mm下的宝石内部包裹体。

4宝石学中的应用

1)鉴别宝石种:可直接利用拉曼光谱对宝石进行无损鉴定,根据拉曼标准图谱进行比对,确定宝石的种属,与相似宝石区别。

2)利用拉曼光谱对宝石的包裹体进行研究,有利于区别天然宝石和合成宝石、确定宝石产地并对宝石包裹体的成因类型进行研究。拉曼光谱具有分辨率和灵敏度较高且快速无损等优点,特别适用于宝石内部1μm大小的单个流体包体及各类固相矿物包体的鉴定与研究。若在两个物相交界处,则同时产生两个物相的拉曼散射光谱。

3)利用拉曼光谱分析测试技术可以鉴别某些人工优化处理的宝石。

4)区别天然宝石和合成宝石。

八、阴极发光仪(Cathode Luminescence,CL)

阴极发光是物体在从阴极射线管发出的具有较高能量的加速电子束激发下发出可见光的现象。不同宝石由于含有不同的激活剂元素,因而产生不同的阴极发光,其光波波长和强度与该宝石的成分、结构、微量杂质等有关。

1仪器的组成和功能

仪器主要由高压发生器、真空系统、电子枪、样品室和显微镜组成。仪器各部分作用是:高压发生器产生0~16kV的负高压;真空系统,产生和维持5~200Pa的中度真空;电子枪发射电子束激发样品发光;显微镜用于观察样品发光的显微特征。

2宝石阴极发光的特征

宝石阴极发光的特征主要包括阴极发光的图案、颜色、亮度和阴极发光光谱等。阴极发光的图案主要研究宝石晶体生长的特点与过程、玉石的结构等;阴极发光的颜色主要用来区别不同的发光体,如宝石中不同的生长区、充填物、致色剂等;阴极发光的亮度区别发光中心的类型和密度;阴极发光的光谱定量地描述宝石阴极发光的颜色和亮度。

3阴极发光在宝石学中的应用

阴极发光技术是研究金刚石内部结构的重要手段之一。通过高能阴极射线激发金刚石中的杂质和晶格缺陷造成发光中心,从而产生不同的阴极发光图案。这些图案随金刚石生长扭曲、晶格缺陷和杂质的成分、分布情况等变化而变化,为区分天然金刚石与合成金刚石提供关键的证据,也可用于区分淡水珍珠和海水珍珠。阴极发光的样式可揭示淡水珍珠生长和组成的某些特点,研究表明,在阴极射线激发下,淡水养殖珍珠和处理珍珠发黄绿或绿色光,而各色海水养殖珍珠和处理珍珠不发光。市场上很多染色黑珍珠都是淡水珍珠,因此可利用阴极发光与塔希提黑珍珠区别。阴极发光特征可作为无损鉴别海水、淡水养殖珍珠以及处理养殖珍珠的主要依据之一。

锆石作为研究壳幔岩石演化过程重要的矿物地球化学探针,抗风化且具有非常高的稳定性,即使经历后期多次事件后仍有保存(谢桂青等,2001);锆石普遍含Pb低,富含U、Th,其U–Pb体系封闭温度可达到900℃(Lee et al,1997;Cherniak et al,2000),是目前已知矿物同位素体系中封闭温度较高的,因而是确定岩浆岩结晶年龄的理想对象。结合锆石的阴极发光图像、锆石微区U–Pb年龄测定、锆石微量元素及锆石微区Hf同位素综合分析,可以为锆石的成因演化及其寄主岩经历的地质作用过程提供重要依据(Griffin et al,2000;吴元保等,2004;Zheng et al,2006;钟玉芳等,2006)。对与金刚石有关的金伯利岩锆石的研究已显示,金伯利岩的锆石可以成为金伯利岩金刚石勘探的指示性矿物(Belousova et al,2002)。本项目在前人工作基础上,对湖南宁乡、常德等地的钾镁煌斑岩及含有金刚石的相关岩石的重砂矿物进行了分离,利用电子探针、阴极发光图像及LA-ICPMS等现代测试技术对其中的锆石进行主、微量元素成分、内部结构特征及U–Pb同位素地球化学研究。

2441 样品来源及分析方法

5个重砂样分别来自湖南宁乡钾镁煌斑岩群Ⅰ号岩管2个(编号I-1、I-2),III号岩管1个(III),常德港二口洞湾钾镁煌斑岩1个(DW),石门上五通白垩系红层1个(SWT),每个重砂岩样约20kg。重砂样品的分选工作在广州有色金属研究院完成,整个过程包括重砂岩石样品的脱泥、淘洗、称重、筛分、缩分、磁选及重液分离等程序,然后在显微镜下从重砂样分选出的重砂矿物中挑选出锆石。之后,将锆石置于双面胶上,接着用无色透明的环氧树脂将之固定做成圆饼状样品靶,待树脂固化后抛光直至露出锆石平面,用于之后的分析。

锆石一般150~400μm,颜色多样,大部分透明,玻璃光泽或油脂光泽。他形到自形,晶体形态包括短柱状、长柱状、浑圆状等。少数具有较完整的四方双锥或复四方双锥晶形,其锥面和柱面发育完善,自形程度较高,以长柱状为主,具有不同的长宽比,反映其可能结晶于岩浆物理化学条件不同的环境(刘显凡和卢秋霞,1997;汪相,1998)。

锆石电子探针的成分分析和阴极发光,在中国科学院(北京)地质与地球物理研究所的法国CameraSX51电子探针仪器及其附带的阴极发光探测仪上完成,分析电压为50kV,电流为15nA。锆石微量元素及U–Pb年龄在中国地质大学(武汉)地质过程与矿产资源国家重点实验室,利用激光剥蚀-电感耦合等离子体质谱仪(LA-ICPMS)测定,其中分析仪器为Agilent7500a等离子体质谱仪,激光剥蚀系统为GeoLas2005。分析过程参数为:等离子体功率:1350W;激光波长:193nm;激光脉冲频率:10Hz;激光能量:>200mJ;光斑直径:44μm;分析时采用单点剥蚀方法,以美国国家标准物质局人工合成硅酸盐玻璃NIST610作为外标,以29Si作为内标,数据选用一个质量峰一点的跳峰方式进行采集。锆石U–Pb年龄测定采用国际标准锆石91500作为外标校正方法,每隔4~5个样品分析点测一次标准,在分析20次锆石U、Th和Pb的含量的前后均测定NIST610,以保证数据具有可比性。测试结果通过采用GLITTER软件计算得出207Pb/206Pb、207Pb/235U、206Pb/238U三组同位素比值、年龄及误差,单个数据点的误差为1σ,加权平均值的误差为2σ,年龄计算及谐和图的绘制采用Ludwig’s Isoplot(ver 206b)完成。

研究的大部分锆石阴极发光图像颜色明亮,具有特征的岩浆振荡环带(图232);少量锆石没有分带结构,阴极发光图像较暗。根据锆石的外形及内部结构特征,可初步判断它们主要为岩浆型锆石(Vavra,1993;Crofu et al,2003)。本文电子探针成分分析显示锆石成分为,SiO2:33197%~34548%,ZrO2:63087%~65717%,HfO2:056%~1749%。Zr/Hf值为37~85,平均为51,与一般的碱性岩成因锆石Zr/Hf值相当(丘志力等,2004),锆石成分特征与起源于地幔深部偏碱性的钾镁煌斑岩一致(银剑钊,2000)。

图232 宁乡I号岩管钾镁煌斑岩中锆石的CL图像

Figure 232 Cathodoluminescence images of zircons in the NoI lamproite pipe of Ningxiang

2442 锆石的稀土及微量元素

5个重砂样品中的27颗锆石进行稀土及微量元素测定结果见表231。结果表明,大部分锆石ΣREE含量与已有典型钾镁煌斑岩的研究结果相符,少部分锆石ΣREE含量则与之相差较大,可能为其他碱性岩来源或钾镁煌斑岩捕虏体锆石,将不作为钾镁煌斑岩结晶锆石对象进行讨论。

湖南与钾镁煌斑岩有关锆石的微量元素Y含量变化范围很大(5179~1477992μg/g);Hf含量为066%~139%,平均含量为102%。Hf与Y之间具有一定的负相关关系,(Yb/Sm)N的范围变化在10~230之间,Nb/Ta值为141~377,平均为206;锆石U含量为3244~176114 μg/g,平均22761μg/g;Th 2653~64371μg/g,平均15669μg/g。Th/U集中于017~324范围,平均为090,但主要集中在04~10之间,显示出岩浆型锆石的特点。除洞湾Dw-03样品外,其他锆石均表现为LREE亏损HREE富集的稀土配分模式,以及明显的Ce正异常和适度的Eu负异常(图233),属于典型的岩浆型锆石的稀土配分模式,但和大多数幔源金伯利岩锆石有明显区别(吴元保和郑永飞,2004;钟玉芳等,2006)。

属于钾镁煌斑岩结晶锆石的ΣREE含量为23922~89473μg/g,平均为58354μg/g,与前人研究的结果基本一致。将这些锆石微量元素测试数据在微量元素对相关图上投影(图234),发现图上投点大部分落入西澳典型钾镁煌斑岩锆石的投影区域及附近,只有个别落在部分相关图的区域之外。显示湖南宁乡钾镁煌斑岩有关的锆石成因来源与西澳典型的钾镁煌斑岩的锆石具有一定的相似性(Belousova et al,2002)。

表231 湖南钾镁煌斑岩及相关岩石中的重砂锆石LA-ICPMS微量元素分析结果

图233 湖南钾镁煌斑岩重砂锆石的稀土元素球粒陨石标准化分布型式图

( 部分锆石由于某些元素的缺失而没有投在图上,球粒陨石标准化根据 Taylor and McLennan,1985)

Figure 233 The chondrite-normalized diagram showing the distribution pattern of REEs of heavy mineral zircons in lamproites from Hunan

(some zircons are not presented on the diagram due to their deficiency of certain elements,and chondrite-normalization after Taylor and McLennan,1985)

2443 锆石U-Pb年龄

对5个重砂样中11颗有阴极发光图像及微量元素测试锆石的U–Pb年龄进行了测定(表232,图235),其中宁乡钾镁煌斑岩I号岩管4颗,III号岩管3颗,洞湾地区钾镁煌斑岩2颗,上五通地区白垩系红层2颗,年龄数据如表232中所示。年龄较新的6个锆石样品中,I和 III号岩管的2个锆石样品(I-2-Zr-01,III-Zr-05)具有较高的U、Th和∑REE含量,其U含量分别为185μg/g和472μg/g,Th分别为126μg/g和257μg/g,Th/U值分别为068和054,∑REE含量分别为691μg/g和769μg/g;它们具有典型的振荡环带结构,属岩浆锆石,年龄均为(104±1)Ma,为燕山中期喷发的岩浆结晶锆石;另外4个锆石的U、Th和∑REE含量接近,U为32~69μg/g,Th为27~62μg/g,Th/U值为083~090,∑REE含量为416~533μg/g,也是岩浆的结晶产物,但是否和前2个样品来源于同一母岩还有待研究。6个锆石样品中有4个样品(I-1-Zr-01、I-2-Zr-01、III-Zr-03、III-Zr-05)年龄比较集中,206Pb/238U年龄为99~104Ma之间,均落在谐和曲线上,加权平均年龄为(1016±51)Ma(95%置信度,MSWD=25),但来源于III号岩管锆石(III-Zr-02)年龄则为80±1Ma,属燕山晚期。而洞湾钾镁煌斑岩样品DW-Zr–01-a的206Pb/238U年龄为(102±1)Ma,与加权平均年龄为1016Ma的一组宁乡钾镁煌斑岩重砂锆石年龄相一致,说明它们是在同期岩浆中结晶的。

中生代印支期的2个锆石样,年龄分别为(217±2)Ma(I-2-U-Zr-02)和(237±3)Ma(DW-Zr-02-b),前者具有较高的U(1959μg/g)、Th(717μg/g)和∑REE(1312μg/g)含量,较低的Th/U比值,为037,具有明显的振荡环带结构;后者U的含量为287μg/g,Th为304μg/g,Th/U为106,∑REE为555μg/g。和前人发现的钾镁煌斑岩锆石ΣREE含量一般不超过600~700μg/g一致(Belousova et al,2002),显示两者的母岩来源可能有所不同。根据其微量元素及CL图特征判断,它们应该均为岩浆成因,后者可能来自钾镁煌斑岩。印支期是对中国大陆影响广泛而强烈的一次构造运动,和扬子板块与华北板块碰撞结合(220~240Ma)(Li et al,1993)明显具有同时性,可能是该区域发生的一次重要的岩浆活动产物的反映。对于该时期是否具有钾镁煌斑岩岩浆活动,以此单颗锆石年龄目前还不足以判断,还需作进一步的工作证实。

图234 钾镁煌斑岩锆石微量元素含量相关图

-宁乡及洞湾钾镁煌斑岩锆石数据投影, -西澳Argyle钾镁煌斑岩锆石数据投影,阴影区为西澳钾镁煌斑岩锆石微量元素含量相关性投影区,数据选自 Belousova et al(2002)

Figure 234 Correlation diagram of trace elements of zircons in lamproites

-data plot of zircons in lamproites of Ningxiang and Tongwan, -data plot of zircons in lamproites of Argyle,Western Australia,shadow area is

correlation projection of trace elements in zircons of lamproites from Argyle,Western Australia,data selected from Belousova et al(2002)

新元古代(662±7)Ma(I-2-U-Zr-01)锆石具有明显的振荡环带结构,较高的U、Th和很高的∑REE含量,具有典型岩浆锆石特征,其核心到边缘,微量元素含量逐渐增加,核心和边缘的U含量分别为493μg/g和787μg/g,Th分别为445μg/g和576μg/g,∑REE分别为6051μg/g和9351μg/g,Th/U值分别为 090和073,无法确定来源与钾镁煌斑岩的关系;新元古代(794±8)Ma (SWT-Zr-04),具有典型的振荡环带结构,其U、Th很低,分别为U(53μg/g)、Th(43μg/g),Th/U值为082,∑REE含量为962μg/g。它们的3组年龄明显不一致,呈现207Pb/206Pb>207Pb/235U>206Pb/238U的趋势,说明锆石的封闭体系可能受到一定的破坏而导致放射成因Pb的丢失,因此其U–Pb年龄的意义无法讨论。

表232 宁乡钾镁煌斑岩重砂锆石的U-Pb测年结果 Table 232 U–Pb age dating results of heavy mineral zircons in lamproites of Ningxiang

图235 湖南宁乡钾镁煌斑岩锆石的U-Pb谐和曲线图

Figure 235 Concordia diagram with zircon U–Pb data of lamproites from Ningxiang

早元古代锆石(SWT-U-Zr-01)207Pb/206Pb年龄为(2008±29)Ma,属于谐和年龄,3组年龄在误差范围内基本一致,反映了锆石U–Pb封闭良好。其U、Th和∑REE含量较低,U为31μg/g,Th为29μg/g,∑REE为202μg/g,Th/U值为094,具振荡环带结构,属于岩浆型锆石,该年龄锆石的存在说明在石门上五通地区含金刚石的白垩系红层中可能存在过早元古代的岩浆喷发事件,但这个事件和金刚石的成因关系暂时还无法评估。

本项目测试的湖南宁乡附近不同地点和钾镁煌斑岩有关的重砂锆石206Pb/238U年龄具有多组不同的年龄,可能显示研究区钾镁煌斑岩岩浆活动具有多期次的特点。这一结果和湖南金刚石分布十分广泛,在震旦系江口组、寒武系、上三叠统—侏罗系、白垩系、古近系—新近系中均有金刚石的发现,金刚石的指示矿物镁铝榴石、铬铁矿等的分布与震旦系江口组、中新生代新老碎屑岩及红层均有关系指示湖南金刚石原生矿的成矿期可能具有多期次性的特征一致。

湖南413队的未发表资料显示,前寒武纪、古生代及中生代均有可能含有潜在的不同期次的钾镁煌斑岩或其他含金刚石的岩体,湖南地区大面积广泛分布的白垩系陆相红层沉积可能掩盖了一部分未被发现的基底。Zheng et al(2006)对当地重砂锆石207Pb/206Pb年龄研究结果也显示,湖南沅水流域重砂锆石最大的年龄达到2980 Ma,也显示了太古宙热事件(岩浆或变质)的存在。本书发现石门上五通地区含金刚石白垩系红层样品中具207Pb/206Pb谐和年龄为(2008±29)Ma的古元古代岩浆锆石,某种意义上证实沅水流域具有古老的与金刚石有关的火山物质来源。

本项目获得较年轻的钾镁煌斑岩有关的重砂锆石206Pb/238U年龄分布在燕山晚期,其岩浆活动和前人对中国东部玄武岩和辉绿岩等基性岩脉所获得的密集年龄区间(103~110)Ma(K–Ar和40Ar–39Ar法同位素年龄)具有明显的一致性(Li et a1,1998;谢桂青,2003),显示出它们可能和中国东部始于中侏罗世的岩石圈伸展和减薄事件有关(范蔚茗等,2003)。

一、红(蓝)宝石的优化处理与鉴别

刚玉类红(蓝)宝石是市场上常见的高档宝石,对这类宝石的优化处理历史悠久,种类繁多,且不断的创新,主要有以下几种:

1热处理法

红(蓝)宝石是应用热处理法最多的宝石品种,市场上的红(蓝)宝石绝大部分是这种优化宝石。人们通过各种热处理手段,将天然产出的红(蓝)宝石进行人工处理,以改善颜色和透明度。目前,可以将含铁离子蓝宝石从无色和浅黄绿色改成**或橙色;将含铁和钛离子蓝宝石从无色、浅蓝色或蓝黑色改善成宝石蓝色;将红宝石从牛血红色改善成鸡血红色,即消除红宝石的紫或蓝色调。此外,人们还可以通过热处理消除红(蓝)宝石中的金红石等包裹体,以增加宝石的透明度。或反之,也可以增加宝石中的针状包裹体,使宝石产生星光。这种方法改善颜色或透明度的优化宝石,一般不需要鉴别,在出售是也不必声明,行业里不认为是欺诈。

2扩散处理法

这种方法是通过高温处理在宝石表面扩散一薄层颜色,颜色的厚度从015~042mm不等。一般原料是天然的无色或浅色刚玉,最近也发现有用合成刚玉宝石的。扩散的颜色有蓝色、红色和橙色等,也有在宝石表面扩散星光的。扩散处理宝石在各国珠宝界引起广泛关注,人们不允许将这种宝石作为天然宝石直接出售,在出售时必须声明是经过扩散处理的。

扩散处理宝石的鉴定依据是,原石是无色或浅色的天然刚玉,它的颜色是用高温的方法人工扩散进入晶体的,颜色仅限于宝石的表层,而宝石的核心部分仍为浅或无色的原天然刚玉,宝石的颜色层,可通过切磨或抛光,部分或全部去除。

鉴定扩散处理蓝宝石较有效的方法是通过油浸和放大,用肉眼或在显微镜下观察。高温特征是:样品毛坯料表面呈现烧结物;放大观察可见到一个扩散层;在宝石的表面裂纹或周围的孔隙中,常沉积有浓缩的深颜色和扩散用的色料;宝石中的包裹体周围常熔融,或金红石的“丝”熔蚀成点状,或被吸收。由于颜色仅限于宝石表面,在油浸下观察的特征是:刻面接合处和腰围明显地出现较深的颜色线,或高突起;整个宝石看起来颜色不均匀,有的刻面深,有的刻面浅,称斑状刻面,这是由于扩散层的厚度不均匀及扩散后抛光过重等综合作用引起的;在腰围处常常完全无色,整个腰围清晰可见,称为腰围边效应;在二碘甲烷中,刻面接合处清晰可见,整体也出现一个清楚的蓝色轮廓,天然宝石则看不到刻面界线,整体边缘也不清楚。

扩散处理的刚玉,最早出现在市场上的是蓝宝石,后来又有红宝石。进入21世纪以来,又有一种橙红色的扩散处理刚玉上市,具研究,其颜色是经人工渗透铍元素而成。用于仿价格不菲的天然橙红色帕帕拉恰(padparadscha)刚玉宝石。

3其他方法

由于人们对红、蓝宝石的需求长盛不衰,天然优质刚玉类宝石的产量有限,因此几乎对宝石优化处理的一切方法都被用于红、蓝宝石的改善中,如,染色、注油、充填塑料等。

二、托帕石及其改善方法

托帕石(矿物名称黄玉)是常见的宝石之一,为珠宝店必不可少的宝石。黄玉宝石的颜色与其化学成分中F和OH的含量比有关。伟晶岩中的黄玉OH含量很低,F接近理论值,称F型黄玉,常为无色或褐色。其他产状如云英岩中的黄玉OH含量增加到5%~7%,热液成因的脉岩中的黄玉F和OH含量可接近相等,称OH型黄玉,常为**或粉红色。还有一种橙红色黄玉是十分珍贵的品种。

1颜色的变化

黄玉的颜色变化,可以用放射性辐照和热处理来完成。

(1)F型黄玉:无色或褐色品种经辐照后变为深褐色或绿褐色,经200℃左右的热处理可以得到深浅程度不同,漂亮的蓝色黄玉,有些外观酷似海蓝宝石,过分的加热可失去颜色恢复原状。

(2)OH型黄玉:无色或浅**品种经辐照可变为橙红色或橙**加热可使颜色恢复原状。含铬的粉红色或紫色品种经辐照后可变为橙红色和红色,加热可恢复原来颜色。还有一种产在巴西的带青色的黄玉,放射性辐照后呈黑褐色,经有控制的热处理可转变为粉红色,再经适当的辐照可出现金**色彩,但不变蓝。

2辐照技术

一切可以产生放射性的装置,都可以作为辐照黄玉的“源”。最早人们把放射性物质镭装在试管里与宝石混合,摆到铅盒子内对宝石进行辐照。现代人们常用的设备有钴60,高、低能电子加速器,反应堆等,这些设备各有优缺点。

钴-60可产生γ射线不带电,穿透能力强,辐照较均匀。F型黄玉经γ射线辐照后变成深浅不同的褐色,一般辐照剂量为109~1010拉德,经热处理后,可得到浅蓝色黄玉。经γ射线辐照的宝石不带放射性残留,但颜色较淡,应用前景不大。

电子加速器产生的高能电子,能量比γ射线高得多,辐照的时间短,放射性残留少,产生的颜色明快,经热处理后黄玉颜色的深浅程度与海蓝宝石十分相似。加速器是辐照黄玉常用的设备,但由于设备庞大,费用昂贵,使用受到限制。

核反应堆是利用原子核裂变时产生巨大原子能的装置。在反应堆里可产生多种类的中子,有快中子、慢中子、热中子等。其中快中子对宝石作用放射性残留少,因此,在辐照宝石时人们想办法滤掉其他中子,尽力只允许快中子通过。中子辐照黄玉的效率很高,可以很快地得到深色的黄玉,经处理可得到蓝色的成品。由于反应堆的孔道很多、体积很大,一次辐射的样品量可以很多。反应堆中子辐照最大的特点是样品带有部分放射性残留,为确保人身安全,需放置很长时间,待放射性减少到国家允许的标准以下才能上市。

3热处理

热处理是辐照处理的反作用,辐照产生的色心是引起宝石颜色变浅的原因,这些色心有的稳定有的不稳定,热处理的目的就是去掉那些颜色不好的不稳定的色心,留下漂亮颜色的稳定性较好的色心。通过加热到180~300℃的热处理,就能使F型黄玉中那些棕色、褐色色心消除,而让蓝色的色心显露出来。一种综合处理的方法,可以得到理想颜色的蓝色黄玉,通常是经反应堆和加速器辐照后,再经热处理。

4改色黄玉的检测

黄玉的颜色主要是由色心形成的,色心形成颜色的关键是色心的稳定性问题,一般经过热处理仍保留的色心,可认为是稳定色心。如F型蓝黄玉,其辐照品和天然品无论是在外观和颜色形成的机理上都是一致的,都是经过外界辐照而形成的蓝色色心。其差别只在于辐照品是人工大剂量、短时间辐照和加热的产品;天然品是自然界小剂量长时间辐照和光照的结果,要区别开这两种蓝黄玉是很难的。最近有人提出用热发光的方法,天然蓝黄玉在350℃时发光强度突然增高,而人工辐照品在300℃以下发光强度就可以增高了。这种方法在检测时常破坏宝石的颜色,实际意义不大。目前,还没有非破坏性方法能准确的检测出黄玉的颜色是否经过辐照处理。

但对辐照黄玉进行放射性检测是必须的,一般用γ仪。国外有的商人常在柜台上放一台小型γ仪,当着顾客面检测宝石的放射性。一般认为在γ仪(微伦计)上读数小于50微伦/小时(背景值为20微伦/小时)是安全的。

此外一种褐**—橙**的黄玉也可以进行“粉红化”处理,通过相当低的温度热处理得到颜色较稳定的粉红色宝石。据报道,经这种热处理过的黄玉,具有较天然粉红色黄玉强的二色性。

三、钻石的优化处理与鉴别

钻石人工致色主要是经辐照后进行热处理来完成,首先,通过放射源对钻石进行辐照,目前大多采用电子加速器将钻石辐照成蓝色、绿色、蓝绿色、褐**等。然后,根据需要进行一定的热处理改成红色、紫色、蓝色等各种颜色。辐照致色钻石的鉴别是珠宝界的一大难题,至今还没有很好的解决。目前,只是在谱学特征上寻找差别,即可见光谱、红外光谱等吸收的不同,但由于影响因素多,准确性尚欠缺。蓝色的钻石有特征的差异,天然蓝钻含硼具有半导体的性质,可导电;辐照蓝钻是电的绝缘体,不导电。

近年来,市场还出现一种经温压人工处理,退除杂色成白色的钻石。业界认为这种方法主要用于由结构缺陷引起黄或褐色的Ⅱa型钻石,目前按行业约定,经过这种方法处理的钻石必须送美国GIA分级,并在其腰棱用激光刻有“Ge pol”的印记。

对某些具有特征缺陷的钻石,人们常采用一些处理技术,这些处理通常不能提高钻石的净度级别,只是改变钻石的外观,使钻石易于出售。业界贸易规则中,明确要求经这类技术处理的钻石必须声明。

“激光钻孔”技术,对具有明显可见暗色包裹体的钻石,采用激光束,烧出一个从钻石表面通向包裹体的微小通道,钻孔径0002~002mm,深度不限。该技术是将钻石固定在一个可以精确旋转的夹具上,借助显微镜来调整激光,让激光束垂直钻石表面直达暗色包裹体,使包裹体蒸发掉,为清洗孔道和漂白包裹体的残留物,常用酸进一步处理,以使包裹体变浅。孔道通常在真空中使用环氧树脂堵塞,这样当钻石台面朝上固定在首饰上时,孔道将很难被看出。但从亭部一侧用10倍放大镜观察,容易看见。

“裂隙填充”技术,1987年起市场上出现了这种处理钻石,采用折射率相近的材料对钻石的开放裂隙进行填充。这与祖母绿“藏破”的原理是一致的。祖母绿中空气填充的裂隙很容易看到,但市场上常用与祖母绿相近折射率的油填充裂隙,肉眼就比较难看出来了。填充只能改善宝石的外观,却不能增加其价值。钻石裂隙填充是在真空中,将高折射率的玻璃状材料注入到钻石开放的裂纹内,注入材料的组成一直未公开。经该法处理的钻石,较大裂隙易于检出,小裂纹的检出较困难。检测主要是显微镜下观察,填充部分随钻石的移动可呈现特殊的橙或蓝紫色的闪光,出现的闪光常是单一颜色,而非光谱系列闪光。有时镜下可见到流动构造或扁平状气泡。

经这些技术处理的钻石在净度分级中有特殊的规定,见第15章第一节。

四、翡翠的处理方法与鉴别

作为优质玉石,翡翠的需求量越来越大,而天然产出品中颜色鲜艳而透明度高的上品十分稀少,供求矛盾促使翡翠的价格迅速上涨。多年来,人们一直试图采用各种人工改善的方法,使翡翠增加颜色和透明度,以提高其商业价值和可利用率。常见的方法有:改色、染色和脱黄注胶等。在珠宝界,人们把翡翠划分为A货、B货和C货。

1热处理翡翠及鉴别

翡翠的热处理称为焗色,一般是通过热处理使翡翠的颜色加深,常是增加红色。红色翡翠也是人们喜欢的一个品种,但自然界的红色品种不多,纯红色的就更少见,多数都带有棕色及褐色,加热的目的是去掉棕色或褐色,得到较好的红色。

热处理的步骤是将清洗干燥好的样品放在炉中,炉内的温度一般不需太高,用烘箱即可,加热在空气中进行,为保证样品受热均匀,要放在透明容器或距离发热体远些,升温速度要缓慢,最好是边升温边观察,当翡翠样品开始慢慢转变颜色,出现猪肝色时,开始缓慢降温,冷却后翡翠会呈现出红色,对不同质地的翡翠要具体调整操作的时间和温度。为获得较鲜艳的红色,在翡翠完全冷却后,再浸泡到漂白粉溶液中数小时,进行氯化,可增加它的艳丽程度。

焗色翡翠与天然翡翠的红色,都是赤铁矿(三价铁离子)呈色,赤铁矿是由褐铁矿失水转化而成的。不同之处,天然品是在自然条件下缓慢失水,而焗色品是在加热条件下迅速失水。实际上很难区别,如果将其加以区别,那只能凭人的感觉来区分,即天然品比较透明,焗色品会稍差些,给人以“发干”的感觉。

2C货的制作和鉴别

颜色是决定翡翠价值的主要因素,绿色越纯正,价值越高。但大多数翡翠很少有绿色或颜色很淡,为此,人们采用了染色和着色,最常被增加的颜色是绿色和紫色。

加色的步骤是,首先,选择具有一定孔隙的翡翠(密度较大结构致密的翠很难加上颜色),进行清洗烘干。然后,放入染料(如氨基染料)或颜料(如铬酸盐)的溶液中,温度在100℃以下,浸泡2周左右,时间以颜色渗入的深浅,翠件的大小,孔隙多少而定。最后,再将部分上色的翠件烘干,表面浸蜡,使颜色分布更柔和。不管是染色还是着色的绿色翡翠都作为C货出售。紫色翠件的加色方法类同,只是染料或颜料换成紫色而已。

外观相同的翠件,A货和C货的价值相差十分悬殊,因此对C货的鉴别十分重要。一般采用滤色镜、吸收光谱仪和放大观察,如果在滤色镜下呈现暗棕红色到棕粉红色;在吸收光谱的红色段650nm左右出现一条粗黑的吸收线;放大镜或显微镜下放大观察,在微晶狭缝中可见到绿色网纹。以上三种现象出现一种,即可确定为C货。但是没有这些现象的翡翠,如在滤色镜下不变色,也不能肯定它不是C货,因为现在人们染色技术十分高明,可能是采用了新的染色方法,需依靠多种手段进一步确定。目前最适用的方法是红外光谱测试,C货会出现明显的色料吸收峰。

3B货的制作和鉴别

由于翡翠为多晶集合体,在微小晶体之间不可避免地会存在着少量的金属离子如铁、锰等,这些离子的氧化物多为深色氧化物,这样就大大地影响了翡翠的颜色和鲜艳程度。特别是在翠的底上出现黑褐色、灰色等斑点和瑕疵,使翡翠看起来很脏,价值明显降低。为解决这个问题人们采用了化学漂洗的方法,去掉污迹,这就出现了B货。

B货的制作主要有两个步骤,一是脱黄,也称清洗或“冲凉”。作法是将选择好的样品用强酸(如盐酸和稀硫酸等)进行清洗、浸泡,不断更换新的酸液,一般要泡2~3周,观察样品到**基本脱完为止,脱黄后的翡翠颜色比较鲜艳,绿色突出,底色明显变白,但透明度不好,水头差,呈现干裂外观。二是注胶,将脱黄处理的翡翠,中和烘干后,注胶加固。翡翠经酸洗脱黄,尽管整体外型未改变,但细微结构遭到严重破坏,强度明显降低,需进行加固处理。即将加热后的样品放入胶中,在烘干箱中温度保持200℃以下,使胶均匀渗入翠的裂隙。常用的胶有塑料、无色环氧树脂等。最后抛光,去掉肉眼可见的表面胶。

B货的鉴别难度很大,需经多种观察和仪器测试,综合分析。

(1)仔细观察宝石的颜色、光泽和结构。B货的颜色较鲜艳,但不太自然,有时脱黄不好时基底有**调;与天然A货的玻璃光泽不同,B货常出现树脂光泽,反光量减少,光泽变弱;B货经清洗注胶,结构变化较大,多显得松散,用侧光观察,白色部分出现较为粗糙的白丝状组织,宝石表面出现明显的凹凸结构。

(2)测定密度、寻找差别。翡翠的密度是330~336g/cm3。从理论上讲经清洗注胶的B货密度应低于原件,但由于注胶的量有限,再加上作为矿物集合体,翡翠的密度不是一个固定值,B货的密度变化常超不出翡翠的变化范围。因此,密度变化,只是一个参考值。

(3)紫外线长波测试,出现荧光。一些B货在长波紫外线下,出现蓝白色荧光,是注入有机胶的反应,若注入无荧光胶则无此反应,但目前的B货有荧光者居多。

(4)红外光谱测试,比较谱图差别。用无损红外光谱分析可以很好的检测出B 货,这是目前最行之有效的方法。每一种矿物都有特定的红外光谱,B货由于注胶,产生了与天然翡翠明显不同的红外吸收线,不同的胶有不同的吸收谱线,但都是A货所没有的。把被测的样品与标准翡翠的红外图谱加以比较,出现多余的吸收峰者即为B货。

在实践中人们还常采用一些特殊的方法鉴定B货,如用火烧,B货可变成黑色焦状等,但都有不足之处。翡翠的改善除了以上的三种方法之外,还有镀膜、贴面、假皮等各种方法,花样很多,而且常常翻新,但很不受欢迎。

思考题

一、是非判断题

1按国标规定,所有染色宝玉石均须在鉴定报告中注明属“处理”。

2高温下使蓝宝石色斑或色带扩散的改色手段称为“扩散热处理”。

3红外光谱仪只能分清一部分A货或B货翡翠。

4按国标规定,出售任何品种的浸蜡玉雕件均可在宝玉石名称后不注明(处理)。

5任何染色宝玉石的鉴定证书上,按国标规定:必须在名称后加上(处理)。

6染色玛瑙效果稳定,上市时无需标明为处理的。

7辐射改色的托帕石上市时须声明为“处理”的。

8再造绿松石属于处理宝石。

9托帕石经辐照改色并加热固色后即可上市。

10扩散处理蓝宝石中固态包裹体的变化特征与热处理蓝宝石中的相似。

二、选择题

1优质仿制珍珠是在圆核上面涂上多层的:( )

a鱼鳞漆

b银粉

c白瓷漆后制成的

2目前对辐照处理黄玉(Topaz)的放射性残留允许量(出厂—上市)为:( )

a70~15贝克

b70~15伦琴

c70~15γ

3区分翡翠与无机玻璃充填的B货翡翠应选用:( )

a滤色镜

b显微镜

c红外光谱仪

4用气相沉淀法改善的镀膜钻石,翻面的外观特征是:( )

a无纹平滑

b有平行线纹

c有云雾状纹

5为查明红宝石中有无玻璃充填,宜选用:( )

a亮域照明和斜照明

b暗域照明

c反射照明

6判别钻石与激光穿孔钻石或充填处理的钻石时,最好选用:( )

a亮域照明

b暗域照明和斜照明

c反射照明

7判别扩散蓝宝石与蓝色蓝宝石时,要侧重观察:( )

a生长线或固态包裹体有无变化

b对比棱、尖与面之间颜色的差异

c棱线有无毛茬

8红宝石与染色红宝石的判别宜使用:( )

a滤色镜

b显微镜

c分光镜

9在合法贸易中,下列哪种优化祖母绿无须声明:( )

a注无色油的

b注有色油的

c注塑料的

10区分翡翠和C货翡翠时必须用的仪器是:( )

a放大镜或显微镜

b查尔斯滤色镜

c比重天平

11目前我国对辐照处理黄玉的携带放射性残留,参照日用工业品的辐射防护规定,放射性允许标准为( )

a70贝克

b30贝克

c50γ

12鉴别天然与辐射改色的蓝色钻石,可用( )

a热导仪

b电导仪

c折射仪

13翡翠的B货在紫外灯下:( )

a一定有荧光

b无荧光

c都没有荧光

14热处理后弧形色带已不清晰的蓝宝石,在鉴定证书名称一栏写为( )

a合成蓝宝石

b合成蓝宝石(处理)

c热处理的合成蓝宝石

15利用色心呈色原理,使无色托帕石改变成蓝色托帕石的优化处理方法是( )

a辐照热处理

b扩散热处理

c染色

d镀膜

16用红外光谱判别充胶翡翠与不充胶翡翠是检测( )

a结构是否被破坏

b翡翠的矿物成分

c翡翠中的阳离子

d有机阴离子团

17绿色锆石热处理改为蓝色时,须控制的气氛是:( )

a中性

b氧化

c还原

18阴极发光仪所用辐照源发射出的是:( )

a电子束

bX射线

cγ射线

三、多项选择题

1翡翠(处理)是指:( )

a用强酸碱处理后加高分子胶,加入颜色

b只要用强酸碱处理过

c加热后加色

d洗过的

e、在裂缝中有充填胶或色料

2按“国标”,应在宝石名称后必须加“处理”二字的下列宝石有:( )

a热扩散处理的蓝宝石

b加热处理的红宝石

c热处理去除杂色产生粉红色的绿柱石

d染色处理的玛瑙

e浸蜡加深颜色的绿松石

四、填空题

1改善的宝石要达到( )、( )、( )3个标准。

2翡翠B货制作的两个主要步骤是( )、( )。

3改色蓝黄玉(Topaz)是通过( )处理以及随后的( )处理而获得的。

4未经人工染色的天然玉石中与翡翠易混淆的有( )、( )、( )、( )、( )。

5市场上常出现经过人工处理的翡翠有:( )、( )、( )和( )。

6优化处理珠宝玉石可分为( )和( )两大类,而其中( )可用原珠宝玉石名称,而对( )的珠宝玉石在原珠宝玉石名称后加括号并在其中注明( )二字。

7钻石优化处理的方法有:①( )②( )③( )④( )等4种处理方法。

8红宝石优化处理方法有:①( )②( )③( )④( )。

9蓝宝石优化处理的方法中( )和( )两项在鉴定与销售中必须注明( )。

10人工宝石中代号YAG是( ),CZ是( )。

11在市场上常遇到的一种翡翠品种八三玉(爬山玉)成品,其主要特点为( )、( )、( )。

12改善红宝石常用的人工处理方法有( )、( )等。

13一颗无色、火彩非常好的标准切工圆钻形宝石,直径为58mm,重115ct,它可能为一颗( )宝石。

14翡翠B货在反射光照明下,主要鉴定特征有:( )、( )、( )。

15目前对刚玉类宝石的优化处理方法有( )、( )、( )和( )。

16评价宝石改善(优化或处理)的效果时,至少要考虑( )、( )和( )等3个方面。

17常用于改善珍珠颜色的方法有( )、( )和( )。

18高温扩散处理蓝宝石的鉴定特征是在二碘甲烷浸液中可能呈( )、( )、( )。

19翡翠(处理)的充填物质可为( )或( )或( )或( )。

20天然翡翠经强酸或强碱处理后、再充填了( )或( )固结的称为B货翡翠,主要特征是( )遭到了破坏和加入了一些其他物质。

21蓝宝石的主要处理方法有( )处理法,( )处理法。

22制作B货翡翠用强酸或强碱浸泡主要目的是去除( )和( )等。

23如果无色水晶晶格中含少量的( ),经辐照处理后能产生紫色。

24腰棱上刻上GE POL标记的钻石是消除了( )色的一种无色钻石。

25红宝石的热处理常采用( )气氛,以消除( )色调,还可以消除( )包裹体。

如果是专业的珠宝鉴定培训班会详细学习天然宝石、玉石及人工宝石的鉴定,

还有珠宝鉴定仪器的使用方式,建议可以实地去看看。

给你找个参考的, 这是“元实珠宝学院” 的课程设置:

他们偏向培养珠宝鉴定商业级高端人才的。

参考资料:

珠宝鉴定与投资培训课程(开店创业班)

元实珠宝学院珠宝鉴定与投资(开店创业班)课程是目前同类培训学校珠宝鉴定与投资课程中最全面最系统的。在本课程的专业鉴定知识方面,广度和深度上与国家注册珠宝鉴定师相媲美,专业鉴定知识的讲授上,配备了最权威的鉴定专家、行业精英进行授课,确保教学的质量。本课程除了讲授专业的珠宝玉石鉴定鉴别技术外,还为开店创业和收藏的朋友增加了珠宝价值评估和店铺经营的课程内容,从店铺的选址、取名、店铺装修、货品搭配、进行渠道选择、开业促销和日常店铺经营等方面,给予学员手把手的指导,使得本课程更加完善,更加实用。

珠宝鉴定专业课程部分:

绪论

宝石的基本概念、宝石的分类、宝石的命名

第一篇 宝石学基础

第一章 结晶学基础

晶体与非晶体、晶体的分类、晶体的规则连生、实际晶体的形态与晶面条纹、宝石矿床的原因

第二章 宝石矿物的化学成分

宝石矿物化学成分的特点、类质同象对宝石化学成分的影响、宝石中的包体

第三章 光的基本知识及宝石的光学性质

光的本质、自然光与偏振光、光的折射与反射、光的干涉与衍射、光库体与宝石的光性方位、宝石的多色性、宝石的光泽、宝石的透明度、宝石的发光性、宝石的特殊光学效应

第四章 宝石的颜色

宝石颜色的概念、宝石颜色的表征方法、宝石颜色的成因、宝石的力学性质、宝石的热学、电学性质

第二篇 宝石鉴定仪器

第一章 常规宝石鉴定仪器

镊子和放大镜、显微镜、折射仪、紫外灯、偏光镜、二色镜、分光镜、滤色镜、天平、重液、钻石鉴定相关仪器

第二章 常见大型仪器在宝石学中的应用

X射线荧光光谱仪、电子探针、傅立叶变换红外光谱仪、激光拉曼光谱仪、紫外-可见分光光度计、阴极发光仪

第三篇 宝石各论

第一章 常见宝石

钻石、刚玉(红宝石、蓝宝石)、祖母绿、金绿宝石、水晶、石榴子石、尖晶石、绿柱石、长石、碧玺(电气石)、锆石、托帕石、橄榄石、磷灰石、堇青石、红柱石、方柱石、辉石、坦桑石(黝帘石)、矽线石

第二章 常见玉石

翡翠、软玉、石英质玉石、欧泊、蛇纹石玉、绿松石、青金岩、方钠石、孔雀石、萤石、碳酸盐类玉石、天然玻璃、独山玉、蔷薇辉石、查罗石、钠长石玉、砚石、鸡血石、寿山石、青田石

第三章 稀少宝石

第四章 有机宝石,

珍珠、琥珀、珊瑚、象牙、煤精、龟甲、贝壳、硅化木

第四篇 人工宝石及宝石的优化处理

第一章 人工宝石

焰熔法生长宝石晶体、冷坩埚法生长合成立方氧化锆晶体、提拉法和导模法生长宝石晶体、助熔剂法生长宝石晶体、水热法生长宝石晶体、高温超高压法合成钻石、化学气相沉淀法合成宝石、人工宝石的鉴别特征、拼合宝石和再造宝石、仿宝石玻璃、陶瓷、塑料。

第二章 宝石的优化处理

优化处理的概念及常见宝石的优化处理方法、宝石的常见优化处理的方法和特征

第五篇 宝石加工与玉石的加工

第一章 宝石加工

钻石加工工艺、彩色宝石加工工艺

第二章 玉石加工工艺

玉器的分类、玉石加工设备和辅料、玉石的选择、处理和设计、玉器加工工艺

珠宝玉器开店经营课程部分:

珠宝玉器店面的开设技巧

第一章 珠宝玉器店的选址和命名

第二章 珠宝首饰店设计

第三章 进货渠道考察和选择

第四章 珠宝玉器产品的科学定价

第五章 珠宝玉器店的宣传与促销

第六章 珠宝玉器店作业流程

第七章 珠宝玉器店员工服务

第八章 开设网上珠宝首饰店铺

学习时长:

264个学时

证书:

中国珠宝玉石首饰行业协会的《GAC宝石鉴定师》证书

国际职业认证管理协会的《CIP珠宝鉴定师》证书

使用教材:

国内最为权威的珠宝玉石专著,国家注册珠宝鉴定师考试专用教材:《系统宝石学》。投资课程使用:《珠宝首饰店铺开店指南》。

全国热线:4oo-oo2-567o

希望对你有帮助,望采纳!

  钻石是指经过琢磨的金刚石,金刚石是一种天然矿物,是钻石的原石。简单地讲,钻石是在地球深部高压、高温条件下形成的一种由碳元素组成的单质晶体。人类文明虽有几千年的历史,但人们发现和初步认识钻石却只有几百年,而真正揭开钻石内部奥秘的时间则更短。在此之前,伴随它的只是神话般具有宗教色彩的崇拜和畏惧的传说,同时把它视为勇敢、权力、地位和尊贵的象征。如今,钻石不再神秘莫测,更不是只有皇室贵族才能享用的珍品。它已成为百姓们都可拥有、佩戴的大众宝石。钻石的文化源远流长,今天人们更多地把它看成是爱情和忠贞的象征。

  目录

  饿简介

  质量单位

  化学成分

  形成原理

  产地分部世界钻石资源与产地

  出产钻石的国家

  出产最好钻石的国家

  钻石产地的变迁

  世界上第一座钻石矿

  南非的钻石矿

  最大单粒钻石产地

  中国钻石资源与产地

  评价与选购颜色(Colour)

  净度(Clarity)

  克拉重量(Carat)

  切工(Cut)

  鉴定硬度检验

  导热性试验

  观察反射光

  看生长点

  同类化学成分测验

  人造氧化锆仿制

  鉴定机构IGI认证

  GIA认证

  HRD认证

  其他

  天然钻石与合成钻石结晶习性

  颜色

  表面以及内部纹理

  放大观察

  可见光吸收光谱

  紫外荧光

  阴极发光仪

  红外光谱

  导电性

  其他

  假钻石玻璃

  人造尖晶石

  水晶和托帕石

  人造蓝宝石

  锆石

  铌酸锂

  钛酸锶

  钇铝石榴石(YAG)

  立方氧化锆

  莫桑石

  保养

  有关钻石的误区买钻石为了保值

  钻石的璀璨来自其色度

  买钻石一定要买VS高净度的

  I色度的钻石最漂亮

  钻石的辐射

  切割劈割

  锯切

  成型

  起瓣、抛光

  钻石与爱情

  昂贵的原因钻石固有的内在魅力品质

  钻石文化源远流长

  钻石矿床探寻艰难,耗资巨大

  开采的规模浩大、难度极高

  钻石加工程序复杂,工时量大

  到消费者手中,一颗钻石的经历繁多

  世界最昂贵的钻石亮相拍卖行

  历史上最大钻石克利兰钻

  世界上最名贵的10颗钻石伟大的非洲之星

  光之山钻石

  艾克沙修钻石

  大莫卧儿钻石

  神像之眼钻石

  摄政王钻石

  奥尔洛夫钻石

  蓝色希望钻石

  仙希钻石

  泰勒·伯顿钻石

  世界最大的10颗钻石库利南

  布拉岗扎

  一颗未予命名的大钻石

  尤里卡

  塞拉里昂之星

  科尔德曼.德迪奥斯

  库稀努尔

  大莫卧儿

  沃耶河

  金色纪念币

  历史渊源“火钻”缘出“火水”里

  从印度兜转到荷兰

  世界头号钻石“库利南”

  此石因何谓之“钻”

  金刚石钩挂“兰学”

  饿简介

  质量单位

  化学成分

  形成原理

  产地分部 世界钻石资源与产地

  出产钻石的国家

  出产最好钻石的国家

  钻石产地的变迁

  世界上第一座钻石矿

  南非的钻石矿

  最大单粒钻石产地

  中国钻石资源与产地

  评价与选购 颜色(Colour)

  净度(Clarity)

  克拉重量(Carat)

  切工(Cut)

  鉴定 硬度检验

  导热性试验

  观察反射光

  看生长点

  同类化学成分测验

  人造氧化锆仿制

  鉴定机构 IGI认证

  GIA认证

  HRD认证

  其他

  天然钻石与合成钻石

  结晶习性 颜色 表面以及内部纹理 放大观察 可见光吸收光谱 紫外荧光 阴极发光仪 红外光谱 导电性 其他假钻石

  玻璃 人造尖晶石 水晶和托帕石 人造蓝宝石 锆石 铌酸锂 钛酸锶 钇铝石榴石(YAG) 立方氧化锆 莫桑石保养有关钻石的误区

  买钻石为了保值 钻石的璀璨来自其色度 买钻石一定要买VS高净度的 I色度的钻石最漂亮 钻石的辐射切割

  劈割 锯切 成型 起瓣、抛光钻石与爱情昂贵的原因

  钻石固有的内在魅力品质 钻石文化源远流长 钻石矿床探寻艰难,耗资巨大 开采的规模浩大、难度极高 钻石加工程序复杂,工时量大 到消费者手中,一颗钻石的经历繁多世界最昂贵的钻石亮相拍卖行历史上最大钻石克利兰钻世界上最名贵的10颗钻石

  伟大的非洲之星 光之山钻石 艾克沙修钻石 大莫卧儿钻石 神像之眼钻石 摄政王钻石 奥尔洛夫钻石 蓝色希望钻石 仙希钻石 泰勒·伯顿钻石世界最大的10颗钻石

  库利南 布拉岗扎 一颗未予命名的大钻石 尤里卡 塞拉里昂之星 科尔德曼.德迪奥斯 库稀努尔 大莫卧儿 沃耶河 金色纪念币历史渊源

  “火钻”缘出“火水”里 从印度兜转到荷兰 世界头号钻石“库利南” 此石因何谓之“钻” 金刚石钩挂“兰学”展开 编辑本段饿简介

  钻石

  1矿物名称为「金刚石」,英文为Diamond,源于古希腊语Adamant,意思是坚硬不可侵犯的物质,是公认的宝石之王。钻石的化学成份有9998%的碳。也就是说,钻石其实是一种密度相当高的碳结晶体。 2钻石的摩氏硬度:10,是天然矿物中的最高硬度。其脆性也相当高,用力碰撞仍会碎裂。 3切割钻石是依据其原石的外形,将钻石切割成各种不同形状的过程。其中,受大家欢迎的八种形状有:圆形、椭圆形、榄尖形、心形、梨形、方形、三角型及祖母绿形。圆钻,是最常见的形状。 4钻石属天然矿物。钻石的主要产地是澳大利亚、博茨瓦纳、加拿大、津巴韦布、纳米比亚、南非、巴西、西伯利亚;目前世界主要的钻石切磨中心有:比利时安特卫普,以色列特拉维夫,美国纽约,印度孟买,泰国曼谷。安特卫普有"世界钻石之都"的美誉,全世界钻石交易有一半左右在这里完成,“安特卫普切工”是完美切工的代名词。钻石(19张)  5 买钻石 一定要复检 (IGI和GIA的证书在官网上可以直接查证,不必再复检) 6折射率:2417 7色散值:0044(高) 8全内反射:临界角:245°

  编辑本段质量单位

  卡,或译克拉、克拉(Carat),是钻石的质量单位。一卡相等于200毫克,相传早期钻石商人称量钻石所用的砝码为稻子豆树(carob)果实,一粒这样的果实大约就重200毫克。因为钻石的密度基本上相同,因此越重的钻石体积越大。越大的钻石越稀有,每卡的价值亦越高。

  编辑本段化学成分

  钻石的化学成分是碳,这在宝石中是唯一由单一元素组成的,属等轴晶系。常含有005%-02%的杂质元素,其中最重要的是N和B,他们的存在关系到钻石的类型和性质。晶体形态多呈八面体、菱形十二面体、四面体及它们的聚形。纯净的钻石无色透明,由于微量元素的混入而呈现不同颜色。强金刚光泽。折光率2417,色散中等,为0044。均质体。热导率为035卡/厘米/秒/度。用热导仪测试,反应最为灵敏。硬度为10,是目前已知最硬的矿物,绝对硬度是石英的1000倍,刚玉的150倍,怕重击,重击后会顺其解理破碎。一组解理完全。密度352克/立方厘米。钻石具有发光性,日光照射后 ,夜晚能发出淡青色磷光。X射线照射,发出天蓝色荧光。钻石的化学性质很稳定,在常温下不容易溶于酸和碱,酸碱不会对其产生作用。 钻石与相似宝石、合成钻石的区别。宝石市场上常见的代用品或赝品有无色宝石、无色尖晶石、立方氧化锆、钛酸锶、钇铝榴石、钇镓榴石、人造金红石。合成钻石于1955年首先由日本研制成功,但未批量生产。因为合成钻石要比天然钻石费用高,所以市场上合成钻石很少见。钻石以其特有的硬度、密度、色散、折光率可以与其相似的宝石区别。如:仿钻立方氧化锆多无色,色散强(0060)、光泽强、密度大,为58克/立方厘米,手掂重感明显。钇铝榴石色散柔和,肉眼很难将它与钻石区别开。 它已成为百姓们都可拥有、佩戴的大众宝石。钻石的文化源远流长,今天人们更多地把它看成是爱情和忠贞的象征。

  编辑本段形成原理

  有人说金刚石就是钻石,其实这种说法是完全错误的(它们的差别就等同于木头和家具之间的关系),钻石只是金刚石精加工而成的产品,现代科学技术 、手段为探索钻石的形成提供了新思路和方法。钻石是世界上最坚硬的、成份最简单的宝石,它是由碳元素组成的、具立方结构的天然晶体。其 藏宝图 钻石

  成份与我们常见的煤、铅笔芯及糖的成份基本相同,碳元素在较高的温度、压力下,结晶形成石墨(黑色),而在高温、极高气压及还原环境(通常来说就是一种缺氧的环境)中则结晶为珍贵的钻石(白色)。为了便于理解钻石的起源,先看一看含有钻石的原岩。 自从钻石在印度被发现以来,我们不断听到人们在河边、河滩上捡到钻石的故事,这是由于位于河流上游某处含有钻石的原岩,被风化、破碎后,钻石随水流被带到下游地带,比重大的钻石被埋在沙砾中。钻石的原岩是什么?1870年人们在南非的一个农场的黄土中挖出了钻石,此后钻石的开掘由河床转移到黄土中,黄土下面就是坚硬的深蓝色岩石,它就是钻石原岩——金伯利岩(kimberlite)。什么是金伯利岩?金伯利岩是一种形成于地球深部、含有大量碳酸气等挥发性成份的偏碱性超基性火山岩,这种岩石中常常含有来自地球深部的橄榄岩、榴辉岩碎片,主要矿物成份包括橄榄石、金云母、碳酸盐、辉石、石榴石等。研究表明,金伯利岩浆形成于地球深部150公里以下。由于这种岩石首先在南非金伯利被发现,故以该地名来命名。 另一种含有钻石的原岩称钾镁煌斑岩(lamproite),它是一种过碱性镁质火山岩,主要由白榴石、火山玻璃形成,可含辉石、橄榄石等矿物,典型产地为澳大利亚西部阿盖尔(Argyle)。 科学家们经过对来自世界不同矿山钻石及其中原生包裹体矿物的研究发现,钻石的形成条件一般为压力在45-60Gpa(相当于150-200km的深度),温度为1100-1500℃。虽然理论上说,钻石可形成于地球历史的各个时期/阶段,而目前所开采的矿山中,大部分钻石主要形成于33亿年前以及12-17亿年这两个时期。如南非的一些钻石年龄为45亿左右,表明这些钻石在地球诞生后不久便已开始在地球深部结晶,钻石是世界上最古老的宝石。钻石的形成需要一个漫长的历史过程,这从钻石主要出产于地球上古 钻石

  老的稳定大陆地区可以证实。另外,地外星体对地球的撞击,产生瞬间的高温、高压,也可形成钻石,如1988年前苏联科学院报道在陨石中发现了钻石,但这种作用形成的钻石并无经济价值。 稀少的钻石主要出现于两类岩石中,一类是橄榄岩类,一类是榴辉岩类,但仅前者具有经济意义。含钻石的橄榄岩,目前为止发现有两种类型:金伯利岩(kimberlite)(名字源于南非的一地名——金伯利)和钾镁煌斑岩(lamproite),这两中岩石均是由火山爆发作用产生的,形成于地球深处的岩石由火山活动被带到地表或地球浅部,这种岩浆多以岩管状产出,因此俗称“管矿”(即原生矿)。含钻石的金伯利岩或钾镁煌斑岩出露在地表,经过风吹雨打等地球外营力作用而风化、破碎,在水流冲刷下,破碎的原岩连同钻石被带到河床,甚至海岸地带乘积下来,形成冲积砂矿床(或次生矿床)。

  编辑本段产地分部

  世界钻石资源与产地

  全世界钻石的储量和生产概况: 目前,已探明天然钻石储量大约有25亿克拉,其中澳大利亚65亿克拉,扎伊尔55亿克拉。按目前开采水平现有钻石储量只能开采25年,但随找矿科技水平的提高,每年都发现有新的矿区,近几年加拿大钻石储量明显增加。 自从钻石开采以来,共采出钻石350吨左右,即175亿克拉,现在全世界每年开采钻石在9000万-1 世界钻石资源分布图

  亿克拉,其中宝石级占17%-20%。20%宝石级钻石价值相当于80%工业级金刚石价值的5倍。

  出产钻石的国家

  世界各地均有钻石产出,已有三十多个国家拥有钻石资源,年产量一亿克拉左右。产量前五位的国家是澳大利亚、扎伊尔、博茨瓦纳、俄罗斯、南非。这五个国家的钻石产量占全世界钻石产量的90%左右。其它产钻石的国家有刚果(金)、 巴西、圭亚那、委内瑞拉、安哥拉、中非、加纳、几内亚、象牙海岸、利比利亚、纳米比亚、塞拉利昂、坦桑尼亚、津巴布韦、印度尼西亚、印度、中国、加拿大等。 中国的金刚石探明储量和产量均居世界第10名左右,年产量在20万克拉,钻石主要在辽宁瓦房店、山东蒙阴和湖南沅江流域,其中辽宁瓦房店是目前亚洲最大的金刚石矿山。

  出产最好钻石的国家

  对于钻石的毛坯和宝石级钻石所占比例来说,最好的钻石来自于纳米比亚冲积矿床中开采出来的钻石。这些钻石经历的自然风化搬运到海边,路程长达1000英里。经过这段旅程钻石中脆弱部分都分离。在特定沉积环境中钻石按不同粒级不同形状一定规律分布于岩层中。该矿区宝石级钻石英钟最高达到97%。对切磨好的钻石戒面,很难分辩出产自哪个国家和矿区。 任何矿区产出的钻石都有好、中、差。拿矿区中最好的钻石与纳米比亚产出最差的钻石比,纳米比亚冲积矿床的钻石也不一定就好。

  钻石产地的变迁

  印度是世界上最早发现钻石的国家,3000年前,印度是钻石的唯一产地。自2500年前至18世纪初印度克里希纳河、彭纳河及其支流是世界唯一产出钻石的地方,历史上许多著名钻石如光明之山(kohi-noor)、奥尔洛夫(orloff)和大莫卧儿(great mogul)都来自印度,但目前印度的钻石产量很小。 至1725年巴西钻石的发现及开采,使巴西取代印度,成为当时全球钻石的最重要产地。 1867年以后,南非发现了冲积砂矿床和大量原生金伯利岩筒使得南非成为世界上最重要的钻石生产国,其产量长期处于世界前列,并由此开创了钻石业的新纪元。1905年,在南非阿扎氏亚发现了世界上最大的金伯利岩岩筒—普列米尔岩筒,并在此发现最大的钻石(库利南钻石)。目前,南非拥有世界上产量最大、且最现代化的维尼蒂亚钻石矿。南非钻石颗粒大,品质优,50%的金刚石均是可切割的,其产量虽不及澳大利亚等国,但产值一直居世界前列。 自1979年澳大利亚西部发现钾镁斑岩中含有金刚石起,至1986年,澳大利亚的金刚石产量已居霸主地位,但宝石级仅占其产量的5%。澳大利亚钻石主要分布西澳新南威尔斯的bingara和copeton,尤其是阿盖尔(argle)矿床储量为5.5亿克拉。 博茨瓦纳盛产优质金刚石,宝石级占50%,其产值居世界首位。博茨瓦纳的钻石来自露天开采的金伯利岩,巨大的矿山有orapa岩筒(1967年)、letihakena岩筒(1977年)和jwaneng钻矿(1982年),三个矿的总产量在1989年超过1500万克拉。 俄罗斯的钻石主要分布在西伯利亚中部雅库特地区,该区找到有一百多个含金刚石金伯利岩筒,1988年,俄罗斯在靠近欧洲附近又找到新的钻石矿。目前,俄罗斯钻石产量在1200万克拉左右,一半为宝石级。多年来俄罗斯形成了独立的钻石开采加工销售体系,其钻石数量大、质量优、均匀性好,在市场上具有很强的竞争力。 前几年报道加拿大北部地区发现大量金伯利岩,几年后钻石产量可占全世界产量的10%。

  世界上第一座钻石矿

  1871年7月16日,坚持向深处挖掘的库力斯堡合伙采掘队获得了成功,他们在占据的几十平方米的土地上,一直往深处挖掘,在这一天终于找到了他们梦寐以求的钻石。全世界第一座钻石矿也就诞生了。命名“库力斯堡矿”也叫“新热潮矿”。

  南非的钻石矿

  提到钻石人们往住就会想到南非。南非产出的钻石素以颗粒大,质量佳而著名。从矿山开采出来的钻石英钟毛胚中有50%可以达到宝石级。五十几年前,南非的钻石产量居世界首位,所以常有顾客会问“这颗是南非钻石吗?”随着时间的推移,南非的钻石产量逐年减少。1987年南非钻石产量为1000万克拉是世界总产量的10%左右。

  最大单粒钻石产地

  1905年在南非普列米尔矿,发现重3106克拉巨型大钻,定名为“库利南”,1919年在该矿区又找到一块重1500克拉钻石,按它的形状,颜色、反复对比研究后确定它应该与库利南为同一晶体,所以没有命名,如果没有裂开成为二块的话,库利南重量到少在4606克拉以上。1980年在该矿区又发现第三颗大钻重599克拉。南非普列米尔矿为世界公认的巨形钻石的产地。

  中国钻石资源与产地

  中国的金刚石探明储量和产量均居世界第10名左右,年产量在20万克拉,钻石主要在辽宁瓦房店、山东蒙阴和湖南沅江流域,其中辽宁瓦房店是目前亚洲最大的金刚石矿山。 中国于1965年先后在贵州和山东找到了金伯利岩和钻石原生矿床。1971年辽宁瓦房店找到钻石原生矿床。目前仍在开采的两个钻石原生矿床分布于辽宁瓦房店和山东蒙阴地区。钻石砂矿则见于湖南沅江流域、西藏、广西以及跨苏皖两省的郯庐断裂等地。 目前我国钻石主要产地有三个:辽宁瓦房店,山东蒙阴—临沭,湖南沅江流域都是金伯利岩型,但湖南尚未找到原生矿其中辽宁的质量好,山东的个头较大 目前我国现存发现的最大钻石为常林钻石,于1977年12月21日发现于山东,由常林大队魏振芳发现,故而得名“常林钻石”,现藏银行国库中。常林钻石重158786克拉,呈八面体,质地洁净、透明,淡**。 另据传,中国最大的钻石曾是金鸡钻石,也发现于该地区,重28125克拉,但在二战期间被日军掠走,至今下落不明。

  编辑本段评价与选购

  从以下四个方面考虑(4C):

  颜色(Colour)

  无色为最好,色调越深,质量越差。在无色钻石分级里,顶级颜色是D色,依次往下排列到Z,在这里只说从D到J的颜色级别,D-F是无色级别,G-J是近无色级别,从K往下基本没有收藏意义,K色以下的戒托做黄金的也很漂亮。因为从K往下钻石就会逐渐偏黄,选钻的时候,选H 以上的颜色,I-J级别也在近无色范畴,但也能察觉到一丝微黄.具有彩色的钻石,如:**、绿色、蓝色、褐色、粉红色、橙色、红色、黑色、紫色等,属于钻石中珍品,价格昂贵。红钻最为名贵 不同国家和地区分别采用不同的颜色分级体系,美国宝石学院的分为23个级别,分别用英文字母D-Z来表示。其中D-N这11个级别是最常用的。欧洲的颜色级别体系CIBJO为代表。我国1996年新制定的国家标准综合了GIA、CIBJO,该标准将颜色划分为12个级别,并用D-N和<N来表示,还将百分数法和文字描述并用。 钻石颜色等级 D 100 极白 E 99 F 98 优白 G 97 H 96 白 I 95 微黄白(褐、灰) J 94 K 93 浅黄(褐、灰)白 L 92 M 91 浅黄(褐、灰) N 90 <N <90 黄(褐、灰)

  净度(Clarity)

  钻石-金色纪念币

  净度分级依据是内含物位置,大小和数量的不同来划分.由高到低详细可分为FL,IF,VVS1,VVS2,VS 1,VS2,SI1,SI2,SI3,P1,P2,P3在十倍显微镜下仔细观察钻石洁净程度,瑕疵越多,所在位置越明显,则质量越差,价格也相应要降低。 其中 FL - “Flawless”,完美无瑕。在十倍放大镜下内外俱无瑕疵 IF - “Internally flawless”,内部无瑕。在十倍放大镜下只有表面有轻微花痕 VVS1, VVS2 - “Very Very Slight”,非常非常小。在十倍放大镜下有很难看见的瑕疵。VVS1 净度高于VVS2。 VS1 and VS2 - “Very Slight”,非常小。在十倍放大镜下可见瑕疵,但肉眼难以辨认。VS1净度高于VS2。 SI1 and SI2 - “Slight Inclusions”,小瑕疵,肉眼可能看见。 I1, I2 and I3 - “Imperfect”,有瑕疵,可以被肉眼看见。

  克拉重量(Carat)

  在其他三C相同情况下,钻石价格与重量平方成正比,重量越大,价值越高。钻石重量是以克拉为单位的。1克拉(ct)=02克(g)。把一克拉平均分成一百份,每一份是一分,商场价签上标的03ct,04ct就是所说30分40分.重量也有级别之分,030ct-039ct,040ct-049ct,050ct-069ct,070-089ct,090-099ct,100ct-150ct,150-200ct(每一级别分别由逗号隔开,不是一个级别的,就算差一分,价格也会相差很多,这就是为什么象048~049,068~069,088~089会很难买到的原因)

  切工(Cut)

  D级钻石

  一颗钻石原石,即使扔到马路也不会有人注意,是切工赋予它第二生命,让它有着绚丽火彩.切工是指成品裸钻各种瓣面的几何形状及排列方式.切工分为切割比例,抛光,修饰度三项。每一项都有五个级别,由高到低依次是EXCELLENT,VERY GOOD,GOOD,FAIR,POOR一般所见都是标准圆钻型切工。顶级切工的石头,对于光线反射可以达到一个最接近完美的比例,也就是三项E X(EXCELLENT)切工,但是像这种切工价钱也稍微贵一些,因为它的出成率比较低,比不是三项EX切工的价钱高5%左右,但三项EX的石头火彩绝对是最绚丽的. 几种常见切割形式 圆形 祖母绿型 椭圆形 梨形 公主方型 枕形 心形 八心八箭-邱比特切工 钻石价格的计算公式: 钻石的重量, 颜色color(直栏), 净度(横栏),的单价×100×人民币汇率(69)即 非洲之星Ⅰ

  可得出钻石的价格。举例说明: 算52分(052ct) F VVS1的价格 先查到该等级钻石单价是54 百美元 则价格计算为:54×100×69(人民币汇率)×052(钻石克拉)=1937520元

中国地质大学珠宝鉴定中心,一般按珠宝重量收费。

中国地质大学珠宝鉴定中心简介

中国地质大学珠宝鉴定中心由中国地质大学(武汉)珠宝学院设立。珠宝学院的前身是1981年成立的宝石研究组,后发展为中国地质大学宝石研究所。1989年从博物馆分出,成为学校直属机构。

由于国内珠宝市场的快速发展,珠宝业亟需一批专业技术人才。多年来,武汉珠宝学院致力发展珠宝职业教育和学历教育,创立了自己的GIC证书品牌,并且不断为市场开发珠宝鉴定仪器。

1992年,为满足珠宝行业的需要,规范珠宝行业市场,珠宝学院在坚实的基础上开始筹建湖北省珠宝质量监督检验站。该站承担全省80多个商家的珠宝质检工作,每年检测40余万件商品,发放证书约10万件。2001年为服务全国珠宝企业,在深圳市开设了中国地质大学(武汉)珠宝检测中心分站。“工欲善其事,必先利其器”,没有先进的生产工具,就不可能创造出高品质,多款式的优质产品。为此,珠宝学院研制生产了众多宝石学仪器,其技术领先、质量优秀、品种齐全,不仅有常规的仪器设备,还研制有跟踪珠宝市场最新动向的宝石鉴定仪器,以及珠宝阴极发光仪、红外光谱仪镜面反射器、钻石切工自动分析仪、钻石显微打标技术、宝石材料红外数据库等,这些高技术测试设备获得了许多项有关珠宝鉴定技术的专利,适用于珠宝产品质量检验机构、宝石教学和研究等单位。

1(2000)量认(国)字(F1333)号—中华人民共和国计量认证合格证书编号

2(鄂)省质监认字(Z-09号)—湖北省质量技术监督局审核认可证书编号

3样品

4珠宝饰品检验鉴定证书编号:No401312001(0401998401454)

5日期:鉴定证书开立日期

6形状:样品上钻石的形状。常见有:圆钻形、公主方形、马眼形、水滴形、心形、祖母率琢形。

7色级:

标示钻石的颜色,可分为D-E、F-G、H、I-J、K-L、M-N等,也有分为优白、白、浅黄白的。颜色的判别是靠与“比色石”相比较

而得出的结果,但“比色石”是未镶嵌的钻石,而镶嵌后的钻石的颜色常受镶嵌材料、形状、镶嵌方式的影响,所以也用“参考颜

色”来表示。镶嵌钻石颜色采用比色法分级,分为7个等级,与位镶嵌钻石颜色级别的对应关系详见下表。

镶嵌钻石颜色等级

D-E

F-G

H

I-J

K-L

M-N

<N

对应的位镶嵌钻石颜色等级

D

E

F

G

H

I

J

K

L

M

N

<N

8总质量:指整件样品的重量。钻石的重量单位为克(g)

9净度:净度是指钻石里的一些内部特征。在10倍放大镜下镶嵌钻石净度分为:LC、VVS、VS、SI、P五个等级。

10外观特征:对样品外观的描述

11切工:

钻石加工工艺完美性的等级划分,包括比例级别和修饰度级别。比率:应有最大直径、最小直径、全深、台宽比、腰厚亭深比、

底尖比的测量值。分为:很好、好、一般三个级别。

12备注:钻石分级证书中其他可选择的内容。

参考资料:

http://www51kelacom/bbs/viewthreadphptid=3167

钻石的折射率为2417。

钻石的折射率基本是一致的,主要是因为钻石是等轴晶系的晶体,在光学性质方面是均质体折射率基本固定为2417,因此折射率也是判别钻石真伪的有力参数。

其他宝石的折射率

每种宝石和钻石有其对应的折射率,比如翡翠是166,红宝石和蓝宝石是1762~1770,海蓝宝石是1577~1583,碧玺是1624~1644等等。通过准确的测出宝石折射率,就可以大体确定待测宝石到底可能是什么宝石,然后再结合其它的鉴定手段确定宝石种属。

扩展资料:

鉴别案例

1、结晶习性

合成钻石常为:立方体、八面体以及两者的聚形

天然钻石常为:八面体、菱形十二面体以及两者的聚形,还有常见三角薄片双晶

2、颜色

合成钻石常为黄褐色,并且经常被辐照改色成蓝、橙、粉、褐以及金**

天然钻石98%都是无色—浅黄系列。

3、内部纹理

合成钻石:可显示树枝状或者交叉状纹理

天然钻石:表面常见三角凹痕或者三角座,内部常显示与结构相关的纹理。

4、放大观察

合成钻石:籽晶及其幻影区,各种形态的金属包体

天然钻石:没有金属包体

5、可见光吸收光谱

合成钻石:无4155nm吸收线,在液氮获得的低温条件下可以测得658nm吸收峰和500nm以下全吸收

天然钻石:绝大部分都是4155nm吸收线

6、紫外荧光

合成钻石:长波下通常是没有荧光的,短波下有黄绿色、橙**荧光,有“马耳他十字分带”现象,同时有明显磷光

天然钻石:在长波下多为蓝白色荧光,短波下较弱或者显示惰性。

7、阴极发光仪

合成钻石:与紫外荧光分布特征相似,不同成长区显示不同的荧光分带

天然钻石:多是不规则

因为天然钻石生长的时候,环境是时刻都会变化的,然而合成钻石的生长环境都是一成不变。

8、红外光谱

合成钻石:1130波束的吸收普带

天然钻石:1176、1282波束的吸收谱带。

9、导电性

合成钻石:有的可能具有导电性或者导热性

天然钻石:除了蓝色钻石是半导体之外,均不导电,而且是没有磁性。

其他

比如异常双折射形形色色

参考资料:

-钻石

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/927351.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-11
下一篇2023-07-11

发表评论

登录后才能评论

评论列表(0条)

    保存