热裂纹产生的原因及防治方法

热裂纹产生的原因及防治方法,第1张

裂纹

在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接裂纹。

1)热裂纹的形成

在焊缝金属中的热裂纹也称为凝固裂纹。由于被焊接的材料大多都是合金,而合金凝固自开始到最终结束,是在一定的温度区间内进行的,,这是热裂纹产生关系到的基本原因。焊缝金属中的许多杂质的凝固温度都低于焊缝金属的凝固温度,这样首先凝固的焊缝金属把低熔点的杂质推挤到凝固结晶的晶粒边界,形成了一层液体薄膜,又因为焊接时熔池的冷却速度很大,焊缝金属在冷却的过程中发生收缩,使焊缝金属内产生拉应力,拉应力把凝固的焊缝金属沿晶粒边界拉开,又没有足够的液体金属补充时,就会形成微小的裂纹,随着温度的继续下降,拉应力增大,裂纹不断扩大,这就是凝固裂纹。

当焊缝金属中含有较多的低熔点杂质时,焊缝金属极易产生凝固裂纹,母材和焊接材料中含有害杂质,特别是硫。硫在钢中与铁化合形成硫化亚铁(FeS),硫化亚铁义与铁发牛反应形成一种共晶物质,凝固温度为988°远低丁钢铁的凝固温度,所以硫足引起钢材焊缝金属中发生凝固裂纹的最主要的元素。另外,钢材中含碳量较高时,有利于硫在晶界处富集,因而也是促进形成凝固裂纹的原因,所以采用含碳量低的焊接材料有利于防止凝固裂纹的产生。

在热影响区熔合线附近产生的热裂纹称为液化裂纹或称热撕裂。多层焊时,前一焊层的一部分即为后一焊层的热影响区,所以液化裂纹也可能在焊缝层间的融化线附近产生。液化裂纹产生的原因基本与凝固裂纹相似。这种裂纹可以成为冷裂纹的裂纹源,所以危害也很大。

热裂纹显著的特征是断面呈蓝黑色,即金属中高温被氧化的颜色。 有的在热裂纹中由流入熔渣的痕迹。再者,孤坑裂纹多为热裂纹。

防止热裂纹产生的措施

①锰具有脱硫作用 母材和烬接材料若含碗量及含碳量高,而含锰量不足时,易产生热裂纹。一般要求母材、焊条、焊丝的含硫量不应超过004% 。低碳钢和低合金网用焊条和焊丝,含碳量一般不应超过012%。焊条电弧焊时,正确选用焊条的型号,使用合格、优质的电焊条是防止热裂纹产生的重要措施。

②对铡性大的焊件,因焊接时立生的变形小,结果使焊接应力增大,促使热裂纹的产生。在焊接时选择合适的焊接规范,必要时应采取预热和缓冷措施,合埋地安排焊接方问和焊接顺序,以减小焊接应力。

③调整焊缝金属的合金成分,如焊接铬镍不锈钢时适当提高焊缝金属的含铬量,可显著提高烛缝金属的抗热裂纹性能。在焊缝金属中加入可使晶粒细化的元素,如钳、钒、铁、铌、错、铝等,有利于消除集中分布的液态薄膜有效地防止热裂纹的产生。

④热裂纹板易在孤坑产生,即弧坑裂纹;焊条电弧焊时,一定要注意填满弧坑。在不加填充焊丝的钨极氩弧焊中,收弧时,焊接电流要逐渐变小,等焊接熔他的体积减少到很小时,再切断焊接电流。焊接难以消除弧坑裂纹的材料时,应使用引出板把弧坑引出。

钽及钽合金具有高熔点、良好的耐蚀性能、优异的高温强度、良好的加工性能、可焊接性能、较低的塑/脆转变度及优异的动态力学性能等优点,使其广泛应用于电子、武器、化工、航空航天工业与空间核动力系统等行业 是在1600 ~1 800 环境下工作的理想结构材料。虽然钽及钽合金拥有优异的高温力学性能 ,但是其高温下抗氧化性能较差 ,金属钼在500 以上便会发生加速氧化生成Ta205 由于以上特性这使得钽及钽合金的应用受到严重制约。要想扩大其应用范围 提升钽及钽合金的耐高温抗氧化性能具有十分重要的意义。钽及钽合金的耐高温抗氧化保护主要有两种方法" ①表面涂层耐高温抗氧化保护 ②合金化耐高温抗氧化保护。

合金化法虽然能提升钽及钽合金的抗氧化性能 ,但前提条件是合金化元素用量须达到临界值以上才能对基体起到保护作用 ,同时 对基体的其它性能会产生较大影响 ,尤其是对基体高温机械性能的影响较大。

表面涂层可以同时具有较低的氧气渗透能力、良好的化学与物理相容性和稳定性、低的挥发性、良好的热膨胀系数匹配性和结合能力、高温自愈合能力及不能影响钽合金基材原有的良好机械性能等优点 是解决钽合金高温力学性能与抗氧化性能问题的最佳方法。

迄今为止 已开展研究的钽及钽合金材料的表面高温抗氧化涂层体系主要有贵金属高温抗氧化涂层、陶瓷高温抗氧化涂层以及复合抗氧化涂层,下面分别概述钽及钽合金的各类高温抗氧化涂层的研究新进展。

(一)金属高温抗氧化涂层

许多贵金属如Ir、PL、Rh、HI等都具有高熔点特性 其中 金属Ir熔点高达2410 因其高温氧渗透系数和氧扩散系数较低 所以具有优异的高温抗氧化性能 ,但其氧化物的蒸气压较高 为避免金属Ir直接暴露在高温大气环境中 需要在金属Ir外层添加其它成分涂层。国外学者VLTerentieva等2在钽合金基材上制备的Ir-Si-Al抗氧化涂层在1650 氧化气氛下工作200h后氧化增重量为69mg/cm²而Ir-Al涂层在1700 氧化气氛下工作120h 后氧化增重量仅为426mg/cm²。由于贵金属涂层的成本很高,目前仅在实验室条件下进行少量实验 尚未推广。国外学者WSWorrel等制备的Mo-Si-Hr抗氧化涂层可以承受1790 氧化气氛3h 涂层无明显变化P。该抗氧化涂层在高温氧化气流冲刷实验条件下表现出良好的抗热震和抗冲刷性能。研究结果表明 ,该抗氧化涂层为Hf。z0s MonmuoSi的耐火相结构 其周围有产生裂纹 而产生的裂纹又被MoSi、SiHI3-s及HISi;完全密封 因此 涂层能够在高温下阻挡氧化气氛的渗透 进而提高了涂层的高温抗氧化性能。在Ta-10W表面Royal公司运用熔合料浆法制备Al-Sn涂层4涂层厚度75μm 涂层1500 下防护寿命37h 在阿金纳火箭二次推进系统的73kg和907kg两种推力室被成功地应用,涂层正常累计工作时间6 250s和2000s。

贵金属材料涂层拥有良好的抗腐蚀能力和延展性能克服基体高温蠕变造成的应力变形和弹塑性变形。目前 通常采用CVD法在难熔金属表面制备贵金属抗氧化涂层但该技术目前尚存在技术瓶颈。

(二) 陶瓷高温抗氧化涂层

当前 陶瓷涂层是抗氧化涂层体系的研究热点 ,硅化物涂层因其具有良好的热稳定性(在1200 时氧扩散系数为10-"g/(cm's)2200 时氧扩散系数为10-1g/(cm's)而备受关注 高温环境中基体表面形成的SiO能有效阻止氧向涂层和基体内部扩散而且在高温下SiO,具有良好的流动性 ,可以使涂层产生的缺陷自愈合 同时 还能够承受一定程度的变形 因此 能有效地保护钽及钽合金材料避免氧化。

当下 硅化物涂层中研究的热点是MoSi、SiN;和SiC 等高温抗氧化陶瓷涂层。通常 陶瓷涂层与基体之间的热膨胀的差异,是陶瓷涂层产生微裂纹缺陷的主要原因 ,致使陶瓷涂层的抗氧化性能下降。国外学者MV Moore等为了解决钽及钽合金材料基体与MoSi之间的热膨胀匹配问题 在MoSi;涂层中添加了少量的Si 获得的涂层在1650 下经过200h氧化后 氧化增重仅为08%,氧化增重速率保持在253 10g/(cm²·s)的较低水平。学者HYiroshi研究表明 采用改良包埋法工艺制备的高致密度Si;N。涂层 ,可以在1610 下对钽及钽合金材料完成约18h有效保护81。学者VVVilasi等门采用PCVD法制备的B(Si)N陶瓷涂层可以在1670 的对钽及钽合金进行有效的抗氧化防护。学者AWRodionova等2将HfB,和Si粉混合后喷涂在钽及钽合金材料表面 制备的HIB,抗氧化涂层可在2100 环境下使用 检测数据表明 ,该涂层在1850 下经过2h氧化后 其氧化速率为128 10-g/(cm²·s)。此外 ,学者Andrew等为改善陶瓷抗氧化涂层的韧性 在钽及钽合金材料基体上采用PVD法制备Mo-W成分的涂层 再进行Si和Ge的固相渗透最终制备成( Mo ,W)(Si Ge)的抗氧化涂层。

(三)复合涂层

复合涂层是陶瓷涂层与玻璃涂层结合使用的一种耐高温抗氧化涂层 ,它不仅可以在高温环境下工作 而且还具备涂层微裂纹自愈合能力。通常选用MoSi,或Si作为抗氧化涂层的过渡层或粘接层以缓解涂层与基体间的热应力 ,外层密封层一般选用耐高温玻璃或高温氧化物。例如 国外学者RPSkowronski等研究的MoSi扩散层/CVD-MoSi阻挡层/莫来石密封层涂层 Ir-Si/致密Ir阻挡层/SrZrO;(Al0;)耐蚀层的复合涂层学者Sekigawa等制备的Si( CVD)/Ir(CVD或等离子喷涂)/Y203(等离子喷涂)复合涂层团;学者0Yamamoto等制备的Si/Y SiO;涂层 都具备了较好的高温抗氧化性能。特别是Ir阻挡层/SrZrO3(Al2O3)复合高温抗氧化涂层还具有1750 环境下长时间的抗氧化防护能力。此外 学者YSekigawa等制备的Ir-Si混合层/致密Ir阻挡层SrZrO3(Al2O3)耐蚀层的复合涂层在1950 环境下抗氧化时间仅21min。分析其原因主要是在于PVD法制备的I阻挡层与Ir-Ta层之间结合强度不良导致裂纹产生 同时 又由于SrZrO3结晶过大致使缺陷产生 导致高温抗氧化性能下降。学者THiroshi5等研制的Ti(CVD)/Ir(CVD或等离子喷涂)/Y203(等离子喷涂)复合抗氧化涂层在1960 环境下氧化25min 氧化增重为64%制备的Ir/ZrO/Y,0;涂层在1850 下氧化35 min后,氧化增重为41%。上世纪90年代初俄国复合材料科研生产联合体研制了MoSi2+HaSi复合防护涂层 其采用的制备工艺为料浆喷涂一高温熔烧—包渗硅化法 涂层高温抗氧化性能在1800 抗氧化时间达到100h具备了长时间的抗氧化防护能力。目前国内在Ta-12W合金表面首先制备出底层经烧结后在制备面层经高温烧结后,合金表面形成硅化物涂层 涂层在1800 抗氧化时间达到9h 室温到1800 热震寿命151次。

钽及钽合金材料基体与涂层材料之间存在着不可避免的热膨胀差异 ,也是导致涂层产生裂纹的主要原因。钽及钽合金材料涂层通过前述密封层和梯度涂层的制备可以消除涂层裂纹。梯度涂层可以使得涂层与基体两相浓度以及多相涂层之间组成呈连续分布 消除了各界面间的应力 ,并且表面无裂纹 ,最终达到高温抗氧化目的。

(四)钽及钽合金材料抗氧化涂层发展趋势

钽及钽合金材料作为高温结构材料应用的关键部件 在航空、航天、核工业以及武器领域的应用前景日趋明朗。因此 钽及钽合金的抗氧化涂层技术也向着耐高温、长寿命、抗冲刷等方向发展。

①添加合金元素改善钽及钽合金性能。使氧化性能和机械性能之问取得平衡 满足材料服役环境的需要。

②大力发展复合涂层制备技术。采用多种表面涂层技术相结合 ,从工艺上实现涂层的复合结构 提高对涂层制备过程中工艺参数的控制能力。

③新涂层工艺的开发 复合涂层内层与外层之间 涂层与基体之间的物理化学结合研究将是今后研究工作的重点之一。

④降低成本、简化制作工艺、缩短合成周期也将是今后抗氧化涂层的发展方向之一。

(文章来源于网络 侵权必删)

1、氧化膜失效:钛合金的氧化膜一旦失效,就无法再提供其应有的防腐蚀性能,导致腐蚀加速。

2、地区腐蚀:钛合金的不同区域可能会出现不同的腐蚀状态,如在阳极氧化过程中,存在电场分布不均,导致某些区域腐蚀加速。

3、氧化膜厚度不均:阳极氧化过程中,氧化膜的厚度可能会不均匀,导致钛合金表面的颜色、纹路出现不一致甚至划痕。

4、疏松缺陷:钛合金的氧化膜中存在疏松的缺陷或者裂纹,可能导致腐蚀加速、断裂等不良现象。

热豆腐的制作过程如下:

1、准备用料。豆腐、蒜、食用盐、芝麻酱、香油、生抽。

2、豆腐洗干净后掰成块。

3、起锅烧水,水开后把切好的豆腐放入水中,煮3-5分钟后乘出。

4、把蒜、香油、生抽、芝麻酱、食用盐放在一起调和好。

5、把调制好调料浇到热豆腐上,一道美味的热豆腐就做好了。

耐热铸钢:ZG40Cr26Ni4Mn3NRe1.成分和性能化学成分:C:02-06 Si:05-12 Mn:20-35 P:≤006 Cr:24-28 Ni:65-75 N:02-03 S:≤0032.机械性能:使用温度:1100℃室温抗拉强度≥539N/mm1100℃抗拉强度≥44N/mm选用MG600焊条焊接

淬火+低温回火后裂纹,如果内部氧化有可能是处理前就裂了。

淬火+低温回火后裂纹,如果内部没有氧化现象有可能是处理中裂了,

热处理过程中产生裂纹,有可能是热处理工艺过程与工件材料、大小、形状不符。

也可能是热处理回火温度脆性区

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10359645.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-04
下一篇2023-11-04

发表评论

登录后才能评论

评论列表(0条)

    保存