椭圆的参数方程(焦点在Y轴上)的推导

椭圆的参数方程(焦点在Y轴上)的推导,第1张

参数方程的原理(X轴的):设A为椭圆上一点:坐标(X,Y)。O=(-c,0)。O为椭圆焦点K是以OX为始边OA为终边的角,取K为参数,X=|OA|COS(K),Y=|OB|SIN(K),设参数方程为X=aCOS(K)Y=bSIN(K)。

==>X^2/a^2+Y^2/b^2=(COSK)^2+(SINK)^2=1为椭圆标准方程。==>参数方程X=aCOS(K)Y=bSIN(K)为椭圆的参数方程。

扩展资料:

(1)曲线的极坐标参数方程ρ=f(t),θ=g(t);

(2)圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标;

(3)椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 

(4)双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数;

(5)抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。

一、推导过程:

解:设C:((x^2)/(a^2))+((y^2)/(b^2))=1-----式1;

(a^2)-(b^2)=(c^2);

F1(-c,0);F2(c,0);P(xp,yp)

AB:(y-yp)=k(x-xp)=>y=kx+(yp-kxp);令m=yp-kxp=>AB:y=kx+m-----式2;

联立式1和式2消去y得:((k^2)+((b^2)/(a^2)))(x^2)+2kmx+((m^2)-(b^2))=0;

因为直线AB切椭圆C于点P,所以上式只有唯一解,则:

4((km)^2)-4((k^2)+((b^2)/(a^2)))((m^2)-(b^2))=0=>m^2=((ak)^2)+(b^2);

m^2=(yp-kxp)^2=((yp)^2)+((kxp)^2)-2kxpyp=((ak)^2)+(b^2);

=>((a^2)-(xp^2))(k^2)+2xpypk+((b^2)-(yp^2));

由根的判别式得:4((xpyp)^2)-4((a^2)-(xp^2))((b^2)-(yp^2))=0;

所以k值有唯一解:k=(-2xpyp)/(2((a^2)-(xp^2)))=-xpyp/((a^2)-(xp^2));

由式1得:(a^2)-(xp^2)=(ayp/b)^2=>k=-(xp(b^2))/(yp(a^2));

m=yp-kxp=(((ypa)^2)+((xpb)^2))/(yp(a^2))=((ab)^2)/(yp(a^2))=(b^2)/yp

二、椭圆上一点到焦点距离等于到x轴直线的距离。

三、

解:(((a^2)-xpc)^2)/(((a^2)+xpc)^2)=(((xp-c)^2)+(yp^2))/(((xp+c)^2)+(yp^2));

=>(((a^2)-xpc)^2)(((xp+c)^2)+(yp^2))=(((a^2)+xpc)^2)(((xp-c)^2)+(yp^2))

=>(((a^2)-xpc)^2)((xp+c)^2)+(((a^2)-xpc)^2)(yp^2)=(((a^2)+xpc)^2)((xp-c)^2)+(((a^2)+xpc)^2)(yp^2)

=>[(((a^2)-xpc)^2)((xp+c)^2)-(((a^2)+xpc)^2)((xp-c)^2)]=[(((a^2)+xpc)^2)-(((a^2)-xpc)^2)](yp^2)

∴过焦点与X轴垂直与椭圆相交的点坐标为(±c,b²/a )

扩展资料

性质:

1、把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用,老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。

2、设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。(也就是说,椭圆在点P处的切线即为∠F1PF2的外角平分线所在的直线)。

3、设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB为C在P点的法线,则AB平分∠F1PF2。

4、离心率越小越接近于圆,越大则椭圆就越扁。

5、椭圆的周长等于特定的正弦曲线在一个周期内的长度。

椭圆定义:平面内到两个定点F1,F2的距离之和为定值(定值大于两定点的距离)的点的集合(或轨迹)为椭圆,F1,F2称为椭圆的两个焦点.

设|F1F2|=2c(c>0),定值为2a(a>0),且a>c>0,

取F1F2所在直线为x轴,线段F1F2的中点为坐标原点O,

建立直角坐标系,设动点M(x,y),则F1(-c,0),F2(c,0),

由已知条件,得|MF1|+|MF2|=2a,

(x+c)2+y2

+

(x−c)2+y2

=2a,

化简,整理得

x2

a2

+

y2

a2−c2

=1,

∵a>c>0,∴令a2-c2=b2,(b>0),

则有

x2

a2

+

y2

b2

=1,(a>b>0).

∴焦点在x轴的椭圆的标准方程为

x2

a2

+

y2

b2

=1,(a>b>0).

如果取F1F2所在的直线为y轴,则椭圆的标准方程为

y2

a2

+

x2

b2

=1(a>b>0).

椭圆当然有圆心了!

椭圆的定义

椭圆是一种圆锥曲线(也有人叫圆锥截线的)

1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);

2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的

标准方程

高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。

椭圆的标准方程有两种,取决于焦点所在的坐标轴:

1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1

2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1

其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2(a^2-b^2)^05,焦距与长短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c

又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。

椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1

公式

椭圆的面积公式

S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)

或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)

椭圆的周长公式

椭圆周长没有公式,有积分式或无限项展开式。

椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如

L = 4a sqrt(1-e^sin^t)的(0 - pi/2)积分, 其中a为椭圆长轴,e为离心率

椭圆的离心率公式

e=c/a

椭圆的准线方程

x=+-a^2/C

椭圆焦半径公式 x=a+ex1 x2=a-ex1

椭圆过右焦点的半径r=a-ex

过左焦点的半径r=a+ex

点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1

点在圆内: x0^2/a^2+y0^2/b^2<1

点在圆上: x0^2/a^2+y0^2/b^2=1

点在圆外: x0^2/a^2+y0^2/b^2>1

直线与椭圆位置关系

y=kx+m ①

x^2/a^2+y^2/b^2=1 ②

由①②可推出x^2/a^2+(kx+m)^2/b^2=1

相切△=0

相离△<0无焦点

相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)

|AB|=abs(1+k^2)|x1-x2|

椭圆通径公式:2b^2/2

还有找圆心其实很简单的,左右对折再上下对折就可以找到了。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/11240998.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-25
下一篇2023-11-25

发表评论

登录后才能评论

评论列表(0条)

    保存