众所周知,宙斯是众神之王,是奥林匹斯山的统治者。
宙斯是克洛诺斯之子。克洛诺斯是时间的创力和破坏力的结合体,他的父母是天神乌拉诺斯和地神盖亚,他的妻子是掌管岁月流逝的女神瑞亚。瑞亚生了许多子女,但每个孩子一出生就被克洛诺斯吃掉。当瑞亚生下宙斯时,她决心保护这个小生命。她用布裹住一块石头慌称这是新生的婴儿,克洛诺斯将石头一口吞下肚里。于是,宙斯躲过一劫,他被送到克洛诺斯的姐姐宁芙女神那里抚养。
宙斯长大成人后知道了自己的身世,决心救出自己的同胞兄弟。他娶智慧女神墨迪斯为妻,听从妻子的计谋,引诱父亲克洛诺斯服下了催吐药,克洛诺斯服药后不断呕吐,把他腹中的子女们都吐了出来。他们是波塞冬、哈迪斯、赫斯提亚、德墨西尔。为了酬谢他们的兄弟宙斯,他们同意把最具威力的武器雷电赠给他。
宙斯对其父的暴政极为反感,他联络众兄弟对其父辈进行里一场战争。宙斯为了尽快取胜听取了兄弟普罗米修斯的建议,放出了囚禁在地下的独眼巨人和百臂巨灵,这两个怪物有着非凡的力量,宙斯和他的兄弟们终于取得了胜利。他们的父亲和许多泰坦神被送进了地狱的最底层。伟大的胜利之后到了决定谁来作王,宙斯和他的兄弟们都互不相让,眼看他们之间又要开战,这时普罗米修斯提出用拈阄来决定。结果,宙斯做了天上的王,波塞冬做了海里的王,哈迪斯做了地狱的王。
宙斯坐镇奥林匹斯山,拥有无上的权利和力量,他是正义的引导者,他对人类的统治公正不偏。他的劝告不易理解,他的决定不可改变,他的意愿是审慎的,正确无误的智慧的意愿。
宙斯既是众神之王也是人类之王,所以人们往往描绘他坐在精致的宝座上。肃穆的头部表现出驾御风暴的力量,同时也显示控制星空的魅力。人们通常用母山羊和母绵羊,或牛角涂成金色的白公牛给他献祭。
波塞冬
波塞冬经常手持三叉戟,这成了他的标志。当他愤怒时海底就会出现怪物,他挥动三叉戟就能引起海啸和地震,但象征他的圣兽海豚则显示出海的宁静和波塞冬亲切的神性。爱琴海附近的希腊海员和渔民对他极为的崇拜。
波塞冬的三叉戟并非只用来当武器,它也被用来击碎岩石,从裂缝中流出的清泉浇灌大地,使农民五谷丰登,所以波塞冬又被称为丰收神。波塞冬也给予了人类第一匹马,他乘座的战车就是用金色的战马所拉的,当他的战车在大海上奔驰时,波浪会变的平静,并且周围有海豚跟随。
波塞冬的神性广泛,有强烈的侵略性和极大的野心,时刻想夺取宙斯天帝的宝座,但被宙斯发觉,把他放逐到地上受刑,帮助劳梅顿王修建特洛伊城。此外他还常与诸神交战,在雅典和特罗森城就有过他和雅典娜的争霸战。
哈迪斯
哈迪斯负责统治地下世界。地下和阳间一样是一个广大的世界,蕴藏着丰富的矿物。
哈迪斯是任何人都恐惧的神,每个人都对他敬而远之。他通常是坐在四匹黑马拉的战车里,手持双叉戟,无论前面有任何障碍他都能铲除。如果他走入阳界那必然是带领牺牲者的灵魂去冥府,或是检查是否有阳光从地缝射进黄泉。
地狱很阳间有一道门连着,这就是“地狱门”。这座门设在泰纳斯海角附近,由一只名叫萨贝拉斯的三头犬看守,任何人一旦进入地狱门就绝对不能重返阳间。
从地狱门到地狱底层有一条很长的路,路上经常有虚幻的幽灵来往。地狱中还有许多河流,其中一条叫科库特斯河,是由地狱中服苦役的坏人的眼泪形成的,所以上面经常发出恐怖的哀号,因为这条河名字本身的意思就是“远方的哭声”。另一条叫克隆河的是去接受审判的人必须经过的,这条河的水是黑色的,水流湍急,谁也无法游过去,一名叫卡龙的船夫在次摆渡,只有乘座他的船才能过河,但他会要一块钱的船费,否则拒载,如果那些等待审判的人没钱,那就必须等上一年,那时卡龙会免费接渡。所以希腊人死后,通常要在死者嘴里放一块钱。
在哈迪斯巨大的宫殿中有三位审判官,他们是迈诺斯、拉达曼托斯、艾库,专门负责审理灵魂的思想、言论、行为。还有正义女神希弥斯,她手持利剑,为每个灵魂秤善恶,如果灵魂的善多于恶就上天堂,反之则下地狱。如果是罪大恶极者会被放逐到“无间地狱”,永远接受无间的痛苦和折磨。
哈迪斯把地狱的事处理的井井有条,纪律严明,他个性残忍,毫无恻隐之心,但公正无私,是一个令人敬畏的神。
雅典娜
雅典娜是宙斯的女儿,她的母亲是智慧女神墨迪斯。墨迪斯在怀孕时便感觉到她将生下一个非凡的女儿,她告戒宙斯即将出生的孩子将对他的权利构成威胁,于是宙斯毫不犹豫的把墨迪斯吞入了腹中。但是雅典娜并没有死,反而吸收了其父的力量和其母的智慧。
传说中雅典娜是从宙斯的头颅中诞生的。当宙斯的头颅裂开时,雅典娜从中跳出,她高呼胜利万岁,然后跳起了舞。她头戴光芒四射的头盔,身披华丽的铠甲,手持闪闪发光的长矛。当看到这位少女时,众神无不赞叹、惊异,整个奥林匹斯山都被她的舞步所震动。
雅典娜小时候有一名玩伴叫帕拉斯,她和雅典娜一般大,两人经常形影不离。她们最喜欢玩打仗和比武的游戏。有一天,她们又拿起长矛来玩,帕拉斯看到雅典娜从后面追来,就转身将长矛刺向雅典娜,奥林匹斯山上的宙斯看到了,惟恐女儿受伤,赶快用一个羊皮盾将女儿保护起来,帕拉斯见一个盾牌从天而降惊恐万分,一时呆住了。雅典娜见伙伴发呆,认为机会来了,便绕过盾牌将长矛刺向帕拉斯,这一刺正中要害,帕拉斯叫了一声便倒下了,雅典娜悲哀不已。为了纪念朋友,雅典娜在自己名字前加上了:帕拉斯。自那天起,她的正式名字就叫:帕拉斯·雅典娜。
雅典娜曾和波塞冬争夺阿提克地区的所有权,永生的六神被他们请来当裁判。众神决定让他们进行一场比赛,谁赠给人类的东西最有用就能获得这片土地。波塞冬把的他三叉戟往岩石上一击,一匹战马呼啸而出。而雅典娜则用她的长矛往地上一戳,地上立刻长出了一株银色叶子的橄榄树。众神经过裁决,认为橄榄枝是和平的象征,比用于杀戮性战争的战马有用的多。
雅典娜心灵手巧,才华横溢。她不但是妇女针织和缝补的保护神也是男人从事工艺的保护神。著名的雕刻大师菲迪亚斯曾经用象牙和黄金为雅典娜雕了一尊塑像,雅典娜右手举这象征胜利的饰物,左手拿着椭圆型的盾牌,这尊珍贵的塑像被放置在雅典的万神殿中。
普罗米修斯
普罗米修斯是正义女神希弥斯之子,宙斯的堂兄。他和雅典娜是非常要好的朋友,他们经常一起游玩。一天普罗米修斯来到大地上,他看到蓝天,大地,一切都是那么美好,只是单调了些,他用泥和水捏了一些和神一样的泥人,雅典娜向泥人吹了口气,泥人们立刻有了生命,这就是最初的人类。
那时宙斯和他的兄弟们正在和其父交战,普罗米修斯的母亲能够预知未来,她知道宙斯在这场战争中会获胜,于是与儿子一起帮助宙斯。
不久后,宙斯击败了他的父亲克洛诺斯成了新的主宰。然而他对人类并不重视,并拒绝向人类提供最后一件礼物——火。可是普罗米修斯想出了巧妙的办法,他拿来一根又粗又长的茴香秆,扛着它走近驰来的太阳车,将茴香秆伸到它的火焰里点燃,然后带着闪烁的火种回到地上。
宙斯见人间升起了火焰大发雷霆,决定报复人类。他命令以工艺著名的火神赫淮斯托斯造了一尊美女石像,雅典娜用魔法赋予石像生命;赫耳墨斯给其传授语言的技能;爱神阿佛洛狄忒赋予她种种诱人的魅力。宙斯给这美丽的形象取名为潘多拉,意为“具有一切天赋的女人”,因为众神都馈赠给她一件危害人类的礼物。他把这个年轻的女人送到人间,她径自来到普罗米修斯的弟弟埃庇米修斯的面前,请他收下宙斯给他的赠礼。普罗米修斯曾经警告过他的弟弟,不要接受奥林匹斯山上的宙斯的任何赠礼,而要立即把它退回去。可是,埃庇米修斯忘记了这个警告。潘多拉走到埃庇米修斯的面前,突然打开了盒盖,里面的灾害像股黑烟似地飞了出来,其中包括疾病,灾难,嫉妒,偷盗,贪婪,罪恶等等。在盒子底部还留着唯一美好的东西——希望,但潘多拉依照万神之父的告诫,趁它还没有飞出来的时候,赶紧关上了盖子,因此希望就永远关在盒内了。从此,各种各样的灾难充满了大地、天空和海洋。疾病日日夜夜在人类中蔓延,肆虐,而又悄无声息。
接着宙斯向普罗米修斯本人报复了,他把这名仇敌交到赫淮斯托斯和两名仆人的手里,这两名仆人外号叫做克拉托斯和皮亚,即强力和暴力。他们把普罗米修斯用铁链锁在高加索山的悬岩上,宙斯每天派一只恶鹰去啄食被缚的普罗米修斯的肝脏。肝脏被吃掉多少,很快又恢复原状。这种痛苦的折磨他不得不忍受,直到将来有人自愿为他献身为止。一天,赫拉克勒斯为寻找赫斯珀里得斯来到这里。他看到恶鹰在啄食可怜的普罗米修斯的肝脏,便取出弓箭把那只残忍的恶鹰一箭射落。然后他松开锁链,解放了普罗米修斯,带他离开了山崖。但为了满足宙斯的条件,赫拉克勒斯把半人半马的肯陶洛斯族的喀戎作为替身留在悬崖上。喀戎是一位永生的神,但为了解救普罗米修斯,他甘愿牺牲。最后,为了彻底执行宙斯的判决,普罗米修斯必须永远戴一只铁环,环上镶上一块高加索山上的石子。这样,宙斯可以自豪地宣称,他的仇敌仍然被锁在高加索山的悬崖上。
赫拉
赫拉是克洛诺斯之女,也就是宙斯的妹妹。
在宙斯热恋赫拉时,经常变成一只杜鹃接近她,所以后来杜鹃成了这位女神的圣鸟。
在宙斯和赫拉结合时,大地为了庆祝他们美满的婚姻,特别为他们生出了许多苹果树,树上结满了金色的苹果,这些苹果树也就是生命树。
赫拉是最有威信的女神,他脚穿金草鞋,坐在黄金宝殿上,其光荣和威严简直无与伦比。赫拉是天后,权威极大,诸神都慑服于她的威仪。她个性专权跋扈,嫉妒心极强,而且相当好战。因此希腊个地方都在赫拉祭典时举行凯旋大典,所有崇拜这为女神的人几乎都是战功赫赫的武将。
赫拉是完美女性的典范,是忠贞妻子的形象,是妇女的保护神,并且也是除阿佛洛狄西之外最美的女神。
赫斯提亚
赫斯提亚是克洛诺斯和瑞亚的女儿,宙斯和赫拉的妹妹。阿波罗和波塞冬都曾想她求婚,但她发誓终身不嫁,以保持少女的贞洁。宙斯考虑到她要有个栖身之地,就答应让每个家庭都给她一个席位。
她悄悄的离开奥林匹斯山,保护每个有炉灶的家庭。她不仅是灶神,也是家神。火焰象征她的存在、又是家庭永续、稳定和睦与繁荣的保证。在古代,祭坛上的火由先人点燃,他们的后代有义务让烛火继续点燃下去,因为烛火的熄灭意味着人种的灭绝。每个家庭都有自己的炉灶,每个城镇都有自己的祭坛。祭坛上的火象征着这城镇的生命,每当一个城镇的人到新的地方建立殖民地,圣火也就伴随着这些勇敢的移民到别的地方去。
阿波罗
宙斯十分喜欢女神勒托,他们相爱后勒托有了身孕,但却引起了赫拉的嫉妒。勒托被迫出走,她走了九天九夜也找不到栖身之处,后来她变成一只天鹅来到一个浮岛,在宙斯的帮助下,用四跟柱子把浮岛固定在海底。阿波罗和他的姐姐阿尔西弥斯就出生在这个岛上,这个岛后来被取名提洛岛。
阿波罗降生时,身体发出万丈金光。天上的女神都高兴的惊叫起来。
为了得到众神的承认,阿波罗决定到奥林匹斯山显示一下他独特的本领,可奥林匹斯山的众神根本不把他放在眼里,尤其是赫拉,根本就瞧不起他。于是,阿波罗决定自己去闯荡世界,并屡建奇功,名气越来越大。
一次,阿波罗碰到了小爱神丘比特,他嘲笑丘比特的箭象玩具一样,不可能建立不朽的功勋。丘比特听完从箭袋里取出两只不同颜色的箭,一只是金子的,一只是铅的。金子的箭是爱情之箭,而铅的箭是抗拒爱情的。丘比特把金箭射向阿波罗,把铅箭射向仙女达芙涅,一场爱情悲剧开始了。阿波罗爱上了达芙涅,而达芙涅看到阿波罗就向见到魔鬼一样。最后,为了避开阿波罗,达芙涅变成了一棵月桂树。而阿波罗为了纪念达芙涅,就用月桂枝来装饰自己的弓。
阿波罗主管音乐和竖琴,同时也主管舞蹈、诗歌和灵感。诗人和预言家都靠他的启示。阿波罗是照亮世界的神,没有什么能逃过这位伟大的裁决。他那神奇的光线能照到任何地方,有时还会照亮人们的智慧,使一切都变为现实和可能的东西。
阿波罗的儿子中有一个叫阿斯克勒庇奥斯,他会治病救人,能让死人复生。这样破坏了自然的秩序,地狱中空空如也。冥王哈迪斯大怒,找宙斯裁决,宙斯用雷电击杀了阿斯克勒庇奥斯。阿波罗尽管很悲痛,但也无能为力。
阿波罗的标志是竖琴、弓箭,和用棕榈树、爱神木、月桂树编制的冠冕。
阿瑞斯
阿瑞斯也被称为玛斯。传说是赫拉通过嗅一朵奇花而生出来的。
阿瑞斯性情暴烈,经常进行血腥的杀戮。他的神性是不论正邪,只管战斗,所以任何人对他都没有好感。他身材魁梧健壮,但行动迟缓又缺乏计谋,通常是徒步做战,偶尔也坐战车,那拉车的马是北风和愤怒之神所生。
在战场上随同他的主要是他的儿子,分别代表恐怖,战栗,慌张,畏惧等等和被称为纷争女神的伊利斯,以及代表都市破坏者的女儿埃奴欧。
阿瑞斯的野蛮暴行令奥林匹斯山的众神都非常憎恶他。
阿瑞斯的主要敌人是雅典娜。这位才智非凡的女神对阿瑞斯的残暴行径作出了坚决的反抗。她经常挺身而出,同阿瑞斯进行面对面的战斗,保护那些为正义事业而战的战士。
赫淮斯托斯
赫淮斯托斯是宙斯和赫拉之子。他隐居在埃托纳山,联合独眼怪族开发丰富的矿山,专门打造精良的器具。
赫淮斯托斯面容丑陋,一条腿也瘸了。但他的灵魂和才智却十分卓越。他心智灵巧,而且充满热诚。他在奥林匹斯山上建筑了诸神的宫殿,为宙斯打造雷霆和铠甲,此外还制造了爱神的弓,赫拉克勒斯的马车等诸神的物品和武器。
他虽然有丑又残,但却有一位美貌的妻子阿佛洛狄西。但阿佛洛狄西却经常与阿瑞斯幽会,赫淮斯托斯就张开一个精巧的黄金网,将他们罩住,让他们在诸神面前出丑,最后这对夫妻不欢而散。
赫淮斯托斯这个词,希腊文就是火神的意思。被铁匠和木匠尊为保护神。他是个温和,爱好和平的神,在天上和地上,同样获得众望。
安泰
安泰是海神波塞冬和大地母神盖亚之子。他从来也不会感到疲劳,他的身体一接触到大地就能吸取大地的力量。
他最喜欢吃的食物是幼狮,并以杀人为乐。在他盘踞的地盘上,人畜都不能幸免于难。每当外乡人从海上或陆地来到利比亚,他就强迫外乡人和他决斗,并将人置于死地,然后将死人的头骨用来装饰他在海滨为其父建造的神庙。
大英雄赫拉克勒斯来到了安泰的地盘。众神交给他一个任务,即消灭海边和各条道路上伤害人畜的一切怪物。当赫拉克勒斯和安泰较量时,双方都为对手的力量所惊讶。尽管赫拉克勒斯不断的将安泰击倒在地,但每次大地母神盖亚都会使安泰重新恢复力量。最后,赫拉克勒斯发现了安泰不断得到力量的秘密,他抓住这可怕的巨人,让他双脚离地,紧紧的把他勒在怀里,最后终于把他勒死了。
阿佛洛狄西
阿佛洛狄西即维纳斯,她是爱情和美丽的女神。传说中,她是从大海中的泡沫里诞生的。
在奥林匹斯山上,赫拉和雅典娜都说自己能和阿佛洛狄西媲美。一次,当众神正在欢宴时,纷争女神悄悄来到奥林匹斯山的宴会厅,她把一个刻有“属于最美者”的金苹果放在餐桌上。赫拉把苹果拿了过来,但雅典娜和阿佛洛狄西都不同意,并要求宙斯作出裁决。这件事非常棘手,宙斯只好把它交给一个叫帕里斯的牧羊人。帕里斯端详着三位女神,经过反复考虑,他把金苹果给了阿佛洛狄西。三为女神的纠纷解决了,从此,阿佛洛狄西便成了无可争辩的美神。
阿佛洛狄西的美貌不仅征服了奥林匹斯山上的诸神,也完全征服了人们的心。她以甜蜜的愿望给人们点燃激情,使他们产生爱情,让他们感到幸福或痛苦。
她的影响遍及大自然,在茫茫的大海上,她以光的形式出现,惊涛骇浪见到她会立刻平静,暴风也会立刻停止。她也是植物之母,使大地充满生机,繁花似锦。
阿尔西弥斯
月亮女神阿尔西弥斯是太阳神阿波罗的姐姐。她是位活泼、健美、爽朗的女神。和弟弟几乎具有同样的神性。上弦月是她的弓,月光是她的箭。
她是主司狩猎的女神,兼野兽的保护神。她特别宠爱小动物,所以使牧场和耕地绿草如茵。这位女神还经常率领侍奉她的仙女寻幽探胜,巡游狩猎,每当她疲劳时,就弹起竖琴或吹笛子,跟众仙女婆娑起舞,缪思女神和幽雅女神都经常来助兴。
月神阿尔西弥斯给大地带来朝露、雨水、冰霜。她给耕耘过的土地、谷物、丰收在望的田地带来益处。但如果人们忘了给她献祭,她就会用冰雹冻死作物,放逐野兽去践踏庄稼。
阿尔西弥斯喜欢忘情的驰骋在森林草原上,她脸上稚气未抹,肩上挎着箭袋,身旁往往有一头牡鹿或猎犬。
建议你看看《希腊神话》,希望有所帮助。
1、卡俄斯(Khaos/Chaos):混沌之神。天地未形,笼罩一切、充塞寰宇者,实为一相,今名之曰混沌。万物之先有混沌,随后诞生了大地之母盖亚(Gaea)、地狱深渊神塔耳塔洛斯(Tartarus)、爱神厄洛斯(Eros)。
2、盖亚(Gaea):大地女神,诞生于卡俄斯之后。万物之母,大地的本体,她诞生了天空乌拉诺斯(Uranos)、海洋蓬托斯(Pontus)和山脉乌瑞亚(Ourea)等。
3、尼克斯(Nyx):黑夜女神,卡俄斯之女。厄瑞波斯诞生后在大地(盖亚)之上诞生。黑夜的化身和本体,她不但同她哥哥生了三个孩子,还独自一人生了一大批神。
4、普罗米修斯(Prometheus):先知之神,阿特拉斯的兄弟,伊阿佩托斯之子。被称为“先知”。人类的创造者和保护者。因触怒宙斯被锁在高加索山上,每日有一只鹰啄食其肝脏,然后又长好,周而复始。后被赫拉克勒斯救出。
5、墨提斯(Metis):智慧与深思的女神,正义的策划者,大洋神女之一,所有神灵和凡人中最聪明的。欧申纳斯和泰西斯之女,宙斯的第一位妻子,雅典娜的母亲。
-希腊神话
世界十大数学家是:1欧几里得、2刘微、3秦九韶、4笛卡尔、5费马、6莱布尼茨、7欧拉、8拉格朗日、9高斯、10希尔伯特
1 欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。
欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements) 共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有很大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。
欧几里得 (活动于约前300-)
古希腊数学家。以其所著的《几何原本》(简称《原本》)闻名于世。关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “ 在几何里,没有专为国王铺设的大道。 ” 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。
欧几里得将公元前 7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少著作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何著作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学著作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体的结果。还有一些著作未能确定是否属于欧几里得,而且已经散失。
欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。
2刘徽 生平
(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东临淄或淄川一带人。终生未做官。
著作
刘徽的数学著作留传后世的很少,所留之作均为久经辗转传抄。他的主要著作有:
《九章算术注》10卷;
《重差》1卷,至唐代易名为《海岛算经》;
《九章重差图》l卷,可惜后两种都在宋代失传。
数学成就
刘徽的数学成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:
①在数系理论方面
用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
②在筹式演算理论方面
先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。
③在勾股理论方面
逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。
④在面积与体积理论方面
用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:
①割圆术与圆周率
他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=314,又算到3072边形的面积,得到π=3927/1250=31416,称为“徽率”。
②刘徽原理
在《九章算术•阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。
③“牟合方盖”说
在《九章算术•开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
④方程新术
在《九章算术•方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。
⑤重差术
在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。
贡献和地位
刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学吏上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。
费马
费马(1601~1665)
Fermat,Pierre de
费马是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。他的父亲多米尼克·费马在当地开了一家大皮革商店,拥有相当丰厚的产业,使得费马从小生活在富裕舒适的环境中。
费马的父亲由于富有和经营有道,颇受人们尊敬,并因此获得了地方事务顾问的头衔,但费马小的时候并没有因为家境的富裕而产生多少优越感。费马的母亲名叫克拉莱·德·罗格,出身穿袍贵族。多米尼克的大富与罗格的大贵族构筑了费马极富贵的身价。
费马小时候受教于他的叔叔皮埃尔,受到了良好的启蒙教育,培养了他广泛的兴趣和爱好,对他的性格也产生了重要的影响。直到14岁时,费马才进入博蒙·德·洛马涅公学,毕业后先后在奥尔良大学和图卢兹大学学习法律。
17世纪的法国,男子最讲究的职业是当律师,因此,男子学习法律成为时髦,也使人敬羡。有趣的是,法国为那些有产的而缺少资历的“准律师”尽快成为律师创造了很好的条件。1523年,佛朗期瓦一世组织成立了一个专门鬻卖官爵的机关,公开出售官职。这种官职鬻卖的社会现象一经产生,便应时代的需要而一发不可收拾,且弥留今日。
鬻卖官职,一方面迎合了那些富有者,使其获得官位从而提高社会地位,另一方面也使政府的财政状况得以好转。因此到了17世纪,除宫廷官和军官以外的任何官职都可以买卖了。直到今日,法院的书记官、公证人、传达人等职务,仍没有完全摆脱买卖性质。法国的买官特产,使许多中产阶级从中受惠,费马也不例外。费马尚没有大学毕业,便在博蒙·德·洛马涅买好了“律师”和“参议员”的职位。等到费马毕业返回家乡以后,他便很容易地当上了图卢兹议会的议员,时值 1631年。
尽管费马从步入社会直到去世都没有失去官职,而且逐年得到提升,但是据记载,费马并没有什么政绩,应付官场的能力也极普通,更谈不上什么领导才能。不过,费马并未因此而中断升迁。在费马任了七年地方议会议员之后,升任了调查参议员,这个官职有权对行政当局进行调查和提出质疑。
1642年,有一位权威人士叫勃里斯亚斯,他是最高法院顾问。勃里斯亚斯推荐费马进入了最高刑事法庭和法国大理院主要法庭,这使得费马以后得到了更好的升迁机会。1646年,费马升任议会首席发言人,以后还当过天主教联盟的主席等职。费马的官场生涯没有什么突出政绩值得称道,不过费马从不利用职权向人们勒索、从不受贿、为人敦厚、公开廉明,赢得了人们的信任和称赞。
费马的婚姻使费马跻身于穿袍贵族的行列,费马娶了他的舅表妹露伊丝·德·罗格。原本就为母亲的贵族血统而感骄傲的费马,如今干脆在自己的姓名上加上了贵族姓氏的标志“de”。
费马生有三女二男,除了大女儿克拉莱出嫁之外,四个子女都使费马感到体面。两个女儿当上了牧师,次子当上了菲玛雷斯的副主教。尤其是长子克莱曼特 ·萨摩尔,他不仅继承了费马的公职,在1665年当上了律师,而且还整理了费马的数学论著。如果不是费马长子积极出版费马的数学论著,很难说费马能对数学产生如此重大的影响,因为大部分论文都是在费马死后,由其长子负责发表的。从这个意义上说,萨摩尔也称得上是费马事业上的继承人。
对费马来说,真正的事业是学术,尤其是数学。费马通晓法语、意大利语、西班牙语、拉丁语和希腊语,而且还颇有研究。语言方面的博学给费马的数学研究提供了语言工具和便利,使他有能力学习和了解阿拉伯和意大利的代数以及古希腊的数学。正是这些,可能为费马在数学上的造诣莫定了良好基础。在数学上,费马不仅可以在数学王国里自由驰骋,而且还可以站在数学天地之外鸟瞰数学。这也不能绝对归于他的数学天赋,与他的博学多才多少也是有关系的。
费马生性内向,谦抑好静,不善推销自己,不善展示自我。因此他生前极少发表自己的论著,连一部完整的著作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。我们现在早就认识到时间性对于科学的重要,即使在l7世纪,这个问题也是突出的。费马的数学研究成果不及时发表,得不到传播和发展,并不完全是个人的名誉损失,而是影响了那个时代数学前进的步伐。
费马一生身体健康,只是在1652年的瘟疫中险些丧命。1665年元旦一过,费马开始感到身体有变,因此于1月l0日停职。第三天,费马去世。费马被安葬在卡斯特雷斯公墓,后来改葬在图卢兹的家族墓地中。
费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于牛顿、莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学大才费马堪称是17世纪法国最伟大的数学家。
17世纪伊始,就预示了一个颇为壮观的数学前景。而事实上,这个世纪也正是数学史上一个辉煌的时代。几何学首先成了这一时代最引入注目的引玉之明珠,由于几何学的新方法—代数方法在几何学上的应用,直接导致了解析几何的诞生;射影几何作为一种崭新的方法开辟了新的领域;由古代的求积问题导致的极微分割方法引入几何学,使几何学产生了新的研究方向,并最终促进了微积分的发明。几何学的重新崛起是与一代勤于思考、富于创造的数学家是分不开的,费马就是其中的一位。
对解析几何的贡献
费马独立于笛卡儿发现了解析几何的基本原理。
1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。
费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。
《平面与立体轨迹引论》》中道出了费马的发现。他指出:“两个未知量决定的—个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。”费马的发现比笛卡尔发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。
笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。
在1643年的一封信里,费马也谈到了他的解析几何思想。他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:含有三个未知量的方程表示一个曲面,并对此做了进一步地研究。
对微积分的贡献
16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提,主要原因是他为微积分概念的引出提供了与现代形式最接近的启示,以致于在微积分领域,在牛顿和莱布尼茨之后再加上费马作为创立者,也会得到数学界的认可。
曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。
费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。
对概率论的贡献
早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的著作《摘要》,建立了通信联系,从而建立了概率学的基础。
费马考虑到四次赌博可能的结局有2×2×2×2=16种,除了一种结局即四次赌博都让对手赢以外,其余情况都是第一个赌徒获胜。费马此时还没有使用概率一词,但他却得出了使第一个赌徒赢得概率是15/16,即有利情形数与所有可能情形数的比。这个条件在组合问题中一般均能满足,例如纸牌游戏,掷银子和从罐子里模球。其实,这项研究为概率的数学模型一概率空间的抽象奠定了博弈基础,尽管这种总结是到了1933年才由柯尔莫戈罗夫作出的。
费马和帕斯卡在相互通信以及著作中建立了概率论的基本原则——数学期望的概念。这是从点的数学问题开始的:在一个被假定有同等技巧的博弈者之间,在一个中断的博弈中,如何确定赌金的划分,已知两个博弈者在中断时的得分及在博弈中获胜所需要的分数。费马这样做出了讨论:一个博弈者A需要4分获胜,博弈者B需要3分获胜的情况,这是费马对此种特殊情况的解。因为显然最多四次就能决定胜负。
一般概率空间的概念,是人们对于概念的直观想法的彻底公理化。从纯数学观点看,有限概率空间似乎显得平淡无奇。但一旦引入了随机变量和数学期望时,它们就成为神奇的世界了。费马的贡献便在于此。
对数论的贡献
17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。
费马在数论领域中的成果是巨大的,其中主要有:
(1)全部素数可分为4n+1和4n+3两种形式。
(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。
(3)没有一个形如4n+3的素数,能表示为两个平方数之和。
(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。
(5)边长为有理数的直角三角形的面积不可能是一个平方数。
(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。
对光学的贡献
费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。这个原理的提出源远流长。早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。后由海伦揭示了这两个定律的理论实质——光线取最短路径。经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。—个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。费马的高明之处则在于变这种的哲学的观念为科学理论。
费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。并用最小作用原理解释了一些问题。这给许多数学家以很大的鼓舞。尤其是欧拉,竞用变分法技巧把这个原理用于求函数的极值。这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小。
世界十大数学家是:1欧几里得、2刘微、3秦九韶、4笛卡尔、5费马、6莱布尼茨、7欧拉、8拉格朗日、9高斯、10希尔伯特
1 欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。
欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements)共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有很大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。
欧几里得 (活动于约前300-)
古希腊数学家。以其所著的《几何原本》(简称《原本》)闻名于世。关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “ 在几何里,没有专为国王铺设的大道。 ” 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。
欧几里得将公元前 7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少著作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何著作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学著作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体的结果。还有一些著作未能确定是否属于欧几里得,而且已经散失。
欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。
2刘徽 生平
(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东临淄或淄川一带人。终生未做官。
著作
刘徽的数学著作留传后世的很少,所留之作均为久经辗转传抄。他的主要著作有:
《九章算术注》10卷;
《重差》1卷,至唐代易名为《海岛算经》;
《九章重差图》l卷,可惜后两种都在宋代失传。
数学成就
刘徽的数学成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:
①在数系理论方面
用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
②在筹式演算理论方面
先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。
③在勾股理论方面
逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。
④在面积与体积理论方面
用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:
①割圆术与圆周率
他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=314,又算到3072边形的面积,得到π=3927/1250=31416,称为“徽率”。
②刘徽原理
在《九章算术•阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。
③“牟合方盖”说
在《九章算术•开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
④方程新术
在《九章算术•方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。
⑤重差术
在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。
贡献和地位
刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学吏上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。
费马
费马(1601~1665)
Fermat,Pierre de
费马是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。他的父亲多米尼克·费马在当地开了一家大皮革商店,拥有相当丰厚的产业,使得费马从小生活在富裕舒适的环境中。
费马的父亲由于富有和经营有道,颇受人们尊敬,并因此获得了地方事务顾问的头衔,但费马小的时候并没有因为家境的富裕而产生多少优越感。费马的母亲名叫克拉莱·德·罗格,出身穿袍贵族。多米尼克的大富与罗格的大贵族构筑了费马极富贵的身价。
费马小时候受教于他的叔叔皮埃尔,受到了良好的启蒙教育,培养了他广泛的兴趣和爱好,对他的性格也产生了重要的影响。直到14岁时,费马才进入博蒙·德·洛马涅公学,毕业后先后在奥尔良大学和图卢兹大学学习法律。
17世纪的法国,男子最讲究的职业是当律师,因此,男子学习法律成为时髦,也使人敬羡。有趣的是,法国为那些有产的而缺少资历的“准律师”尽快成为律师创造了很好的条件。1523年,佛朗期瓦一世组织成立了一个专门鬻卖官爵的机关,公开出售官职。这种官职鬻卖的社会现象一经产生,便应时代的需要而一发不可收拾,且弥留今日。
鬻卖官职,一方面迎合了那些富有者,使其获得官位从而提高社会地位,另一方面也使政府的财政状况得以好转。因此到了17世纪,除宫廷官和军官以外的任何官职都可以买卖了。直到今日,法院的书记官、公证人、传达人等职务,仍没有完全摆脱买卖性质。法国的买官特产,使许多中产阶级从中受惠,费马也不例外。费马尚没有大学毕业,便在博蒙·德·洛马涅买好了“律师”和“参议员”的职位。等到费马毕业返回家乡以后,他便很容易地当上了图卢兹议会的议员,时值1631年。
尽管费马从步入社会直到去世都没有失去官职,而且逐年得到提升,但是据记载,费马并没有什么政绩,应付官场的能力也极普通,更谈不上什么领导才能。不过,费马并未因此而中断升迁。在费马任了七年地方议会议员之后,升任了调查参议员,这个官职有权对行政当局进行调查和提出质疑。
1642年,有一位权威人士叫勃里斯亚斯,他是最高法院顾问。勃里斯亚斯推荐费马进入了最高刑事法庭和法国大理院主要法庭,这使得费马以后得到了更好的升迁机会。1646年,费马升任议会首席发言人,以后还当过天主教联盟的主席等职。费马的官场生涯没有什么突出政绩值得称道,不过费马从不利用职权向人们勒索、从不受贿、为人敦厚、公开廉明,赢得了人们的信任和称赞。
费马的婚姻使费马跻身于穿袍贵族的行列,费马娶了他的舅表妹露伊丝·德·罗格。原本就为母亲的贵族血统而感骄傲的费马,如今干脆在自己的姓名上加上了贵族姓氏的标志“de”。
费马生有三女二男,除了大女儿克拉莱出嫁之外,四个子女都使费马感到体面。两个女儿当上了牧师,次子当上了菲玛雷斯的副主教。尤其是长子克莱曼特·萨摩尔,他不仅继承了费马的公职,在1665年当上了律师,而且还整理了费马的数学论著。如果不是费马长子积极出版费马的数学论著,很难说费马能对数学产生如此重大的影响,因为大部分论文都是在费马死后,由其长子负责发表的。从这个意义上说,萨摩尔也称得上是费马事业上的继承人。
对费马来说,真正的事业是学术,尤其是数学。费马通晓法语、意大利语、西班牙语、拉丁语和希腊语,而且还颇有研究。语言方面的博学给费马的数学研究提供了语言工具和便利,使他有能力学习和了解阿拉伯和意大利的代数以及古希腊的数学。正是这些,可能为费马在数学上的造诣莫定了良好基础。在数学上,费马不仅可以在数学王国里自由驰骋,而且还可以站在数学天地之外鸟瞰数学。这也不能绝对归于他的数学天赋,与他的博学多才多少也是有关系的。
费马生性内向,谦抑好静,不善推销自己,不善展示自我。因此他生前极少发表自己的论著,连一部完整的著作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。我们现在早就认识到时间性对于科学的重要,即使在l7世纪,这个问题也是突出的。费马的数学研究成果不及时发表,得不到传播和发展,并不完全是个人的名誉损失,而是影响了那个时代数学前进的步伐。
费马一生身体健康,只是在1652年的瘟疫中险些丧命。1665年元旦一过,费马开始感到身体有变,因此于1月l0日停职。第三天,费马去世。费马被安葬在卡斯特雷斯公墓,后来改葬在图卢兹的家族墓地中。
费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于牛顿、莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学大才费马堪称是17世纪法国最伟大的数学家。
17世纪伊始,就预示了一个颇为壮观的数学前景。而事实上,这个世纪也正是数学史上一个辉煌的时代。几何学首先成了这一时代最引入注目的引玉之明珠,由于几何学的新方法—代数方法在几何学上的应用,直接导致了解析几何的诞生;射影几何作为一种崭新的方法开辟了新的领域;由古代的求积问题导致的极微分割方法引入几何学,使几何学产生了新的研究方向,并最终促进了微积分的发明。几何学的重新崛起是与一代勤于思考、富于创造的数学家是分不开的,费马就是其中的一位。
对解析几何的贡献
费马独立于笛卡儿发现了解析几何的基本原理。
1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。
费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。
《平面与立体轨迹引论》》中道出了费马的发现。他指出:“两个未知量决定的—个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。”费马的发现比笛卡尔发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。
笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。
在1643年的一封信里,费马也谈到了他的解析几何思想。他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:含有三个未知量的方程表示一个曲面,并对此做了进一步地研究。
对微积分的贡献
16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提,主要原因是他为微积分概念的引出提供了与现代形式最接近的启示,以致于在微积分领域,在牛顿和莱布尼茨之后再加上费马作为创立者,也会得到数学界的认可。
曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。
费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。
对概率论的贡献
早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的著作《摘要》,建立了通信联系,从而建立了概率学的基础。
费马考虑到四次赌博可能的结局有2×2×2×2=16种,除了一种结局即四次赌博都让对手赢以外,其余情况都是第一个赌徒获胜。费马此时还没有使用概率一词,但他却得出了使第一个赌徒赢得概率是15/16,即有利情形数与所有可能情形数的比。这个条件在组合问题中一般均能满足,例如纸牌游戏,掷银子和从罐子里模球。其实,这项研究为概率的数学模型一概率空间的抽象奠定了博弈基础,尽管这种总结是到了1933年才由柯尔莫戈罗夫作出的。
费马和帕斯卡在相互通信以及著作中建立了概率论的基本原则——数学期望的概念。这是从点的数学问题开始的:在一个被假定有同等技巧的博弈者之间,在一个中断的博弈中,如何确定赌金的划分,已知两个博弈者在中断时的得分及在博弈中获胜所需要的分数。费马这样做出了讨论:一个博弈者A需要4分获胜,博弈者B需要3分获胜的情况,这是费马对此种特殊情况的解。因为显然最多四次就能决定胜负。
一般概率空间的概念,是人们对于概念的直观想法的彻底公理化。从纯数学观点看,有限概率空间似乎显得平淡无奇。但一旦引入了随机变量和数学期望时,它们就成为神奇的世界了。费马的贡献便在于此。
对数论的贡献
17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。
费马在数论领域中的成果是巨大的,其中主要有:
(1)全部素数可分为4n+1和4n+3两种形式。
(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。
(3)没有一个形如4n+3的素数,能表示为两个平方数之和。
(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。
(5)边长为有理数的直角三角形的面积不可能是一个平方数。
(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。
对光学的贡献
费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。这个原理的提出源远流长。早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。后由海伦揭示了这两个定律的理论实质——光线取最短路径。经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。—个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。费马的高明之处则在于变这种的哲学的观念为科学理论。
费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。并用最小作用原理解释了一些问题。这给许多数学家以很大的鼓舞。尤其是欧拉,竞用变分法技巧把这个原理用于求函数的极值。这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小。
世界十大数学家是:1欧几里得、2刘微、3秦九韶、4笛卡尔、5费马、6莱布尼茨、7欧拉、8拉格朗日、9高斯、10希尔伯特
1 欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。
欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements) 共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有很大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。
欧几里得 (活动于约前300-)
古希腊数学家。以其所著的《几何原本》(简称《原本》)闻名于世。关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “ 在几何里,没有专为国王铺设的大道。 ” 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。
欧几里得将公元前 7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少著作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何著作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学著作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体的结果。还有一些著作未能确定是否属于欧几里得,而且已经散失。
欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。
2刘徽 生平
(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东临淄或淄川一带人。终生未做官。
著作
刘徽的数学著作留传后世的很少,所留之作均为久经辗转传抄。他的主要著作有:
《九章算术注》10卷;
《重差》1卷,至唐代易名为《海岛算经》;
《九章重差图》l卷,可惜后两种都在宋代失传。
数学成就
刘徽的数学成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:
①在数系理论方面
用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
②在筹式演算理论方面
先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。
③在勾股理论方面
逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。
④在面积与体积理论方面
用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:
①割圆术与圆周率
他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=314,又算到3072边形的面积,得到π=3927/1250=31416,称为“徽率”。
②刘徽原理
在《九章算术•阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。
③“牟合方盖”说
在《九章算术•开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
④方程新术
在《九章算术•方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。
⑤重差术
在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。
贡献和地位
刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学吏上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。
费马
费马(1601~1665)
Fermat,Pierre de
费马是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。他的父亲多米尼克·费马在当地开了一家大皮革商店,拥有相当丰厚的产业,使得费马从小生活在富裕舒适的环境中。
费马的父亲由于富有和经营有道,颇受人们尊敬,并因此获得了地方事务顾问的头衔,但费马小的时候并没有因为家境的富裕而产生多少优越感。费马的母亲名叫克拉莱·德·罗格,出身穿袍贵族。多米尼克的大富与罗格的大贵族构筑了费马极富贵的身价。
费马小时候受教于他的叔叔皮埃尔,受到了良好的启蒙教育,培养了他广泛的兴趣和爱好,对他的性格也产生了重要的影响。直到14岁时,费马才进入博蒙·德·洛马涅公学,毕业后先后在奥尔良大学和图卢兹大学学习法律。
17世纪的法国,男子最讲究的职业是当律师,因此,男子学习法律成为时髦,也使人敬羡。有趣的是,法国为那些有产的而缺少资历的“准律师”尽快成为律师创造了很好的条件。1523年,佛朗期瓦一世组织成立了一个专门鬻卖官爵的机关,公开出售官职。这种官职鬻卖的社会现象一经产生,便应时代的需要而一发不可收拾,且弥留今日。
鬻卖官职,一方面迎合了那些富有者,使其获得官位从而提高社会地位,另一方面也使政府的财政状况得以好转。因此到了17世纪,除宫廷官和军官以外的任何官职都可以买卖了。直到今日,法院的书记官、公证人、传达人等职务,仍没有完全摆脱买卖性质。法国的买官特产,使许多中产阶级从中受惠,费马也不例外。费马尚没有大学毕业,便在博蒙·德·洛马涅买好了“律师”和“参议员”的职位。等到费马毕业返回家乡以后,他便很容易地当上了图卢兹议会的议员,时值 1631年。
尽管费马从步入社会直到去世都没有失去官职,而且逐年得到提升,但是据记载,费马并没有什么政绩,应付官场的能力也极普通,更谈不上什么领导才能。不过,费马并未因此而中断升迁。在费马任了七年地方议会议员之后,升任了调查参议员,这个官职有权对行政当局进行调查和提出质疑。
1642年,有一位权威人士叫勃里斯亚斯,他是最高法院顾问。勃里斯亚斯推荐费马进入了最高刑事法庭和法国大理院主要法庭,这使得费马以后得到了更好的升迁机会。1646年,费马升任议会首席发言人,以后还当过天主教联盟的主席等职。费马的官场生涯没有什么突出政绩值得称道,不过费马从不利用职权向人们勒索、从不受贿、为人敦厚、公开廉明,赢得了人们的信任和称赞。
费马的婚姻使费马跻身于穿袍贵族的行列,费马娶了他的舅表妹露伊丝·德·罗格。原本就为母亲的贵族血统而感骄傲的费马,如今干脆在自己的姓名上加上了贵族姓氏的标志“de”。
费马生有三女二男,除了大女儿克拉莱出嫁之外,四个子女都使费马感到体面。两个女儿当上了牧师,次子当上了菲玛雷斯的副主教。尤其是长子克莱曼特 ·萨摩尔,他不仅继承了费马的公职,在1665年当上了律师,而且还整理了费马的数学论著。如果不是费马长子积极出版费马的数学论著,很难说费马能对数学产生如此重大的影响,因为大部分论文都是在费马死后,由其长子负责发表的。从这个意义上说,萨摩尔也称得上是费马事业上的继承人。
对费马来说,真正的事业是学术,尤其是数学。费马通晓法语、意大利语、西班牙语、拉丁语和希腊语,而且还颇有研究。语言方面的博学给费马的数学研究提供了语言工具和便利,使他有能力学习和了解阿拉伯和意大利的代数以及古希腊的数学。正是这些,可能为费马在数学上的造诣莫定了良好基础。在数学上,费马不仅可以在数学王国里自由驰骋,而且还可以站在数学天地之外鸟瞰数学。这也不能绝对归于他的数学天赋,与他的博学多才多少也是有关系的。
费马生性内向,谦抑好静,不善推销自己,不善展示自我。因此他生前极少发表自己的论著,连一部完整的著作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。我们现在早就认识到时间性对于科学的重要,即使在l7世纪,这个问题也是突出的。费马的数学研究成果不及时发表,得不到传播和发展,并不完全是个人的名誉损失,而是影响了那个时代数学前进的步伐。
费马一生身体健康,只是在1652年的瘟疫中险些丧命。1665年元旦一过,费马开始感到身体有变,因此于1月l0日停职。第三天,费马去世。费马被安葬在卡斯特雷斯公墓,后来改葬在图卢兹的家族墓地中。
费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于牛顿、莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学大才费马堪称是17世纪法国最伟大的数学家。
17世纪伊始,就预示了一个颇为壮观的数学前景。而事实上,这个世纪也正是数学史上一个辉煌的时代。几何学首先成了这一时代最引入注目的引玉之明珠,由于几何学的新方法—代数方法在几何学上的应用,直接导致了解析几何的诞生;射影几何作为一种崭新的方法开辟了新的领域;由古代的求积问题导致的极微分割方法引入几何学,使几何学产生了新的研究方向,并最终促进了微积分的发明。几何学的重新崛起是与一代勤于思考、富于创造的数学家是分不开的,费马就是其中的一位。
对解析几何的贡献
费马独立于笛卡儿发现了解析几何的基本原理。
1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。
费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。
《平面与立体轨迹引论》》中道出了费马的发现。他指出:“两个未知量决定的—个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。”费马的发现比笛卡尔发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。
笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。
在1643年的一封信里,费马也谈到了他的解析几何思想。他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:含有三个未知量的方程表示一个曲面,并对此做了进一步地研究。
对微积分的贡献
16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提,主要原因是他为微积分概念的引出提供了与现代形式最接近的启示,以致于在微积分领域,在牛顿和莱布尼茨之后再加上费马作为创立者,也会得到数学界的认可。
曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。
费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。
对概率论的贡献
早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的著作《摘要》,建立了通信联系,从而建立了概率学的基础。
费马考虑到四次赌博可能的结局有2×2×2×2=16种,除了一种结局即四次赌博都让对手赢以外,其余情况都是第一个赌徒获胜。费马此时还没有使用概率一词,但他却得出了使第一个赌徒赢得概率是15/16,即有利情形数与所有可能情形数的比。这个条件在组合问题中一般均能满足,例如纸牌游戏,掷银子和从罐子里模球。其实,这项研究为概率的数学模型一概率空间的抽象奠定了博弈基础,尽管这种总结是到了1933年才由柯尔莫戈罗夫作出的。
费马和帕斯卡在相互通信以及著作中建立了概率论的基本原则——数学期望的概念。这是从点的数学问题开始的:在一个被假定有同等技巧的博弈者之间,在一个中断的博弈中,如何确定赌金的划分,已知两个博弈者在中断时的得分及在博弈中获胜所需要的分数。费马这样做出了讨论:一个博弈者A需要4分获胜,博弈者B需要3分获胜的情况,这是费马对此种特殊情况的解。因为显然最多四次就能决定胜负。
一般概率空间的概念,是人们对于概念的直观想法的彻底公理化。从纯数学观点看,有限概率空间似乎显得平淡无奇。但一旦引入了随机变量和数学期望时,它们就成为神奇的世界了。费马的贡献便在于此。
对数论的贡献
17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。
费马在数论领域中的成果是巨大的,其中主要有:
(1)全部素数可分为4n+1和4n+3两种形式。
(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。
(3)没有一个形如4n+3的素数,能表示为两个平方数之和。
(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。
(5)边长为有理数的直角三角形的面积不可能是一个平方数。
(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。
对光学的贡献
费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。这个原理的提出源远流长。早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。后由海伦揭示了这两个定律的理论实质——光线取最短路径。经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。—个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。费马的高明之处则在于变这种的哲学的观念为科学理论。
费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。并用最小作用原理解释了一些问题。这给许多数学家以很大的鼓舞。尤其是欧拉,竞用变分法技巧把这个原理用于求函数的极值。这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小。
世界十大数学家是:1欧几里得、2刘微、3秦九韶、4笛卡尔、5费马、6莱布尼茨、7欧拉、8拉格朗日、9高斯、10希尔伯特
1 欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements) 共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有很大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。欧几里得 (活动于约前300-)古希腊数学家。以其所著的《几何原本》(简称《原本》)闻名于世。关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “ 在几何里,没有专为国王铺设的大道。 ” 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。欧几里得将公元前 7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少著作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何著作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学著作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体的结果。还有一些著作未能确定是否属于欧几里得,而且已经散失。欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。2刘徽 生平(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东临淄或淄川一带人。终生未做官。著作刘徽的数学著作留传后世的很少,所留之作均为久经辗转传抄。他的主要著作有:《九章算术注》10卷;《重差》1卷,至唐代易名为《海岛算经》;《九章重差图》l卷,可惜后两种都在宋代失传。数学成就刘徽的数学成就大致为两方面:一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:①在数系理论方面用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。②在筹式演算理论方面先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。③在勾股理论方面逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。④在面积与体积理论方面用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:①割圆术与圆周率他在《九章算术圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=314,又算到3072边形的面积,得到π=3927/1250=31416,称为“徽率”。②刘徽原理在《九章算术阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。③“牟合方盖”说在《九章算术开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。④方程新术在《九章算术方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。⑤重差术在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。贡献和地位刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学吏上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。费马费马(1601~1665)Fermat,Pierre de费马是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。他的父亲多米尼克·费马在当地开了一家大皮革商店,拥有相当丰厚的产业,使得费马从小生活在富裕舒适的环境中。费马的父亲由于富有和经营有道,颇受人们尊敬,并因此获得了地方事务顾问的头衔,但费马小的时候并没有因为家境的富裕而产生多少优越感。费马的母亲名叫克拉莱·德·罗格,出身穿袍贵族。多米尼克的大富与罗格的大贵族构筑了费马极富贵的身价。费马小时候受教于他的叔叔皮埃尔,受到了良好的启蒙教育,培养了他广泛的兴趣和爱好,对他的性格也产生了重要的影响。直到14岁时,费马才进入博蒙·德·洛马涅公学,毕业后先后在奥尔良大学和图卢兹大学学习法律。17世纪的法国,男子最讲究的职业是当律师,因此,男子学习法律成为时髦,也使人敬羡。有趣的是,法国为那些有产的而缺少资历的“准律师”尽快成为律师创造了很好的条件。1523年,佛朗期瓦一世组织成立了一个专门鬻卖官爵的机关,公开出售官职。这种官职鬻卖的社会现象一经产生,便应时代的需要而一发不可收拾,且弥留今日。鬻卖官职,一方面迎合了那些富有者,使其获得官位从而提高社会地位,另一方面也使政府的财政状况得以好转。因此到了17世纪,除宫廷官和军官以外的任何官职都可以买卖了。直到今日,法院的书记官、公证人、传达人等职务,仍没有完全摆脱买卖性质。法国的买官特产,使许多中产阶级从中受惠,费马也不例外。费马尚没有大学毕业,便在博蒙·德·洛马涅买好了“律师”和“参议员”的职位。等到费马毕业返回家乡以后,他便很容易地当上了图卢兹议会的议员,时值 1631年。尽管费马从步入社会直到去世都没有失去官职,而且逐年得到提升,但是据记载,费马并没有什么政绩,应付官场的能力也极普通,更谈不上什么领导才能。不过,费马并未因此而中断升迁。在费马任了七年地方议会议员之后,升任了调查参议员,这个官职有权对行政当局进行调查和提出质疑。1642年,有一位权威人士叫勃里斯亚斯,他是最高法院顾问。勃里斯亚斯推荐费马进入了最高刑事法庭和法国大理院主要法庭,这使得费马以后得到了更好的升迁机会。1646年,费马升任议会首席发言人,以后还当过天主教联盟的主席等职。费马的官场生涯没有什么突出政绩值得称道,不过费马从不利用职权向人们勒索、从不受贿、为人敦厚、公开廉明,赢得了人们的信任和称赞。费马的婚姻使费马跻身于穿袍贵族的行列,费马娶了他的舅表妹露伊丝·德·罗格。原本就为母亲的贵族血统而感骄傲的费马,如今干脆在自己的姓名上加上了贵族姓氏的标志“de”。费马生有三女二男,除了大女儿克拉莱出嫁之外,四个子女都使费马感到体面。两个女儿当上了牧师,次子当上了菲玛雷斯的副主教。尤其是长子克莱曼特 ·萨摩尔,他不仅继承了费马的公职,在1665年当上了律师,而且还整理了费马的数学论著。如果不是费马长子积极出版费马的数学论著,很难说费马能对数学产生如此重大的影响,因为大部分论文都是在费马死后,由其长子负责发表的。从这个意义上说,萨摩尔也称得上是费马事业上的继承人。对费马来说,真正的事业是学术,尤其是数学。费马通晓法语、意大利语、西班牙语、拉丁语和希腊语,而且还颇有研究。语言方面的博学给费马的数学研究提供了语言工具和便利,使他有能力学习和了解阿拉伯和意大利的代数以及古希腊的数学。正是这些,可能为费马在数学上的造诣莫定了良好基础。在数学上,费马不仅可以在数学王国里自由驰骋,而且还可以站在数学天地之外鸟瞰数学。这也不能绝对归于他的数学天赋,与他的博学多才多少也是有关系的。费马生性内向,谦抑好静,不善推销自己,不善展示自我。因此他生前极少发表自己的论著,连一部完整的著作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。我们现在早就认识到时间性对于科学的重要,即使在l7世纪,这个问题也是突出的。费马的数学研究成果不及时发表,得不到传播和发展,并不完全是个人的名誉损失,而是影响了那个时代数学前进的步伐。费马一生身体健康,只是在1652年的瘟疫中险些丧命。1665年元旦一过,费马开始感到身体有变,因此于1月l0日停职。第三天,费马去世。费马被安葬在卡斯特雷斯公墓,后来改葬在图卢兹的家族墓地中。费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于牛顿、莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学大才费马堪称是17世纪法国最伟大的数学家。17世纪伊始,就预示了一个颇为壮观的数学前景。而事实上,这个世纪也正是数学史上一个辉煌的时代。几何学首先成了这一时代最引入注目的引玉之明珠,由于几何学的新方法—代数方法在几何学上的应用,直接导致了解析几何的诞生;射影几何作为一种崭新的方法开辟了新的领域;由古代的求积问题导致的极微分割方法引入几何学,使几何学产生了新的研究方向,并最终促进了微积分的发明。几何学的重新崛起是与一代勤于思考、富于创造的数学家是分不开的,费马就是其中的一位。对解析几何的贡献费马独立于笛卡儿发现了解析几何的基本原理。1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。《平面与立体轨迹引论》》中道出了费马的发现。他指出:“两个未知量决定的—个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。”费马的发现比笛卡尔发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。在1643年的一封信里,费马也谈到了他的解析几何思想。他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:含有三个未知量的方程表示一个曲面,并对此做了进一步地研究。对微积分的贡献16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提,主要原因是他为微积分概念的引出提供了与现代形式最接近的启示,以致于在微积分领域,在牛顿和莱布尼茨之后再加上费马作为创立者,也会得到数学界的认可。曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。对概率论的贡献早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的著作《摘要》,建立了通信联系,从而建立了概率学的基础。费马考虑到四次赌博可能的结局有2×2×2×2=16种,除了一种结局即四次赌博都让对手赢以外,其余情况都是第一个赌徒获胜。费马此时还没有使用概率一词,但他却得出了使第一个赌徒赢得概率是15/16,即有利情形数与所有可能情形数的比。这个条件在组合问题中一般均能满足,例如纸牌游戏,掷银子和从罐子里模球。其实,这项研究为概率的数学模型一概率空间的抽象奠定了博弈基础,尽管这种总结是到了1933年才由柯尔莫戈罗夫作出的。费马和帕斯卡在相互通信以及著作中建立了概率论的基本原则——数学期望的概念。这是从点的数学问题开始的:在一个被假定有同等技巧的博弈者之间,在一个中断的博弈中,如何确定赌金的划分,已知两个博弈者在中断时的得分及在博弈中获胜所需要的分数。费马这样做出了讨论:一个博弈者A需要4分获胜,博弈者B需要3分获胜的情况,这是费马对此种特殊情况的解。因为显然最多四次就能决定胜负。一般概率空间的概念,是人们对于概念的直观想法的彻底公理化。从纯数学观点看,有限概率空间似乎显得平淡无奇。但一旦引入了随机变量和数学期望时,它们就成为神奇的世界了。费马的贡献便在于此。对数论的贡献17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。费马在数论领域中的成果是巨大的,其中主要有:(1)全部素数可分为4n+1和4n+3两种形式。(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。(3)没有一个形如4n+3的素数,能表示为两个平方数之和。(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。(5)边长为有理数的直角三角形的面积不可能是一个平方数。(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。对光学的贡献费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。这个原理的提出源远流长。早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。后由海伦揭示了这两个定律的理论实质——光线取最短路径。经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。—个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。费马的高明之处则在于变这种的哲学的观念为科学理论。费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。并用最小作用原理解释了一些问题。这给许多数学家以很大的鼓舞。尤其是欧拉,竞用变分法技巧把这个原理用于求函数的极值。这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)