LD天车外形的尺寸

LD天车外形的尺寸,第1张

长宽高为5999×2420×3100(毫米),轴距为3310毫米;由于采用了轻量化进口上装,整备质量保持在3100千克,在相同的动力参数下,加速更加轻巧,同时也降低了油耗。 

前、后腿部空间,即前座靠背到踏板,后座靠背到前座后背的距离。前、后肩部空间,即前、后座位肩部处的宽度。

安全隐患:

通常使用的单位是毫米(mm),汽车长度方向两个极端点间的距离,即从车前保险杆最凸出的位置量起,到车后保险杆最凸出的位置,这两点间的距离。

车身宽度定义为:汽车宽度方向两个极端点间的距离,也就是车身左、右最凸出位置之间的距离。根据业界通用的规则,车身宽度是不包含左、右后视镜伸出的宽度,即后视镜折叠后的宽度的。

LD衰减距离指的是,当平均LD系数衰减到一定大小(最大值的一半/05以下)的时候,对应的物理距离。通常用LD衰减距离来描述LD衰减速度。LD衰减速度越快,即衰减距离越小,说明该群体遗传多样性越高;LD衰减速度越慢,通常驯化程度越高,选择强度越大,导致遗传多样性下降。

LD系数衰退速度会受到不同因素的影响而有所不同。常见的因素包括:

1)物种类型LD存在的本质是两个位点的连锁遗传导致的相关性。但这种相关性理论上会随着世代的增加、重组次数的增加而不断下降。所以,那些繁殖力强、时代间隔短的物种(例如,昆虫),其LD衰减的速度是非常快的。例如在家蚕和野蚕群体中,LD系数下降到最大值的1/2仅仅需要46bp和7bp的距离

2)群体类型相同物种的不同群体,由于其遗传背景不同,LD衰减速度也存在很大的差异。驯化选择,会导致群体遗传多样性下降,位点间的相关性(连锁程度)加强。所以,通常驯化程度越高,选择强度越大的群体,LD衰减速度是最慢的。例如,栽培稻比野生稻通常更大的LD衰减距离。类似的,自然选择、遗传漂变导致的群体遗传多样性下降,也会减慢LD衰减的速度。

3)在染色体的位置染色体不同区域的LD衰减距离而是不同的。通常着丝粒区更难重组,所以LD衰减更慢。而基因组上那些受选择的区域相比普通的区域,LD衰减速度也是更慢的。

发现不止1000kb

用poplddecay画图时会返回有以下内容的文件,前两列是画图所需的的数据

其中列名#Dist、Mean_r^2在R语言中无法识别,所以首先要改列名

基础知识参考文章:

https://linksjianshucom/goto=http%3A%2F%2Fwwwomicsharecom%2Fforum%2Fthread-878-1-1html

心肌酶谱检查

 心肌酶谱检查,生活中,说到心肌酶谱,可能许多人不了解它是什么意思,其实心肌酶谱是指心肌细胞中所含的酶类即可进入血中,血液内这些酶的活性含量增高。下面是心肌酶谱检查相关内容!

心肌酶谱检查1

  心肌酶谱是什么

 当心肌细胞因多种原因发生炎症(心肌炎)、坏死(心肌梗死)时,心肌细胞中所含的酶类即可进入血中,血液内这些酶的活性(含量)增高。用于辅助诊断心脏病的酶类并非一种,故称为“心肌酶谱”。

 心肌酶谱中包括:肌酸磷酸激酶(CK)、肌激酶同工酶(CK-MB)、谷草转氨酶(AST)、乳酸脱氢酶(LDH)、乳酸脱氢酶同工酶(LDH1,LDH2)、a—羟丁酸脱氢酶(a-HBDH)。

 此外,心肌肌钙蛋白T(cTn)是反映心肌损伤高度持异、高度敏感的指标,特别是在心肌梗死时出现早、数值高、持续时间长,是诊断急性心肌梗死等心肌损伤疾病的重要指标。因此,很多医院已将cTn与心肌酶谱共同列为相关检验项目。

  那么,什么情况下需要检查心肌酶谱?

 1、发生于上呼吸道感染或其他感染(如病毒性肝炎,胃肠道病毒性感染表现为呕吐、腹泻等)及妊娠中或产后,出现心慌、气短、心律紊乱、胸痛等症状,可能发生心肌炎者。

 2、已确诊为心肌炎者—,观察其病情变化。

 3、怀疑或确诊为新近发生心肌梗死者,但心肌酶谱不能单独作为确诊依据。

  除此之外,心肌酶谱也是有局限性的:

 1、心肌酶谱的酶类也可在其他许多疾病时升高,如肝炎、挤压综合征等,故作出心肌损害的诊断时必须结合临床。

 2、心肌炎症或心肌梗死不同病期,各种酶类升高、下降至正常的规律不同。

 3、各医院检测正常值因方法不同而有所差异,应索要检测医院的参考(正常)值以对照。

  心肌酶谱多少钱

 心肌酶谱是用来确定心肌缺血坏死或细胞膜通透性的,是用来检测心肌疾病的方法。心肌酶谱包括乳酸脱氢酶(LDH)、门冬氨酸氨基转移酶(AST)、肌酸激酶(CK)及其同工酶(CK-MB)、α-羟丁酸脱氢酶(α-HBDH)。心肌炎早期主要是CK和CK-MB增高,其高峰时间一般在起病1周内,以2~3天最明显,1周后基本恢复正常;晚期主要是LDH和α-HBDH增高为主。由于影响心肌酶谱的因素较多,儿童正常值变异较大,在将其作为心肌炎诊断依据时,应结合临床表现和其他辅助检查。

 心肌酶谱主要是检查心肌的异常变化,一般在心肌炎时会发生心肌酶升高的现象。心肌酶谱检查的费用是根据不同地区不同医院也有所不同的,根据网友们的反应,少在90元左右,多可达400元左右,不同医院使用的设施以及检测的不同,价格有浮动也是正常的。

  心肌酶谱异常

 心肌酶只是心肌炎的其中一个诊断指标,心肌酶高提示心肌是有受损存在,结合临床症状以及病史综合考虑一般可以确诊心肌炎。检查心肌酶主要是确定心肌缺血坏死或细胞膜的通透性。临床上在急性心肌梗塞,心肌病和骨骼肌损伤的情况下,其活力有不同程度的升高。

 由于急性心肌梗死;病毒性心肌炎,心脏手术,心脏外伤,有创性心脏干预治疗(如心导管,冠状动脉成形术);肌肉疾病;进行性肌营养不良,多发性肌炎,严重肌肉创伤,横纹肌溶解症,重症肌无力等;脑血管意外,休克,全身性痉厥,破伤风;甲状腺机能减退性水肿时可能会导致心肌酶谱偏高。

  心肌酶谱的临床意义

 LDH高时,会产生急性心梗、骨骼肌损伤、某些肝炎、白血病、肝硬化、阻塞性黄疸及恶性肿瘤。心梗时,12-24h,LDH会偏高,48-72h达高峰,1-2W后恢复正常。恶性肿瘤晚期LDH,恶性肿瘤引起的胸腹水中LDH会偏高。慢性肾小球肾炎、SLE、糖尿病肾病等病人中,尿LDH可达正常人3-6倍,尿中含多种抑制LDH活性物质,如尿素,小分子肽类,低PH值也可抑制LDH活性。尿毒症患者LDH正常,透析后LDH会增高,因为体内尿素较高,我们通过心肌酶谱五项检查,就可以观察身体的相关疾病。

 HBD与LD、AST、CK及CK-MB共同组成心肌酶谱,对诊断心肌梗死有重要意义。健康成人血清LD/HBD比值为13:16,但心肌梗死患者血清HBD活性升高,LD/HBD比值下降,为08:12。

 据报道,脑卒中急性期及急性脑血管病患者均出现心肌酶增高现象,其原因可能与脑组织损伤或破坏释放出较多的酶所致,导致交感神经兴奋性增高,引起儿茶酚胺分泌增多,儿茶酚胺在心肌组织积聚,出现继发性心肌损伤,使血清中心肌酶值增高。

 另外,通过研究表明,如活动性风心病、病毒性心肌炎、皮肌炎、肾炎、肺炎以及一些恶性肿瘤、白血病等许多能够引起心肌细胞、骨骼肌细胞和其它组织细胞破坏的疾病均可出现心肌酶升高。

  心肌酶谱高怎么办

 心脏的心肌细胞含有特殊的酵素,当心肌梗塞或急性不稳定心绞痛发作时,心肌细胞会坏死崩解,这时这些酵素(心肌酶)会溶解到血中,造成不正常的升高。

 临床和实验表示,这些酵素(心肌酶)(如I型肌钙蛋白-CTnI或T型肌钙蛋白-CTnT)的升高代表此次的'心脏病发作是极度危险的,不仅表示心肌细胞受损达某一程度,也会有较高的机率产生许多重大不良的心脏并发症——再度心肌梗塞,心因性猝死等(即较差的预后状况),但发病初期不一定会升高,一般要4~6小时甚至12小时才会上升,所以需持续监控。

 心肌酶,心肌损伤或者坏死后这些酶有不同程度的增高。其中CK-MB,LDH1特异性最高,目前心肌酶谱正常值多为成人标准,而小儿的正常值要高于成人,所以不要认为孩子心肌酶谱值增高就认为是患了心肌炎,由于影响心肌酶谱的因素较多,很多医院采用测定心肌肌钙蛋白来辅助诊断心肌炎,绝大多数儿童的心肌酶谱是正常参考值的2~3倍。

 检查心肌酶主要是确定心肌缺血坏死或细胞膜通透性。而心肌酶高说明有心肌损伤的情况,大多由于病毒感染引起,建议按时复查,注意休息。

 心肌酶谱反应心肌受损伤的程度,但是现在已经逐渐淘汰了,因为这个指标的准确度和敏感度都不如心肌损伤标记物如肌红蛋白肌钙蛋白敏感。因此,心肌酶谱高,有可能是心肌缺血等造成的,需要进一步排查。

  心肌酶谱的检查项目

 心肌酶是指心肌细胞内的酶类物质,具有催化心肌细胞代谢和调节心肌细胞活动的作用。

 心肌酶是存在于心肌的多种酶的总称,一般有天门冬氨酸氨基转移酶(AST)、乳酸脱氢酶(LDH)及同功酶、a一羟丁酸脱氢酶(a-HBDH)和肌酸激酶(CK)及同工酶(CKMB),中国国内常将这一组与心肌损伤相关的酶合称为心肌酶谱,对诊断心肌梗死有一定的价值。

心肌酶谱检查2

 其实,心肌酶谱的检查是很简单的,心肌酶检查时主要是抽血化验。心肌酶是血液生化检查的一个单项,可以单独检查,也可以与其他项目一并检查,检查的标本是血液,抽血就可以了。

 心肌酶检查主要用于判断是否存在有心肌的损伤,因为心肌酶是一种心肌细胞中的酶类,平时在血液中的量是很低的,如果有心肌的损伤,心肌酶就会溢出到血液中,从而出现明显的增高现象。

 心脏是人体最活跃的脏器之一,为完成各种生理活动心脏内存在大量的细胞酶,AMI发生后,因为心肌缺血坏死或细胞膜通透性增加,使得心肌内的细胞酶释放入血,根据心肌所损情况不同,血清酶升高的幅度也不同,因此可以用血清酶的变化来反应AMI的发生以及病灶的大小。同时由于各种酶的生理特性不同,例如:在细胞内定位不同,分子量大小不同,生物半寿期不同等等,造成了各种酶入血的时间,入血的快慢以及在血清内的持续时间不同,为临床用作病程和愈后的判断提供了依据。

 需要注意的是,心肌酶是反映心肌细胞是否受伤的指标,特异性高、敏感性不高,所以当有心肌酶异常的时候,还需要结合其他的检查结果。

含ldh5丰富的组织是( )如下:

LDH1、LDH2、LDH3指的是工酶区带。

人组织中的乳酸脱氢酶(LDH)用电泳法可以分离出5种同工酶区带,根据其电泳迁移率的快慢,依次命名为LDH1,LDH2,LDH3,LDH4,LDH5。

不同组织的乳酸脱氢酶同工酶分布不同,存在明显的组织特异性,人心肌、肾和红细胞中以LDH1和LDH2最多,骨骼肌和肝中以LDH4和LDH5最多,而肺、脾、胰、甲状腺、肾上腺和淋巴结等组织中以LDH3最多。

后来从睾丸和精子中发现了LDHx,其电泳迁移率介于LDH4和LDH5之间。LDH是由H(心肌型)和M(骨骼肌型)两类亚基组成,分别形成LDH1(H4)、LDH2(H3M)、LDH3(H2M2)、LDH4(HM3)、LDH5(M4)。

扩展资料:

测定方法

1、乳酸脱氢酶的测定

乳酸脱氢酶催化乳酸氧化为丙酮酸为可逆反应,正反两个方向的反应均能测定。但逆反应测得的乳酸脱氢酶活性比正反应高得多,所以采用不同的测定方法得出的结果也会不同。

2、乳酸脱氢酶同工酶测定

乳酸脱氢酶同工酶的测定方法有电泳法、离子交换柱层析法、免疫法、抑制法和酶切法。

注意事项

1、由于红细胞内乳酸脱氢酶的含量比正常血清中乳酸脱氢酶含量高得多,溶血时血清乳酸脱氢酶活性显著增高,所以送检的标本不能溶血。

2、由于草酸抑制乳酸脱氢酶,故测乳酸脱氢酶活性,宜采用血清而并非采用血浆。

3、若血清中未除尽血块,无论在4℃或室温存放标本,乳酸脱氢酶活性均会明显增高。

LED的应用优势

1、前言 能源危机、温室效应以及生态环境的日益恶化时刻提醒着人们,地球已经疲惫不堪,改变人们的能源获取方式以及提高能源利用率已经成为当前世人的共识。

由于在世界电力的使用结构中,照明用电约占总用电量的19%;英国布赖恩•爱德华兹在其编写的《可持续性建筑》中指出,在英国消耗的全部能源当中,大约有一半与建筑有关,而建筑的人工照明耗能则占其建筑耗能总量的15%~50%;在我国照明用电约占全国总用电量的12%,而且我国每年的照明用电增速(保守估计)大约为5%。从上面的数据我们可以看出,虽然因各国经济发展的水平不同,照明用电所占比重也有所差别,但是照明耗能已经成为了各国能源消费的重要组成部分。照明节能问题也就成了各国政府及专业人员必须面对的棘手问题。

新型高效光源,特别是白色光源(适用于一般照明)的发展对于大幅度降低照明用电量具有很重要的作用,因为它可以降低电能消耗增长速度,进而减少新增电网容量的费用,降低能源消耗以及减少向大气中排放的温室气体及其他污染物。LED,特别是白色光LED,因其与传统光源相比所具有的理论以及现实的优越性,受到广大专业人士的青睐。它的出现也为照明界开拓出了一个全新的技术领域,并为照明节能设计提供了更多的选择。笔者将就LED的性能、现状等作简要的介绍和分析。

2、LED的优势

正如上文所述,作为一种冷光源,LED具有很多传统光源所不能比拟的优势。

(1)不需要充气,不需要玻璃外壳,抗冲击性好,抗震性好,不易破碎,便于运输。

(2)灯源单元较小,使得布灯更为灵活,而且能够更好地实现夜景照明中“只见灯光不见光源”的效果。

(3)能够较好地控制发光光谱组成,从而能够很好地用于博物馆以及展览馆中的局部或重点照明,如图1所示。

(4)理论上具有与传统光源相比更高的发光效率,理论上LED的发光效率大于200lm/W,从而具有相当巨大的节能潜力。

(5)寿命更长,实验室寿命可达100000h,且光源可以频繁地亮灭,而不会影响其寿命,并且启动速度非常快。

(6)可以通过控制半导体发光层半导体材料的禁止带幅的大小,从而发出各种颜色的光线,且彩度更高,如图2所示。

(7)光源中不添加汞,有利于保护环境。

(8)LED发光具有很强的方向性,从而可以更好地控制光线,提高系统的照明效率。比如,ChipsChipalkatti在美国光电产业发展协会(OIDA)举办的半导体照明研讨会上发表的《LEDSystemsforLighting:WheretheRubberHitstheRoad》指出:尽管15W荧光灯的发光效能大约为60lm/W,但是经过灯具的折减就变为了35lm/W,如果再考虑照射到目标区域以外的光线,则只有30lm/W。而半导体光源在这些环节上的折减则会少很多。

(9)使用低压直流电,具有负载小、干扰弱的优点。

与传统光源相比,LED特别是白光LED在一般照明领域中的优势和节能潜力,使它日益受到政府部门及相关专业人员的关注,也成为了当前半导体研究领域以及照明产业中的热点。

继美国发起了Solid-StateLighting(SSL)R&DPor-tfolio以支持本国的LED研究、开发项目后,欧洲、韩国、日本也都纷纷制定了政府资助的研究计划以支持半导体照明产业的迅速发展。正是在各国政府的支持以及巨大的市场潜力引导下,各大照明企业也纷纷投入巨大的财力和研究力量,以期在这个新兴市场上获得先机。

也正是由于这种竞争,才促使半导体照明业取得了迅猛发展和突破:Cree公司开发出发光效能为74lm/W的白色LED,LaminaCeramics公司也封装出额定光通为120lm的当前最紧凑的RGB型LED光源……一系列技术上的突破向我们预示着一个新的照明时代的到来。

但是作为一个新兴的技术领域,半导体照明行业还处于一个快速发展阶段,科技进步令我们感到欣喜,但是我们还要意识到无论是技术环节还是行业的规章制度,与传统的光源相比,都还不成熟不健全。要真正实现用LED代替传统光源还有一段很长的路要走,还有很多技术难题需要解决。

3、LED技术难题

理论上LED的发光效能可以高达200lm/W以上,而现有的白光LED则只有70lm/W左右,与节能型荧光灯相比还有一定差距;而且其价格与传统光源相比也有很大的劣势(见右上表)。

因此如何尽快把LED的优势真正发挥出来也就成为现在相关从业人员所必须要面对的技术难题。而要真正开拓出一个全新的半导体照明时代,我们还要从以下几个方面努力攻克技术难题以及进一步规范半导体照明市场。

31、LED芯片

芯片是LED的核心,它的内部量子效率的高低直接影响到LED的发光效能,非辐射复合率则决定着芯片产热的大小。可以说只有制造出具有良好质量的LED芯片,才可能有性能优越的LED光源。

为了能够尽量提高内部量子效率以及减少无辐射复合率,主要从两个方面来改善芯片质量,也就是选择合理的芯片结构和控制芯片的缺陷密度。

LED芯片的结构有单异质结构、双异质结构以及量子阱结构等,它对发光效率具有很大的影响。目前使用最为广泛且最有效率的芯片结构为多量子阱结构(Multi-QuantumWellStructure)。

对于LED而言,外延片与衬底的晶格常数以及热涨系数是否匹配、外延片制备工艺等都会直接影响晶格的缺陷密度。这些缺陷可能在某些条件下,特别是对于Ⅲ-氮的发光可能有利,但是就大部分情况而言,因为这些缺陷的存在,会缩短芯片的连续工作寿命,减少载流子密度进而降低发光输出,以及可能成为无辐射复合中心。

因此如何选择合理的芯片结构,了解晶格缺陷对LED芯片发光的影响机理从而更好地控制不利缺陷的产生,也就成为了当前我们所必须面对的重要课题之一。

32、LED封装与散热

LED的封装必须要处理好:应该尽量减少光线在LED内部全反射,增加衬底基板反射率,从而使尽量多的光线能够透射出来,提高LED的外部量子效率,也就是增加LED的发光效能。现有技术包括衬底剥离技术(Lift-off)、Flip-Chip技术等。

还应该选择新型的封装材料,以减少因为紫外线照射而引起的封装材料发黄等带来的颜色变化。

LED的散热问题是影响LED驱动电流提升的一个重要因素。根据下列公式:

TJ=TA+PD(θJ-P+θP-A)=TA+PDθJ-A

其中,TJ——p-n结处的温度;

TA——环境温度;

PD——耗散功率;

θJ-P——结点与阴极插头之间的热阻;

θP-A——阴极插头与空气之间的热阻;

LED芯片结点处的温度TA直接影响到LED的寿命,因此LED的散热能力强弱就限制了LED功率的大小,以及安装使用环境的温度。

33、白光LED

如何能制备出具有高显色性、高发光效能的白光LED,是LED能够在一般照明中广泛使用的一个前提。对于白光LED而言,发光效能、显色性以及成本都决定着它在照明市场中的竞争力。当前制备白光LED的方法可以分为三种:红、绿、蓝(RGB)多芯片组合白光技术,单芯片加荧光粉合成白光技术以及MOCVA直接生长多有源区的白光LED技术。

几种技术相比而言,除了正在处于研究探索阶段的MOCVA直接生长多有源区的白光LED技术外,虽然RGB型LED具有发光效能高、显色性好等优点,但是三种芯片性能的不同,使得它们因驱动电流或温度等因素的影响而发生色漂移,影响照明稳定性。

而对于单芯片加荧光粉合成白光技术,又分为了蓝光芯片与黄光荧光粉型LED和紫外线LED加RGB荧光粉LED。蓝黄光LED缺失红光部分,因而有很难发出具有高显色性白光(R85),同时还会产生Halo效应(有方向性的LED出光和荧光粉的散射光角分布不一样)等缺陷;而紫外线LED加RGB荧光粉LED则克服了这些不足,成为了当前性能较好的一种白光LED。

4、结束语

LED以其巨大的节能潜力以及良好的照明性能为我们打开了一个全新的技术领域。但是它也面临着上文所提出的诸多技术和制度上的障碍,使得LED产品的价格仍然非常的昂贵,性能容易受到外部环境条件的影响,而且由于对晶体性能的研究仍然未完全成熟,制约着LED的进一步推广。当然这一切都不能阻止一个全新照明时代的到来,LED是属于21世纪的绿色光源。但它可能更多地属于未来,正如美国能源部2002年编写的《LightEmittingDiodes(LEDs)forGeneralIllumination》中预期的,LED要到2012年左右才能够在照明中取代荧光灯。

在我们的照明设计过程中,我们应该以一种理性的态度去看待LED的应用,应该在真正了解LED性能前提下,根据环境的条件,合理地选择使用LED,才能真正创造出一个节能而优质的照明光环境。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/8574502.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-22
下一篇2023-09-22

发表评论

登录后才能评论

评论列表(0条)

    保存