豆瓣网文本评论的情感分析论文多。因为豆瓣网是一个内容丰富的文化社区,用户在这里可以发表对**、书籍、音乐等内容的评论和评分,这些评论数据对情感分析研究来说是非常有价值的。在学术界和工业界,已经有很多研究者和公司使用豆瓣网的评论数据进行情感分析研究和应用开发。这些研究涵盖了各种情感分析算法和技术,如基于词典的情感分析、基于机器学习的情感分析、基于深度学习的情感分析等。同时,也有很多论文对豆瓣网评论数据进行了情感分析,这些论文主要关注情感分析算法的优化和应用场景的拓展。
情感分析(Sentiment Analysis)
第一步,就是确定一个词是积极还是消极,是主观还是客观。这一步主要依靠词典。
英文已经有伟大词典资源:SentiWordNet 无论积极消极、主观客观,还有词语的情感强度值都一并拿下。
但在中文领域,判断积极和消极已经有不少词典资源,如Hownet,NTUSD但用过这些词典就知道,效果实在是不咋滴(最近还发现了大连理工发布的情感词汇本体库,不过没用过,不好评价)。中文这方面的开源真心不够英文的做得细致有效。而中文识别主客观,那真的是不能直视。
中文领域难度在于:词典资源质量不高,不细致。另外缺乏主客观词典。
第二步,就是识别一个句子是积极还是消极,是主观还是客观。
有词典的时候,好办。直接去匹配看一个句子有什么词典里面的词,然后加总就可以计算出句子的情感分值。
但由于不同领域有不同的情感词,比如看上面的例子,“蓝屏”这个词一般不会出现在情感词典之中,但这个词明显表达了不满的情绪。因此需要另外根据具体领域构建针对性的情感词典。
如果不那么麻烦,就可以用有监督的机器学习方法。把一堆评论扔到一个算法里面训练,训练得到分类器之后就可以把评论分成积极消极、主观客观了。
分成积极和消极也好办,还是上面那个例子。5颗星的评论一般来说是积极的,1到2颗星的评论一般是消极的,这样就可以不用人工标注,直接进行训练。但主客观就不行了,一般主客观还是需要人来判断。加上中文主客观词典不给力,这就让机器学习判断主客观更为困难。
中文领域的难度:还是词典太差。还有就是用机器学习方法判断主客观非常麻烦,一般需要人工标注。
另外中文也有找到过资源,比如这个用Python编写的类库:SnowNLP 就可以计算一句话的积极和消极情感值。但我没用过,具体效果不清楚。
到了第三步,情感挖掘就升级到意见挖掘(Opinion Mining)了。
这一步需要从评论中找出产品的属性。拿手机来说,屏幕、电池、售后等都是它的属性。到这一步就要看评论是如何评价这些属性的。比如说“屏幕不错”,这就是积极的。“电池一天都不够就用完了,坑爹啊”,这就是消极的,而且强度很大。
这就需要在情感分析的基础上,先挖掘出产品的属性,再分析对应属性的情感。
分析完每一条评论的所有属性的情感后,就可以汇总起来,形成消费者对一款产品各个部分的评价。
接下来还可以对比不同产品的评价,并且可视化出来。如图。
这一步的主要在于准确挖掘产品属性(一般用关联规则),并准确分析对应的情感倾向和情感强度。因此这需要情感分析作为基础。首先要找到评论里面的主观句子,再找主观句子里的产品属性,再计算属性对应的情感分。所以前面基础不牢固,后面要准确分析就有难度。
中文这个领域的研究其实很完善了,技术也很成熟。但需要完善前期情感分析的准确度。
总的来说,就是中文词典资源不好,工作做得不是很细很准。前期的一些基础不牢固,后面要得到准确的分析效果就不容易了。
可以使用snownlp包,也可以用nltk
和
scikit-learn
结合,或者自己写算法实现。
简单话就是情感词典的匹配,想提高效果的需要考虑特征之间的搭配,语法顺序等,可以查询搜索相关的入门例子和算法详细了解。
先说大数据时代舆情数量庞大,来源众多,网站信源也很多。舆情情感分析单纯依靠人工数据难以量化,工程量大,借助舆情分析平台是不错的选择。
西盈舆情分析系统可以实现以下功能:
1、可以做到对舆情信息的分类研判(包括舆情的热点、负面、地域等)、及时预警、科学的分析(时间节点分析、图表分析、报告分析等)以及辅助建立预警机制,提供科学的决策依据。企业购买舆情监测系统已经是常态了,很多舆情危机的出现都会读直接影响企业的形象、经济利益、产品的推广等等。
2、内置数据模型知识库(数据分析方法库),由若干成熟的模型(数据算法)(维稳、治安、环保、交通运输、医疗、教育、卫生等)的代码和技术文档构成,并能够进行模型的拼接,引入和相互无缝引用。
3、实时显示分析引擎领域、属性、项目、日志、入库和统计图表信息,异常情况系统发出警示。实时显示目前系统运行详细日志,包括任务运行时间、文本处理时间、入库情况、知识库匹配情况、引擎数据库状态等。
来源 | 雪晴数据网
利用机器学习可以很方便的做情感分析。本篇文章将介绍在R语言中如何利用机器学习方法来做情感分析。在R语言中,由Timothy PJurka开发的情感分析以及更一般的文本挖掘包已经得到了很好的发展。你可以查看下sentiment包以及梦幻般的RTextTools包。实际上,Timothy还写了一个针对低内存下多元Logistic回归(也称最大熵)的R包maxtent。
然而,RTextTools包中不包含朴素贝叶斯方法。e1071包可以很好的执行朴素贝叶斯方法。e1071是TU Wien(维也纳科技大学)统计系的一门课程。这个包的主要开发者是David Meyer。
我们仍然有必要了解文本分析方面的知识。用R语言来处理文本分析已经是公认的事实(详见R语言中的自然语言处理)。tm包算是其中成功的一部分:它是R语言在文本挖掘应用中的一个框架。它在文本清洗(词干提取,删除停用词等)以及将文本转换为词条-文档矩阵(dtm)方面做得很好。这里是对它的一个介绍。文本分析最重要的部分就是得到每个文档的特征向量,其中词语特征最重要的。当然,你也可以将单个词语特征扩展为双词组,三连词,n-连词等。在本篇文章,我们以单个词语特征为例做演示。
注意,在R中用ngram包来处理n-连词。在过去,Rweka包提供了函数来处理它,感兴趣的可以查看这个案例。现在,你可以设置RTextTools包中create_matrix函数的参数ngramLength来实现它。
第一步是读取数据:
创建词条-文档矩阵:
现在,我们可以用这个数据集来训练朴素贝叶斯模型。注意,e1071要求响应变量是数值型或因子型的。我们用下面的方法将字符串型数据转换成因子型:
测试结果准确度:
显然,这个结果跟python得到的结果是相同的(这篇文章是用python得到的结果)。
其它机器学习方法怎样呢?
下面我们使用RTextTools包来处理它。
首先,指定相应的数据:
其次,用多种机器学习算法训练模型:
现在,我们可以使用训练过的模型做测试集分类:
准确性如何呢?
得到模型的结果摘要(特别是结果的有效性):
结果的交叉验证:
结果可在我的Rpub页面找到。可以看到,maxent的准确性跟朴素贝叶斯是一样的,其它方法的结果准确性更差。这是可以理解的,因为我们给的是一个非常小的数据集。扩大训练集后,利用更复杂的方法我们对推文做的情感分析可以得到一个更好的结果。示例演示如下:
推文情感分析
数据来自victornep。victorneo展示的是用python对推文做情感分析。这里,我们用R来处理它:
读取数据:
首先,尝试下朴素贝叶斯
然后,尝试其他方法:
这里,我们也希望得到正式的测试结果。包括:
1analytics@algorithm_summary:包括精确度,召回率,准确率,F-scores的摘要
2analytics@label_summary:类标签摘要
3analytics@document_summary:所有数据和得分的原摘要
4analytics@ensemble_summary:所有 精确度/覆盖度 比值的摘要
现在让我们看看结果:
与朴素贝叶斯方法相比,其它算法的结果更好,召回精度高于095。结果可在Rpub查看
原文链接:http://wwwxueqingcc/cms/article/107
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)