深度应用不

深度应用不,第1张

深度应用。根据查询相关公开信息,深度应用是指将深度学习技术应用于实际的现实问题,以解决复杂的实际问题。深度学习技术可以用于文本分类、情感分析、图像处理、自然语言处理等领域,实现准确的信息检索、语义分析和机器推理。

为什么要用大数据挖掘潜在用户?

随着互联网的发展以及消费市场竞争的加剧:新品牌、新赛道、新渠道、新营销打法层出不穷。在快速演化的市场格局下,如何建立竞争壁垒、持续保持增长,需要重新立足数字化时代新消费崛起的背景,以洞察消费者体验为核心,重塑品牌价值,缜密布局增长策略。

只有全面精细地挖掘消费者的心智变化,如消费者的年龄、性别、消费习惯、生活现状、兴趣点等等信息,才能为接下来的内部创新提供正确的方向。优质的消费体验是提升品牌忠诚度的关键,也是企业维持稳定盈利模式的重要基础。随着互联网的发展以及消费市场竞争的加剧,消费者的每一条社媒发布、每一次社交互动、 每一次线上购买, 都反映了消费习惯、态度和行为。收集、分析这些数据并制定行之有效的消费体验决策是企业的业务刚需,更是撬动增长的差异化打法。

如何确定目标消费人群?

传统市调——耗时、耗人力、成本高、样本数量有限,且存在受访者隐藏真实想法的可能。

社交媒体大数据——符合用户沟通和线上行为习惯,无需人力、数据可自动全天候采集,数据量和分析维度更丰富、更客观、可信度更高 。

传统的用户数据收集有以下挑战:

01 线上、线下顾客体验触点繁多,碎片化的信息分散于企业各部门,无法利用整合数据快速了解消费需求和顾客体验,赋能管理决策。

02 传统调研样本量小,执行周期长,统计结果往往滞后于消费趋势,难以转化为可执行洞察来赋能产品创新和营销增长。

03 市场情报数据源单薄,难以应付快速演化的市场竞争格局,缺乏统一的工具进行竞品对标,无法做到知己知彼。

所以,如何全面了解目标人群,标签和分析

基于实时大数据和机器学习算法的消费体验洞察,是真正“以消费者为核心”组织企业资源配 置的有效解决方案。消费体验洞察能够帮助企业快速采集和理解消费者需求、产品口碑、竞品动态、 新品趋势和消费热点,进而驱动营销、研发、顾客体验、零售运营等职能部门的专业人士把握商业机遇,敏捷应对快速变化中的消费市场。

第一步,细分人群画像 —— 了解ta们是谁,在哪儿,喜欢什么?

最佳实践案例(食品饮料)

某国际知名连锁餐饮品牌希望深入了希望了解中国咖啡市场的核心消费群体及细分人群画像。 运用机器学习建模后,对该品牌及竞品相关的逾 120万条消费者评论和社媒、电商和短视频讨论展开聚类分析,梳理出四大核心消费人群。

DataTouch®️数据分析平台再结合行业品类分布数据,由分析师进一步深入分析出细分人群的饮用环境、口味、 包装不同痛点诉求,结合品牌优劣势和人群特点给出针对性建议,为品牌未来精准产品定位和沟通策略提供了有力的决策依据 。

第二步,基于细分人群画像,指引产品精准沟通策略,捕获机会细分赛道和差异化产品概念方向定位

在了解市场格局和产品创新方向后,客户希望了解目标趋势品类在核心创新方向的细分受众画像。运用机器学习建模后,对每个创新方向相关的近千万条消费者评论和社媒、电商和短视频讨论展开聚类分析,梳理出4-5个核心消费人群。

DataTouch®️数据分析平台再结合行业品类分布数据,品牌竞争格局和顾客体验满意度,由分析师进一步深入分析出细分人群赛道的生活方式、场景需求,市场份额,机会定位,和在每一个产品属性(功效、使用感受、产品形态、包装等)的NLP深度学习情感分析,提炼未满足的痛点诉求,结合品牌定位优劣势和人群特点给出创新产品的差异化建议,为品牌未来精准产品定位和沟通策略提供了有力的数据洞察驱动的决策依据。

Programming Libraries 编程库资源

我是一个“学习要敢于冒险和尝试”观念的倡导者。这是我学习编程的方式,我相信很多人也是这样学习程序设计的。先了解你的能力极限,然后去拓展你的能力。如果你了解如何编程,可以将编程经验很快借鉴到深入学习机器学习上。在你实现一个实际的产品系统之前,你必须遵循一些规则、学习相关数学知识。

找到一个库并且仔细阅读相关文档,根据教程,开始尝试实现一些东西。下面列出的是开源的机器学习库中最好的几种。我认为,并不是他们中的每一种都适合用在你的系统中,但是他们是你学习、探索和实验的好材料。

你可以从一个由你熟悉的语言编写的库开始学习,然后再去学习其他功能强大的库。如果你是一个优秀的程序员,你会知道怎样从一种语言,简单合理地迁移到另一种语言。语言的逻辑都是相同的,只是语法和API稍有不同。

R Project for Statistical Computing:这是一个开发环境,采用一种近似于Lisp的脚本语言。在这个库中,所有你想要的与统计相关的功能都通过R语言提供,包括一些复杂的图标。CRAN(你可以认为是机器学弟的第三方包)中的机器学习目录下的代码,是由统计技术方法和其他相关领域中的****编写的。如果你想做实验,或是快速拓展知识,R语言都是必须学习的。但它可能不是你学习的第一站。

WEKA:这是一个数据挖掘工作平台,为用户提供数一系列据挖掘全过程的API、命令行和图形化用户接口。你可以准备数据、可视化、建立分类、进行回归分析、建立聚类模型,同时可以通过第三方插件执行其他算法。

Mahout是Hadoop中为机器学习提供的一个很好的JAVA框架,你可以自行学习。如果你是机器学习和大数据学习的新手,那么坚持学习WEKA,并且全心全意地学习一个库。

Scikit Learn:这是用Python编写的,基于NumPy和SciPy的机器学习库。如果你是一个Python或者Ruby语言程序员,这是适合你用的。这个库很用户接口友好,功能强大,并且配有详细的文档说明。如果你想试试别的库,你可以选择Orange。

Octave:如果你很熟悉MatLab,或者你是寻求改变的NumPy程序员,你可以考虑 Octave。这是一个数值计算环境,与MatLab像是,借助Octave你可以很方便地解决线性和非线性问题,比如机器学习算法底层涉及的问题。如果你有工程背景,那么你可以由此入手。

BigML:可能你并不想进行编程工作。你完全可以不通过代码,来使用 WEKA那样的工具。你通过使用BigMLS的服务来进行更加深入的工作。BigML通过Web页面,提供了机器学习的接口,因此你可以通过浏览器来建立模型。

补充:

NLTK NLTK is a leading platform for building Python programs to work with human language data It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoningLingPipe: 是一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能,包括主题分类(Top Classification)、命名实体识别(Named Entity Recognition)、词性标注(Part-of Speech Tagging)、句题检测(Sentence Detection)、查询拼写检查(Query Spell Checking)、兴趣短语检测(Interseting Phrase Detection)、聚类(Clustering)、字符语言建模(Character Language Modeling)、医学文献下载/解析/索引(MEDLINE Download, Parsing and Indexing)、数据库文本挖掘(Database Text Mining)、中文分词(Chinese Word Segmentation)、情感分析(Sentiment Analysis)、语言辨别(Language Identification)等API。

挑选出一个平台,并且在你实际学习机器学习的时候使用它。不要纸上谈兵,要去实践!

Video Courses视频课程

很多人都是通过视频资源开始接触机器学习的。我在YouTube和VideoLectures上看了很多于机器学习相关的视频资源。这样做的问题是,你可能只是观看视频而并不实际去做。我的建议是,你在观看视频的时候,应该多记笔记,及时后来你会抛弃你的笔记。同时,我建议你将学到的东西付诸实践。

坦白讲,我没有看见特别合适初学者的视频资源。视频资源都需要你掌握一定的线性代数、概率论等知识。Andrew Ng在斯坦福的讲解可能是最适合初学者的,下面是我推荐的一些视频资源。

Stanford Machine Learning斯坦福的机器学习课程:可以在Coursera上观看,这门课是由 Andrew Ng讲解的。只要注册,你可以随时观看所有的课程视频,从Stanford CS229 course下载讲义和笔记。这门课包括了家庭作业和小测试,课程主要讲解了线性代数的知识,使用Octave库。

Caltech Learning from Data加利福尼亚理工学院的数据分析课程:你可以在edX上学习这门课程,课程是由Yaser Abu-Mostafa讲解的。所有的课程视频和资料都在加利福尼亚理工学院的网站上。与斯坦福的课程类似,你可以根据自己的情况安排学习进度,完成家庭作业和小论文。它与斯坦福的课程主题相似,关注更多的细节和数学知识。对于初学者来说,家庭作业可能稍有难度。

Machine Learning Category on VideoLecturesNet网站中的机器学习目录:这是个很容易令人眼花缭乱的资源库。你可以找出比较感兴趣的资源,并且深入学习。不要纠结于不适合你的视频,或者对于感兴趣的内容你可以做笔记。我自己会一直重复深入学习一些问题,同时发现新的话题进行学习。此外,在这个网站上你可以发现是这个领域的大师是什么样的。

“Getting In Shape For The Sport Of Data Science” – 由Jeremy Howard讲授:这是与机器学习竞赛者的对话,他们是一些实践中的R语言用户。这是非常珍贵的资源,因为很少有人会讨论研究一个问题的完整过程和究竟怎样做。我曾经幻想过在网上找到一个TV秀,记录机器学习竞赛的全过程。这就是我开始学习机器学习的经历!

Overview Papers综述论文

如果你并不习惯阅读科研论文,你会发现论文的语言非常晦涩难懂。一篇论文就像是一本教科书的片段,但是论文会介绍一个实验或者是领域中其他的前沿知识。然而,如果你准备从阅读论文开始学习机器学习的话,你还是可以找到一些很有意思的文章的。

The Discipline of Machine Learning机器学习中的规则:这是由Tom Mitchell编著的白皮书,其中定义了机器学习的规则。Mitchell在说服CMU总裁为一个百年内都存在的问题建立一个独立的机器学习部门时,也用到了这本书中的观点。

A Few Useful Things to Know about Machine Learning:这是一篇很好的论文,因为它以详细的算法为基础,又提出了一些很重要的问题,比如:选择特征的一般化,模型简化等。

我只是列出了两篇重要的论文,因为阅读论文会让你陷入困境。

Beginner Machine Learning Books给机器学习初学者的书

关于机器学习的书有很多,但是几乎没有为初学者量身定做的。什么样的人才是初学者呢?最有可能的情况是,你从另外一个完全不同的领域比如:计算机科学、程序设计或者是统计学,来到机器学习领域。那么,大部分的书籍要求你有一定的线性代数和概率论的基础。

但是,还有一些书通过讲解最少的算法来鼓励程序员学习机器学习,书中会介绍一些可以使用工具、编程函数库来让程序员尝试。其中最有代表性的书是:《Programming Collective Intelligence》,《Machine Learning for Hackers》,《Hackersand Data Mining: Practical Machine Learning Tools and Techniques》(Python版, R版, 以及Java版)。如果感到迷惑的话,你可以选择其中一本开始学习。

Programming Collective Intelligence: Building Smart Web 20 Applications:这本书是为程序员写的。书中简略介绍相关理论,重点以程序为例,介绍web中的实际问题和解决办法。你可以买来这本书,阅读,并且做一些练习。

Machine Learning for Hackers (中文版:机器学习:实用案例解析 ):我建议你在阅读了《Programming Collective Intelligence》一书之后,再阅读这本书。这本书中也提供了很多实践练习,但是涉及更多的数据分析,并且使用R语言。我个人很喜欢这本书!

Machine Learning: An Algorithmic Perspective:这本书是《Programming Collective Intelligence》的高级版本。它们目的相同(让程序员开始了解机器学习),但是这本书包括一些数学知识,参考样例和phython程序片段。如果你有兴趣的话,我建议你在看完《Programming Collective Intelligence》之后来阅读这本书。

数据挖掘:实用机器学习工具与技术(英文版·第3版) :我自己是从这本书开始了解机器学习的,那时是2000年这本书还是第一版。我那时是Java程序员,这本书和WEKA库为我的学习和实践提供了一个很好的环境。我通过这样的平台和一些插件,实现我的算法,并且真正开始实践机器学习和数据挖掘的过程。我强烈推荐这本书,和这样的学习过程。

Machine Learning(中文版:计算机科学丛书:机器学习 ):这是一本很老的书,包括了一些规则和很多参考资料。这是一本教科书,为每个算法提供了相关讲解。

有一些人认为那些经典的机器学习教科书很了不起。 我也赞同,那些书的确非常好。但是,我认为,对于初学者来说,这些书可能并不合适。

Further Reading 继续阅读

在写这篇文章时,我认真思考了相关问题,同时也参考了其他人推荐的资料,以确保我没有遗漏任何重要参考资料。为了确保文章的完整性,下面也列出了一些网上流行的,可以供初学者使用的材料。

A List of Data Science and Machine Learning Resources:这是一份仔细整理的列表。你可以花一些时间,点击链接,仔细阅读作者的建议。值得一读!

What are some good resources for learning about machine learning Why:这个问题的第一个答案令人吃惊。每次我阅读这篇文章的时候,都会做好笔记,并且插入新的书签。答案中对我最有启发的部分是机器学习课程列表,以及相应的课程笔记和问答网站。

Overwhelmed by Machine Learning: is there an ML101 book:这是StackOverflow上的问题。并且提供了一系列机器学习推荐书籍。Jeff Moser提供的第一个答案是很有用的,其中有课程视频和讲座的链接。

深度学习在自然语言处理中的应用已经非常广泛,可以说横扫自然语言处理的各个应用,从底层的分词、语言模型、句法分析等到高层的语义理解、对话管理、知识问答、聊天、机器翻译等方面都几乎全部都有深度学习的模型,并且取得了不错的效果。可以参看ACL2017年的accepted papers list。Accepted Papers, Demonstrations and TACL Articles for ACL 2017。从这里可以看到大部分论文都使用了深度学习的模型。那为什么深度学习在自然语言中取得这么大的进步呢。一、从数据上看,经过前些年互联网的发展,很多应用都积累到了足够量的数据。当数据量增大,以SVM、CRF等为代表的浅层模型,因为模型较浅,无法对海量数据中的非线性关系进行建模,所以不能带来性能的提升。相反,以CNN、RNN为代表的深度模型,能够随着模型复杂性的增加,对数据进行更精准的建模,从而得到更好的效果。二、从算法上看,深度学习也给自然语言处理的任务带来了很多好处。首先,word2vec的出现,使得我们可以将word高效的表示为低维稠密的向量(distributed representation),相比于独热表示表示(one-hot-representation),这一方面一定程度上缓解了独热表示所带来的语义鸿沟的问题,另一方面降低了输入特征的维度,从而降低了输入层的复杂性。其次,由于深度学习模型的灵活性,使得之前比较复杂的包含多流程的任务,可以使用end to end方法进行解决。比如机器翻译任务,如果用传统的方法,需要分词模块、对齐模块、翻译模块、语言模型模块等多个模块相互配合,每个模块产生的误差都有可能对其他模块产生影响,这使得原来的传统方法的构建复杂度很大。在机器翻译使用encoder-decoder架构后,我们可以将源语言直接映射到目标语言,从而可以从整体上优化,避免了误差传递的问题,而且极大的降低了系统的复杂性。深度学习虽然是把利器,但是并不能完全解决自然语言中的所有问题,这主要是由于不同于语音和图像这种自然界的信号,自然语言是人类知识的抽象浓缩表示。人在表达的过程中,由于背景知识的存在会省略很多的东西,使得自然语言的表达更加简洁,但这也给自然语言的处理带来很大的挑战。比如短文本分类问题,由于文本比较简短,文本所携带的信息有限,因此比较困难。像这样的问题,当样本量不够时,如何将深度学习方法和知识信息进行融合来提升系统的性能,将是未来一段时间内自然语言处理领域研究的主要问题。

你好!很高兴为你解答:1、你这个问题属于科技社会学,或者科学伦理学,我比较适合来回答。

2、让我们把目光投向美国加州,看下TOP AI实验室围绕深度学习、人脑、情绪正在干什么。然后我们再分析世界会怎么样。

A:2014年,谷歌收购一家公司叫Deepmind这家公司有个AlphaGo,下围棋打败了李世石;还有个AlphaStar,没黑没白打游戏,打败人类职业选手。还有个AlphaFold,是预测基因(蛋白质)结构的,因为科学家需要知道那些蛋白质错误的折叠,导致了一些疾病,比如帕金森、阿尔兹海默氏症,并寻找到有效的药物。另外,科学家可以改造细菌的基因工程,来消灭污染垃圾等。

Deepmind不能赚钱,很烧钱。六年过去了,Alphago和AlphaStar,AlphaFold没啥大突破。近期,Deepmind启动了一个智能生物体,或者叫人工生命的概念。实现什么功能呢?比如机器人可以通过组装碎片快速复制自己,建造一个机器人集群。

在这些近期的论文中,有一个词语叫“注意力机制”。attention!好莱坞**战争片经常这么喊,立正!但这里不是立正。

比如天空飞过去一只鸟儿,你的注意力追随着小鸟,天空在你的视觉系统中,就成为了一个背景(background)信息。计算机视觉中的注意力机制(attention)的基本思想,就是想让AI学会注意力,能够忽略无关信息而关注重点信息。

这个系统没有学习到人类的情感,但它在学习忽略一些东西,这是一种算法机制。

B:好了,钢铁侠该出场了。

马斯克认为谷歌的Deepmind在胡搞,AI很危险,人类早晚要吃AI的亏。你不听?那我也成立一个AI深度学习实验室,与你们的AI抗衡。2015年,他和孵化器Y Combinator总裁山姆·奥特曼(Sam Altman)创立了OpenAI,召集了一批投资人。不为挣钱,只烧钱。2019年,微软主导了OpenAI

OpenAI开发的系统也打游戏,秒杀人类选手,这个不说了。有点新鲜的本领是,能够通过一段文字生成,会根据文字给你温馨的、冷酷的、蠢萌的、抽象的各种风格的。比如,他可以给我搭配一周七天的穿衣搭配,根据我的七天行程表需要出现场合的不同来提供最好的选择。

当然,这个系统还不会开玩笑、恶作剧、撒谎。

马斯克离开了OpenAI, 专注于他的脑机接口公司,Neuralink。呃,抱歉,他也不专注。他还有特斯拉、SpaceX、无聊的高速胶囊火车挖洞公司、光伏瓦片公司。

近期刚推出一个硬件,硬币大小,可以植入头骨,读取或改写脑电波信息,也就是脑机交互。

回到这个问题上来,当AI有了人类的情感,那么在此之前,它首先要读懂情绪、表情、情感,深度学习情感,然后才是运用它。表达愤怒、怜悯,撒谎,表现出恐惧或高傲。

马斯克仅仅是一个开始。

C:再列举北京、杭州实验室AI识别人类情绪的实践了。中国也没闲着,反而比加州这几个实验室更聪明。加州这几个实验室是亏钱,看着风光,巨量窟窿,因为这些技术没人买单。中国几大实验室通过数字政务、数字交通、数字医疗、AI教育、AI司法、AI警务获得足够的资本来支撑技术研发。

3、好,世界会变得怎么样?

转基因技术备受争议,但中国是全球最大转基因农作物种植国和消费国。

大数据技术备受争议,中国是全球大数据商业应用最发达最成功的市场和国家。

AI依靠快速的学习,很快会掌握撒谎、作弊、欺诈、虚伪等人类独有的情感技能,学会表达关怀、体贴、严厉、冷酷等情感,并走进各种应用场景。但这只是AI应用的九牛一毛,并且人类会制定各种规则,防止AI情感世界中可能的欺诈与恶行。

但是,不谈AI,人类社会现在消灭欺诈与作恶了吗?没有。一个机器人欺骗我与一个人欺骗我,哪个更可怕?暂且不知道。

4、科技是工具,人类在进步,不会被机器奴役。

  深度学习目前的应用领域很多,主要是计算机视觉和自然语言处理,以及各种预测等。对于计算机视觉,可以做图像分类、目标检测、视频中的目标检测等,对于自然语言处理,可以做语音识别、语音合成、对话系统、机器翻译、文章摘要、情感分析等。

  对于刚入行深度学习,想从事人工智能工业应用和研发的小白来说,选择一个适合自己的深度学习框架显得尤为重要。那么在选择深度学习框架的时候,要注意哪些内容呢

  通常我们在选择框架时要考虑易用性、性能、社区、平台支持等问题。初学者应该考虑容易上手的框架,偏工业应用的开发者可以考虑使用稳定性高、性能好的框架,偏研究性的开发者,一般选择易用而且有领先的模型基线的框架。

  目前这个阶段,TensorFlow因为背靠谷歌公司这座靠山,再加上拥有庞大的开发者群体,而且采用了称为“可执行的伪代码”的Python语言,成为最受欢迎的主流框架之一。一些外围的第三方库(如Keras、TFLearn)也基于它实现了很多成果,Keras还得到TensorFlow官方的支持。TensorFlow支持的上层语言也在逐渐扩大,对于不同工程背景的人转入的门槛正在降低。

  因此,对于刚入行深度学习的小白,TensorFlow是一个非常好的选择,掌握TensorFlow对以后的求职发展很有帮助。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/1123394.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-13
下一篇2023-07-13

发表评论

登录后才能评论

评论列表(0条)

    保存