1、预处理文本数据,如去除停用词、标点符号等,进行分词和词性标注,将文本转化为计算机可处理的形式。
2、构建情感词典或使用现有的情感词典,将文本中的词语与情感词典进行匹配,计算文本中包含正面、负面和中性情感词汇的数量和权重。
3、根据算法模型,计算文本的情感极性得分,通常使用的是情感极性得分的加权平均值或者概率值。
我感觉如果人 类 可以赋 予AI机器 人一定程 度甚至人 类 所有的情 感,那么,人 类 的科技一定将是突 飞猛 进的发 展,AI有了人的情感,这个世界变化越来精 彩。
现在情感计算在未来将改变传统的人机交互模式,实现人与机器的情感交互。从感知智能到认知智能的范式转变,从数据科学到知识科学的范式转变,人工智能也将在未来交出一个更好的回答。
机器是否具有情感是机器人性化程度高低的关键因素之一。让人工智能理解人类情感的研究由此而生。
很长时间以来,是否具备情感,是区分人与机器的重要标准之一。换言之,机器是否具有情感是机器人性化程度高低的关键因素之一。试图让人工智能理解人类情感也并不是新近的研究。
自此,情感计算这一新兴科学领域,开始进入众多信息科学和心理学研究者的视野,从而在世界范围内拉开了人工智能走向人工情感的序幕。
其中,语音是表达情感的主要方式之一。人类总是能够通过他人的语音轻易地判断他人的情感状态。语音的情感主包括语音中所包含的语言内容,声音本身所具有的特征。显然,机器带有情感的语音将使消费者在使用的时候感觉更人性化、更温暖。
从情感计算的决策来看,大量的研究表明,人类在解决某些问题的时候,纯理性的决策过程往往并非最优解。在决策的过程中,情感的加入反而有可能帮助人们找到更优解。因此,在人工智能决策过程中,输入情感变量,或将帮助机器做出更人性化的决策。
此外,情感智能可以让机器更加智能,具有情感的机器不仅更通用、更强大、更有效,而且将更趋近于人类的价值观。在人 类科学家长期的努力下,横亘在人脑与电脑之间的“情感”鸿沟正在被跨越。
如今,随着大量统计技术模型的涌现和数据资源的累积,情感计算在应用领域的落地日臻成熟。
http://minieastdaycom/bdmip/180414224336264html
在这篇文章中,主要介绍的内容有:
1、将单词转换为特征向量
2、TF-IDF计算单词关联度
文本的预处理和分词。
如何将单词等分类数据转成为数值格式,以方便我们后面使用机器学习来训练模型。
一、将单词转换为特征向量
词袋模型(bag-of-words model):将文本以数值特征向量的形式来表示。主要通过两个步骤来实现词袋模型:
1、为整个文档集(包含了许多的文档)上的每个单词创建一个唯一的标记。
2、为每个文档构建一个特征向量,主要包含每个单词在文档上的出现次数。
注意:由于每个文档中出现的单词数量只是整个文档集中很少的一部分,因此会有很多的单词没有出现过,就会被标记为0。所以,特征向量中大多数的元素就会为0,就会产生稀疏矩阵。
下面通过sklearn的CountVectorizer来实现一个词袋模型,将文档转换成为特征向量
通过countvocabulary_我们可以看出每个单词所对应的索引位置,每一个句子都是由一个6维的特征向量所组成。其中,第一列的索引为0,对应单词"and","and"在第一和二条句子中没有出现过,所以为0,在第三条句子中出现过一些,所以为1。特征向量中的值也被称为原始词频(raw term frequency)简写为tf(t,d),表示在文档d中词汇t的出现次数。
注意:在上面词袋模型中,我们是使用单个的单词来构建词向量,这样的序列被称为1元组(1-gram)或单元组(unigram)模型。除了一元组以外,我们还可以构建n元组(n-gram)。n元组模型中的n取值与特定的应用场景有关,如在反垃圾邮件中,n的值为3或4的n元组可以获得比较好的效果。下面举例说明一下n元组,如在"the weather is sweet"这句话中,
1元组:"the"、"weather"、"is"、"sweet"。
2元组:"the weather"、"weather is"、"is sweet"。
在sklearn中,可以设置CountVecorizer中的ngram_range参数来构建不同的n元组模型,默认ngram_range=(1,1)。
sklearn通过CountVecorizer构建2元组
二、TF-IDF计算单词关联度
在使用上面的方法来构建词向量的时候可能会遇到一个问题:一个单词在不同类型的文档中都出现,这种类型的单词其实是不具备文档类型的区分能力。我们通过TF-IDF算法来构建词向量,从而来克服这个问题。
词频-逆文档频率(TF-IDF,term frequency-inverse document frequency):tf-idf可以定义为词频×逆文档频率
其中tf(t,d)表示单词t在文档d中的出现次数,idf(t,d)为逆文档频率,计算公式如下
其中,nd表示文档的总数,df(t,d)表示包含单词t的文档d的数量。分母中加入常数1,是为了防止df(t,d)=0的情况,导致分母为0。取log的目的是保证当df(t,d)很小的时候,不会导致idf(t,d)过大。
通过sklearn的TfidfTransformer和CountVectorizer来计算tf-idf
可以发现"is"(第二列)和"the"(第六列),它们在三个句子中都出现过,它们对于文档的分类所提供的信息并不会很多,所以它们的tf-idf的值相对来说都是比较小的。
注意:sklearn中的TfidfTransformer的TF-IDF的计算与我们上面所定义TF-IDF的公式有所不同,sklearn的TF-IDF计算公式
通常在计算TF-IDF之前,会对原始词频tf(t,d)做归一化处理,TfidfTransformer是直接对tf-idf做归一化。TfidfTransformer默认使用L2归一化,它通过与一个未归一化特征向量L2范数的比值,使得返回向量的长度为1,计算公式如下:
下面通过一个例子来说明sklearn中的TfidfTransformer的tf-idf的计算过程,以上面的第一句话"The sun is shining"为例子
1、计算原始词频
a、单词所对应的下标
b、计算第三句话的原始词频tf(t,d)
c、计算逆文档频率idf(t,d)
注意:其他的词在计算tf-idf都是0,因为原始词频为0,所以就不需要计算idf了,log是以自然数e为底。
d、计算tf-idf
所以,第一个句子的tf-idf特征向量为[0,1,129,129,0,1,0]
e、tf-idf的L2归一化
不少人都翘首以盼,计算机会变得越来越聪明,在不久的将来,它就能像人一样具有情感,与人进行自然、亲切和生动的智能交互。 认知科学(Cognitive Science)是在心理学、计算机科学、人工智能、神经科学、科学语言学、科学哲学以及其他基础科学(如数学、理论物理学)共同感兴趣的界面上,即理解人类的、乃至机器的智能的共同兴趣上,涌现出来的高度跨学科的新兴科学。认知科学试图依靠众多学科的共同努力,理解心智的性质,可能的话,在此基础上制造出能思维的机器。而认知心理学由于关注和研究人的心智活动,在认知科学中发挥着重要的作用。
认知心理学: 人脑与计算机类比
认知心理学是20世纪60年代兴起的心理学研究取向,它不仅研究心智活动的“软件”(即心智活动的过程,如人对信息的编码、储存和提取),而且研究心智活动的“硬件”(即心智活动的结构,如认知功能的脑定位或脑机制),提出了极富特色的理论,促进了对人类心智活动的细微剖析和准确理解,成为现代心理学的主流方向。
信息加工系统(Information-Processing System)也被称为符号操作系统(Symbol Operation System)或物理符号系统(Physical Symbol System)。一个完整的物理符号系统具有信息的输入(Input)、输出(Output)、存储(Store)、复制(Copy)、建立符号结构(Build Symbol Structure)和条件性迁移(Conditional Transfer)六种功能。物理符号系统假设提出,任何一个系统,如果能够表现出智能的话,就必能执行上述六种功能; 反之,任何系统如果具有这六种功能,就能表现出智能。其推论自然是: 人具有智能,人一定是个物理符号系统; 计算机是个物理符号系统,计算机一定能表现出智能。既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就可以用计算机来模拟人的智能活动。认知心理学所做的,就是试图用物理符号系统假设中的基本规律来解释人类复杂的心理现象。
心智的计算-表征理解(Computa-tional-Representational Understanding of Mind,简称CRUM)是一种对心智问题的理解方式,认为对思维最恰当的理解是将其视为心智中的表征结构以及在这些结构上进行操作的计算程序。 心智表征属于系统的内部状态,是相对于外部事件或事件的语义加以界定的,是一种形式化的符号表达式; 而所有与系统有关的语义内容,都依照深层的符号表达式及其变换的形式和符号关系结构加以规定,这是一种物理符号操作,是一种计算。表征与计算二者的关系密不可分,因为一定的计算总是建立在一定的表征之上,表现为对表征的某种操作和转换; 而一定的计算也总是会产生某种新的表征。
认知心理学研究心智结构和信息加工过程的方法主要由四个步骤构成,即理论、模型、程序和平台。一个认知理论首先要假定一套表征结构和一套在这些结构上进行操作的加工过程; 然后,通过与由数据结构和算法构成的计算机程序进行类比,设计一个计算模型使得这些表征结构和过程更为精确。有关表征的模糊概念可以用准确的关于数据结构的计算概念予以补充,而心理过程则可由算法来定义; 为了测试该模型,必须用一种编程语言将其在一个软件程序中实现; 最后,该程序应该可以在各种软硬件平台上运行。实际上,无论是信息加工取向对规则和搜索策略等进行的抽象的串行的分析,还是联结主义取向强调的分布式表征和平行加工,各种心智结构和信息加工过程均可采用上述方法进行研究。理论、模型、程序、平台一起构成了认知心理学的基本研究构架。大量研究都遵循着这个途径,并通过实验将各个步骤贯穿起来。
情感计算: 人与计算机交互
显然,情感交流是个复杂的过程,不仅受时间、地点、环境、人物对象和经历的影响,而且有表情、语言、动作或身体的接触。情感计算研究试图通过不断加深对人的情感状态和机制的理解,创建一种能感知、识别和理解人的情感,并能针对人的情感做出智能、灵敏、友好反应的计算系统。
作者简介:傅小兰
研究员,现任中国科学院心理研究所副所长,研究领域为认知心理学,主要关注人的基本认知过程、信息加工动态机制、知识表征、认知绩效以及人机交互中的心理与行为问题。担任脑与认知科学国家重点实验室副主任,中国心理学会常务理事、副秘书长、中国人类工效学会理事、认知工效学专业委员会副主任委员,全国人类工效学标准化技术委员会副主任委员等。
情感计算研究有助于提高计算机感知情境,理解人的情感和意图,做出适当反应的能力。情境化是人与计算机交互研究中的新热点。在人与计算机的交互中,计算机需要捕捉关键信息,觉察人的情感变化,形成预期,进行调整,做出反应。例如,通过对不同类型的用户建模(例如: 操作方式、表情特点、态度喜好、认知风格、知识背景等),以识别用户的情感状态,利用有效的线索选择合适的用户模型(例如,根据可能的用户模型主动提供相应有效信息的预期),并以适合当前类型用户的方式呈现信息(例如: 呈现方式、操作方式、与知识背景有关的决策支持等); 在对当前的操作做出即时反馈的同时,还要对情感变化背后的意图形成新的预期,并激活相应的数据库,及时主动地提供用户需要的新信息。
情感计算是一个高度综合化的技术领域。目前情感计算研究面临的挑战仍是多方面的: (1)情感信息的获取与建模,例如细致和准确的情感信息获取、描述及参数化建模,海量的情感数据资源库,多特征融合的情感计算理论模型; (2)情感识别与理解,例如多模态的情感识别和理解; (3)情感表达,例如多模态的情感表达(图像、语音、生理特征等),自然场景对生理和行为特征的影响; (4)自然和谐的人性化和智能化的人计交互的实现,例如情感计算系统需要将大量广泛分布的数据整合,然后再以个性化的方式呈现给每个用户。
情感计算有广泛的应用前景。计算机通过对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们理解自己和他人的情感世界。计算机的情感化设计能帮助我们增加使用设备的安全性,使经验人性化,使计算机作为媒介进行学习的功能达到最佳化。在信息检索中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。
在电子商务领域,在设计购物网站和股票交易网站等时充分利用人的情感因素的作用,以改变客流量。多模式的情感交互技术能构筑更贴近人们生活的智能空间或虚拟场景,而机器人、智能玩具、游戏等产业则能构筑出更加拟人化的风格和更加逼真的场景。
网络聊天时,用“ac”代替“b”,因为“b”指的是“逼”,属于低俗用语,为了防止被屏蔽,所以用“ac”代替。“ac”的其它可能意思如下:
1、AC值(Alternating class),是一种复杂度指标,类推自计算复杂性理论中的NC值(Nicks Class),主要应用于计算机算法的检验优化等领域。
2、ac,英国位于南大西洋的海外领地阿森松岛的国家顶级域名。
3、ac,表示学术科研机构(Academic)的二级域名,往往为某个国家或地区内的学术科研机构所使用,属于的组织域名(类似的还有表示工商企业的com,表示组织的org,表示政府机关的gov,表示教育机构的edu等)。
4、累加器(Accumulator)全称累加寄存器,是中央处理器中用来储存计算产生的中间结果的一种寄存器。
5、指某款软件或应用通过评测(Accepted)。同理,AC率的意思就是程序的通过率。
6、情感计算(Affective Computing),就是要赋予计算机类似于人一样的观察、理解和生成各种情感特征的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。
7、人工意识(Artificialconsciousness),人工智能领域及认知机器人学的术语,以“合成一个具有意识的人造物需要哪些必要条件”为研究方向。
8、AcFun,中国大陆的一家弹幕视频网站,一般被简称作“A站”或“Ac”。
9、AC模玩网(ACTOYS模玩网),中国大陆的一家以动漫周边,模型玩具交流为主要内容的论坛网站
对人的情感。是指在开发一个系统时,如果够对人类的情感进行侦测、分类、组织和回应,就帮助使用者获得高效而又亲切的感觉,这种开发也可以由特殊点额用途,能够帮助人们便于理解自己和他人的情感世界。这一类型的系统和应用被称为情感计算。
int posCount=0;
int negCount=0,方便后续查找;读完后用你的词袋向量顺序匹配情感词库中的词,比如你的词袋向量w=[1,伪代码如下?不大你可以先读进来用hash表存储,3,5],正向情感词库表中hash表数据有[1,3],负向情感词库hash表数据有[4],那么你可以这样写,2,4,2情感词库大吗;
for(int i=0
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)