数字1—10儿歌
1像铅笔细又长
2像小鸭水中游
3像耳朵听声音
4像红旗迎风飘
5像称钩秤来卖菜
6像口哨能吹响
7像镰刀割青草
8像葫芦娃
9像饭勺能盛饭
10像筷子和鸡蛋
孩子们刚学写字,为了书写规范,无论是数字还是汉子都要写在田字格本上。
写字前先要教孩子们认识田字格
田字格儿歌
田子格,四方方。
写好汉字它来帮。
左上格,右上格。
左下格,右下格。
横中线,竖中线。
各个方位记心间。
书写数字要求:
用田字格本书写,数字1—9书写在田字格右半格,右半格是书写个位数字,左半格书写十位数字
要求:要顶满格书写
书写数字1:一笔写成
从日字格右上格横线格上角起笔,写斜线到左下角落笔
书写数字2:两笔写成
第一笔:日子格右上半格起笔,顶满格写成半圆
第二笔:横线写在左下格横线上
要求:书写顶满格
书写数字3:两笔写成
第一笔:日字格右上格起笔,顶满格写3的上半圆
第二笔:日字格右下格写3的下半圆落笔
要求:书写要顶满格
书写数字4:三笔写成
第一笔:日字格右上格起笔,顶满格写斜线到日字格右下半格落笔
第二笔:写横线写在右下半格上
第三笔,竖线写在日字格右上半格起笔,到日字格右下格落笔
要求:顶满格
书写数字5:三笔写成
第一笔,日字格右上半格中间起笔,写竖线到右上半格横线落笔
第二笔,从第一笔落笔线起笔,写半圆到右下半格落笔
第三笔,横线写在右上格中格
要求:顶满格
书写数字6:一笔写成
从日字格右上半格上横线中间起笔,写弧形到右下半格下横线,写半圆在右下格中横线落笔
要求:顶满格
书写数字7:两笔写成
第一笔:日字格右上格,上横线起笔落笔在横线
第二笔:从第一笔落笔点起笔,写竖斜线落笔在右下半格下横线中间
要求:顶满格书写
书写数字8:一笔写成
从日字格右向上格上横线右上方起笔,写8第一个圆到右下格下半格横线起写8第二个圆到右上半格找起笔点落笔,8字不封口留小口
要求:顶满格书写
书写数字9:两笔写成
第一笔,日字格右上半格竖线起笔顶满格写圆
第二笔,写斜线到右下半格下横线中间落笔
要求:顶满格书写
书写数字0:一笔写成
从日字格右半格上横线中间起笔写弧线,顶满格沿着线到右下半格下横线中间,往上写弧线找起笔点落笔,0要封口
教育孩子正确的书写方法,培养孩子书写规范的能力
幼儿数学教育主要包括幼儿的数概念、计数和运算的教育、量与计量的教育、几何图形和空间关系、时间关系的教育等。
①幼儿的数、计数与运算
10以内数的实际意义;数的守恒;相邻数;数与数之间的数差关系;认识序数,能够用自然数表示物体排列的次序关系,说出物体排第几;认识10以内数的组成和分解,以及部分数之间的互换和互补关系等;学会10以内的计数;认读和书写10以内的阿拉伯数字;10以内数的加、减运算,包括认识加号、减号和等号,理解加减法的意义,学习10以内数的口头加减运算,并能够用加、减法解决实际生活中的简单问题。
②量与计量的初步知识
能区分物体量的差异,比较物体的多少、大小、长短、高低、粗细,厚薄、宽窄、轻重、容积等;理解初步的量的守恒;在比较物体量的差异时,感知量的相对性;帮助儿童建立序的概念,并体验其中的传递关系;学习计量,会进行初步的自然测量。
③简单的几何图形知识
能够正确辨认常见的平面图形――正方形、三角形、长方形、半圆形、圆形和梯形,并能说出它们的名称和主要特征;能够正确辨认几种常见的立体几何图形――球体、正方体、圆柱体、长方体;能够区分平面图形和立体图形,理解图形之间的简单关系。
④空间方位初步知识
能区分上、下、左、右和远、近等空间方位;能按指定方向进行运动,包括向前、向后、向左、向右、向上和向下等。
⑤时间、方位的初步知识
能区分早晨、晚上、白天、黑夜、昨天、今天、明天,并且知道一星期7天的名称及其顺序;认识时钟,知道时钟的用途以及正点与半点。
仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹沃土之间找到你真正的位置。无需自卑,不要自负,坚持自信。接下来是我为大家整理的2020高中数学教学教案,希望大家喜欢!
2020高中数学教学教案一
《平面向量》
各位评委,老师们:大家好!
很高兴参加这次说课活动这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导希望各位评委和老师们对我的说课内容提出宝贵意见
我说课的内容是<平面向量>的教学,所用的教材是人民 教育 出版社出版的全日制普通高级中学教科书(试验修订本-必修)<数学>第一册下,教学内容为第96页至98页第五章第一节本校是浙江省一级重点中学,学生基础相对较好我在进行教学设计时,也充分考虑到了这一点
下面我从教材分析,教学目标的确定, 教学 方法 的选择和教学过程的设计四个方面来汇报我对这节课的教学设想
一教材分析
(1)地位和作用
向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用
平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习为学习向量的知识体系奠定了知识和方法基础
(2)教学结构的调整
课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成
(3)重点,难点,关键
由于本节课是本章内容的第一节课,是学生学习本章的基础为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向所以向量,相等向量的概念,向量的几何表示是这节课的重点本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的 学习方法 和习惯,但根据以往的教学 经验 ,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解
二教学目标的确定
根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:
(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量会根据图形判定向量是否平行,共线,相等
(2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。
(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。
三教学方法的选择
Ⅰ教学方法
本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:
(1)由教材的特点确立类比思维为教学的主线
从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似因此在教学中运用类比作为思维的主线进行教学让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程
(2)由学生的特点确立自主探索式的学习方法
通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用
Ⅱ教学手段
本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破
四教学过程的设计
Ⅰ知识引入阶段---提出学习课题,明确学习目标
(1) 创设情境——引入概念
数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。
由生活中具体的向量的实例引入:大海中船只的航线, 中国象棋 中”马”,”象”的走法等这些符合高中学生思维活跃, 想象力 丰富的特点,有利于激发学生的学习兴趣
(2) 观察归纳——形成概念
由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度明确知道了有向线段的起点,方向和长度,它的终点就确定再有目的的进行设计,引导学生概括 总结 出本课新的知识点:向量的概念及其几何表示。
(3) 讨论研究——深化概念
在得到概念后进行归纳,深化,之后向学生提出以下三个问题:
①向量的要素是什么
②向量之间能否比较大小
③向量与数量的区别是什么
同时指出这就是本节课我们要研究和学习的主题
Ⅱ知识探索阶段---探索平面向量的平行向量相等向量等概念
(1) 总结 反思 ——提高认识
方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件
(2)即时训练—巩固新知
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
[练习1]判断下列命题是否正确,若不正确,请简述理由
2020高中数学教学教案二
《正弦定理》
大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一 教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与 逻辑思维 能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二 教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点
三 学法:
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
四 教学过程
第一:创设情景,大概用2分钟
第二:实践探究,形成概念,大约用25分钟
第三:应用概念,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2那结论对任意三角形都适用吗指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1强调将猜想转化为定理,需要严格的理论证明。
2鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1例1。在△ABC中,已知A=32°,B=818°,a=429cm解三角形
例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2 例2 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。
(六)课堂练习,提高巩固
1在△ABC中,已知下列条件,解三角形
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2 在△ABC中,已知下列条件,解三角形
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法你对此有何体会
1用向量证明了正弦定理,体现了数形结合的数学思想。
2它表述了三角形的边与对角的正弦值的关系。
3定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)
(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎么办发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。
2020高中数学教学教案三
《曲线和方程》
一、教材分析
1教材背景
作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验
本课为第二课时
主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求
2本课地位和作用
承前启后,数形结合
曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节
“曲线”与“方程”是点的轨迹的两种表现形式“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题体现了坐标法的本质——代数化处理几何问题,是数形结合的典范
后继性、可探究性
求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性
同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法
数学建模与示范性作用
曲线的方程是解析几何的核心求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范
数学的 文化 价值
解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例解析几何创始人特别是笛卡儿的 事迹 和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究 报告
3学情分析
我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望
二、目标分析
1教学目标
知识技能目标
理解坐标法的作用及意义
掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程
过程性目标
通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想
通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构
通过层层深入,培养学生 发散思维 的能力,深化对求曲线方程本质的理解
情感、态度与价值观目标
通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神
展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用
2教学重点和难点
重点:求曲线方程的方法、步骤
难点:几何条件的代数化
依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程
曲线与方程是贯穿平面解几的知识,是解析几何的核心求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点
三、教学方法及教材处理
1教学方法:探究发现教学法
遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥
2学法指导
学生学法:互相讨论、探索发现
由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助
这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展
3设计理念:
求曲线方程就是将曲线上点的几何表示形式转化为代数表示形式。在这转化过程中,学生通过积极参与、勇于探索的学习方式,让学生的学习过程成为教师指导下的再创造,这也正是建构主义理论的本质要求;遵循学生认知规律,尊重学生个体差异,立足教材,通过对例题的再创造,体现理论联系实际、循序渐进和因材施教的教学原则,让不同层次的学生得到不同层度的发展;通过激发兴趣,强调自主探索与合作交流,让学生逐步地从学会走向会学,由被动走向主动,由课堂走向社会,为学生的终身学习和终身发展奠定良好的基础,也是当前新课程所追求的基本理念
四、教学过程(教学设计)
根据本课教学内容几何特性外化的特点,抓住形成轨迹的动点具备的几何条件,运用坐标化的手段及等价转化与数形结合的思想方法,突破难点,突出重点本课的教学设计思路是:
创设情景——从感性的轨迹(图形)认识,到解决生活上的实例,激发学生的求知欲望,抓住学生迫切一试的认知心理,自然引入坐标法的意义及曲线方程的求法
例题探求——例题一体现知识的承前启后通过例题一的呈现,学生借助已有的知识经验,自主探求获得问题的求解,在教师的引导下,让学生感受求曲线方程的含义及求解步骤;例题二及变式解决建系难点,建系的开放性,对学生是一种挑战,也是一种创造;两个例题由浅入深,循序渐进,体现因材施教至此,学生已能初步了解求曲线方程的一般方法和步骤了
归纳步骤——学生亲身经历求曲线方程的过程,让学生归纳(用自己的语言)、表述求解的步骤,体现从“特殊——一般”认知规律,逐步实现教学目标
变式练习——通过对例题的变式,由学生求解、回答变式后的含义,深化对认知结构的理解,初步体会数学的理性与严谨,逐步养成质疑与反思的习惯
反馈练习——利用学生探索而发展来的认知水平,运用获得的知识解决情景创设中的实际问题,一方面可以考察学生运用所学数学知识解决实际问题的意识和能力;另一方面是学生思维的自然顺应,自然释放,是“一般——特殊”的过程全面完成教学目标
2020高中数学教学教案3篇相关 文章 :
★ 2020高中数学基本不等式教学教案
★ 2020高中数学等比数列教案设计大全
★ 2020高中数学教师的工作计划5篇
★ 2020高中数学教学计划
★ 2020高中数学幂函数教学教案
★ 2020高中数学教研组教学工作计划5篇
★ 2020高中数学教研组的工作计划5篇
★ 2020高中数学随机抽样教案
★ 2020高中数学教师教学工作计划
★ 2020高中数学教师工作心得总结范文5篇
根据《纲要》中科学领域的目标精神,幼儿园数学教育的总目标应该包括以下具体内容:
1、对周围环境中事物的数量、形状、时间和空间感兴趣,有好奇心和求知欲,喜欢参加数学活动和游戏。
2、能从生活和游戏中感受事物的数量关系,获得有关数、量、形、时间和空间等感性经验,体验到数学的重要和有趣。
3、学习用简单的数学方法,解决生活和游戏中某些简单的问题,能用适当的方式表达、交流操作和探索问题的过程和结果。
4、会正确使用数学活动材料,能按规则进行活动,有良好的学习习惯。
扩展资料
幼儿园数学教育具体目标:
一、小班教学的具体目标
1、愿意参加数学活动,喜欢摆弄、操作数学活动材料,能在教师的帮助下按要求取放操作材料和进行活动。
2、对生活中常见的各种物品的大小、形状、数量有兴趣,能感知5以内的数量。
3、能按物体的外部特征(大小、形状、颜色)进行分类。
二、中班教学的具体教学目标
1、能专心地进行数学操作活动,对自己的活动成果感兴趣,愿意并学习用适当的方法表达、交流自己操作、探索的过程和结果。
2、能自己选择数学活动内容和按规则进行活动。
3、能按物体的某一特征和数量进行分类。
4、能注意和发现周围环境中物体的数量,形状,物体量的差异,以及它们在空间的位置等。
5、能比较、判断10以内物体的数量多少;感受10以内相邻两数的大小关系。
6、认识一些常见的几何图形。
三、大班教学的具体目标
1、能积极,主动地进行数学活动,遵守活动规则,会有条理地摆放、整理数学活动材料。
2、能用适当方式表达、交流数学操作活动的过程和结果。
3、能倾听教师和同伴的讲话,能在教师帮助下,归纳,概括有关数学经验,感受生活和游戏中事物的数量关系。
4、能运用对应、比较、类推、分类统计等简单数学方法解决生活和游戏中的某些问题。
5、能按物体的两种特征和从事物的多个角度进行分类。
6、认识一些常见的立体图形;对平面图形间的关系能有所感受。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)