向量[xiàng liàng]
向量的概念:既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。
向量的几何表示:
具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。(AB是印刷体,书写体是上面加个→)
有向线段AB的长度叫做向量的模,记作|AB|。
有向线段包含3个因素:起点、方向、长度。
长度等于0的向量叫做零向量,记作0。零向量的方向是任意的;长度等于1个单位长度的向量叫做单位向量。
相等向量与共线向量
长度相等且方向相同的向量叫做相等向量。
两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,平行向量也叫做共线向量。
词语造句:
因此这些向量,有着相同绝对值。
这需要(在STDIN中)像上面一样的向量集。
现在的问题是,如果有一个保守的,或者路径独立的向量场,那它是某个东西的梯度吗?
所以,这个向量场不是保守场。
梯度向量的垂直方向,为什么是这样而不是另外一个方向?
确定一点,那么对我来说,这点的梯度向量就是确定的。
用我们喜欢的向量场来点乘它。
一旦你得到一个这样的计算式,你对向量场做点积,这和前面这个不一样。
我们需不需要掌握如何旋转向量这些知识点?
但是,其中一个把函数映到向量。
就是这它了,如果你继续跟着法向量看,会看到它们实际上,指向上并且指向抛物面里。
在大多数语言中,这个列表被实现为数组、向量、列表或序列。
我想找出这个向量场的势函数。
您需要一个位置向量来存储从UDDI获得的每个服务的位置。
所以你们可以明确地计算这两个向量。
每一个测量位置是温度值的一个线性向量
平面向量知识点梳理如下:
1、零向量:长度等于0的向量叫做零向量,记作0。
2、相等向量:长度相等且方向相同的向量叫做相等向量。
3、平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量。
4、单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示。
5、相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
平面向量其他简介:
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
既有方向又有大小的量叫做向量
在数学中,通常用点表示位置,用射线表示方向。在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向。向量的表示向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。向量也可用字母a、b、c等表示,或用表示向量的有向线段的起点和终点字母表示。向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量。
平行向量与相等向量
方向相同或相反的非零向量叫做平行向量。向量a、b、c平行,记作a∥b∥c。0向量长度为零,是起点与终点重合的向量,其方向不确定,数学上规定0与任一向量平行。
长度相等且方向相同的向量叫做相等向量。向量a与b相等,记作a=b。零向量与零向量相等。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的加法满足平行四边形法则和三角形法则,
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0 0的反向量为0
OA-OB=BA即“共同起点,指向被减”
a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)
如图:c=a-b 以b的结束为起点,a的结束为终点。
加减变换律:a+(-b)=a-b
(向量的概念和计算方法十分复杂,这里无法详细展开,可以前往网页链接了解更多信息)
高中数学关于向量的知识点
1向量的基本概念
(1)向量
既有大小又有方向的量叫做向量物理学中又叫做矢量如力、速度、加速度、位移就是向量
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)
(5)平行向量
方向相同或相反的非零向量,叫做平行向量平行向量也叫做共线向量
若向量a、b平行,记作a∥b
规定:0与任一向量平行
(6)相等向量
长度相等且方向相同的向量叫做相等向量
①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可
②向量a,b相等记作a=b
③零向量都相等
④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关
2对于向量概念需注意
(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小
(2)向量共线与表示它们的有向线段共线不同向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上
(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上
3向量的运算律
(1)交换律:α+β=β+α
(2)结合律:(α+β)+γ=α+(β+γ)
(3)数量加法的分配律:(λ+μ)α=λα+μα
(4)向量加法的分配律:γ(α+β)=γα+γβ
高中数学学习的窍门1不乱买辅导书。
关于数学,我一本辅导书都没买(高三),从高三发的第一张卷子起到最后一张我高考结束后全部留着,厚厚的三打。这些卷子留好后你从第一张看的时候和辅导书是一样一样的 因为高三复习的时候都是按章节来的,所以条目很清晰。
1每一张卷子不留题。
不留错题和不明白的题,把每一个题目都弄明白,不会的就去问别人问老师。我一开始也不好意思去问老师,因为我基础太差了,可能我不会的题其实只是一个公式题,所以我都是问周围的同学,所幸我周围一圈学霸,每一个都被我问烦了要 在这里要感谢一下他们~
1整理错题。
这个其实真的挺重要,但我前面也说过,我是一个超懒的人,所以我没有做 但是我在后期快三模的时候意识到了这个的重要性,所以把所有卷子集中起来把错题回顾了一遍,不一定动笔(太懒)去做,在脑子里想一遍,一般只用不到一分钟一道,这个时间什么时候都抽得出来的。
1整理笔记。
关于数学的笔记我有两本,一个是我们老师总结的一些方法和技巧,一些公式的记忆以及法则概念之类的(这个要好好记!做题的时候经常用到!没有公式做题简直是… )另一本是关于一些好题难题错题典型题,把这些题从纸上剪下来贴到本子上再做一遍,到高考前我把这个错题本又全部重新做了一遍(当然,这个由于太懒,有的题有点三天打渔两天晒网 )
1关于卷子。
由于笔记要剪下来(这年头谁还自己抄题快去给我站墙角!)贴到笔记上,所以我都是要两张卷子(老师都是直接问谁要两张自己留下就行),两张卷子一张自己做,另一张用来剪题(有的时候正反面都有就很讨厌啦 所以我有的时候拿三张 )
ps:自己做的那张卷子呢做完听题的时候要做好标记,答主有一套晨光的彩色笔,还蛮好用,把不会的题在题号标一种颜色,会但是典型的一种颜色。
一定要把做题过程在卷子上写清楚!一定要把做题过程在卷子上写清楚!一定要把做题过程在卷子上写清楚!重要的事说三遍!否则你看卷子时说忘就忘哭都没地方哭
1关于老师。
答主老师长的帅啊 大于一切优点啊 要努力寻找老师的闪光点,毕竟老师对于学习兴趣还是影响很大的。
1补充。
我们老师当时特别喜欢给我们做模拟题,都是他做了的题然后剪贴出来的卷子,所以每道题都很好也是我说过不留题的原因。因为做套题的时候就算你很多都不懂,但是选择题中的集合那些题总都会做,不至于像做导数数列那些单元的卷子一样欲哭无泪=_=(数学不好的人都懂我!)所以可以多做套题来增强自己的信心。
1信心。
1错,向量a=0向量,不是数0
2错,向量相等等价于模相等且方向相同
3错,方向决定
4错,共线即可
5错,还是方向
6对,方向相反一定共线
7错,向量不比较大小
8错,没有排除向量b是0向量,0向量和任意向量都共线
1向量:
既有大小又有方向的量
2向量的模:
向量的大小
3零向量:
模长为0的向量
4长度为1个单位长度的向量,叫单位向量
5平行向量定义:
向量a,b,c平行,记作a‖b‖c
6长度相等且方向相同的向量叫相等向量
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)