BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding
○ 将预训练语言模型应用在下游任务中,一般有两种策略:
作者认为影响当前预训练语言模型的 瓶颈是——“模型是单向的” 。如 GPT 选择从左到右的架构,这使得每个 token 只能注意到它前面的 token,这对 sentence 级的任务影响还是次要的,但对于 token 级的任务来说影响就很巨大。例如问答任务,从两个方向结合上下文是至关重要的。
BERT 通过使用受完形填空任务启发的 Mask Language Model (MLM)缓解了先前模型的单向性约束问题。MLM 随机 mask 掉一些输入文本中的 token,然后根据剩下的上下文预测 masked 的 token。除了 Mask Language Model,作者还提出了 Next Sequence Predict 任务,来联合训练文本对表示。
论文中BERT的改进如下:
预训练前的一般语言表征有着悠久历史,本节我们简要回顾一下最广泛使用的方法。
21 基于特征的无监督方法 :
几十年来,学习广泛适用的词汇表征一直是一个活跃的研究领域,包括非神经系统、神经系统方法。预训练的词嵌入是现代NLP系统的一个组成部分,与从头学习的嵌入相比,它提供了显著的改进(Turian等人,2010)。为了预先训练单词嵌入向量,已经使用了从左到右的语言建模目标(Mnih和Hinton,2009),以及在左右上下文中区分正确单词和错误单词的目标(Mikolov等人,2013)。
这些方法已被推广到更粗糙的粒度,例如句子嵌入(Kiros等人,2015;Logeswaran和Lee,2018)或段落嵌入(Le和Mikolov,2014)。为了训练句子表征,之前的工作已经使用了目标对候选下一个句子进行排序(Jernite等人,2017;Logeswaran和Lee,2018),根据前一个句子的表征从左到右生成下一个句子单词(Kiros等人,2015),或去噪自动编码器衍生的目标(Hill等人,2016)。
ELMo 及其前身(Peters等人,20172018a)从不同的维度概括了传统的单词嵌入研究。它们通过从左到右和从右到左的语言模型中提取上下文敏感的特征。每个标记的上下文表示是从左到右和从右到左表示的 串联 。在将上下文单词嵌入与现有任务特定架构相结合时,ELMo推进了几个主要NLP基准(Peters等人,2018a)的最新技术,包括问答(Rajpurkar等人,2016年)、情感分析(Socher等人,2013年)和命名实体识别(Tjong Kim-Sang和De Meulder,2003年)。Melamud等人(2016年)提出通过一项任务来学习语境表征,即使用 LSTM 从左右语境中预测单个单词。与ELMo类似,他们的模型是基于特征的,而不是深度双向的。Fedus等人(2018)表明,完形填空任务可以用来提高文本生成模型的 稳健性 。
22 无监督微调方法:
与 基于特征feature-based 的方法一样,第一种方法只在未标记文本中预先训练单词嵌入参数的情况下才朝这个方向工作。最近,产生上下文标记表示的句子或文档编码器已经从未标记的文本和文本中预训练出来针对受监督的下游任务进行了 微调fine-tuned 。
这些方法的 优点是 ,很少有参数需要从头学习。至少部分由于这一优势,OpenAI GPT在GLUE基准测试的许多句子级任务上取得了之前的最新成果。从左到右的语言建模和自动编码器目标已用于此类模型的预训练。
注解 :BERT的整体预训练和微调程序。除了输出层之外,在预训练和微调中使用相同的体系结构。相同的预训练模型参数用于初始化不同下游任务的模型。在微调过程中,所有参数都会微调。
23 基于监督数据的迁移学习:
也有研究表明,在大数据集的监督任务中,如自然语言推理和机器翻译可以有效地进行转换。计算机视觉研究也证明了 从大型预训练模型中进行迁移学习的重要性 ,其中一个有效的方法是对使用ImageNet预训练模型进行微调。
本节将介绍BERT及其详细实现。在我们的框架中有两个步骤:预训练和微调。
BERT的一个显著特点是其跨不同任务的统一体系结构 。预训练的体系结构和最终的下游体系结构之间的差异最小。
BERT 的模型架构是 一种多层的双向 transformer encoder ,BERT 在实现上与 transformer encoder 几乎完全相同。
定义:transformer block 的个数为 L ; hidden 大小为 H; self-attentions head 的个数为 A 作者主要展示了两种规模的 BERT 模型:
在这项工作中,我们将层数(即Transformer blocks)表示为L,隐藏大小表示为H,自我注意头的数量表示为A。我们主要报告两种型号的结果:
为了进行比较,选择BERT-base与OpenAI GPT具有相同的模型大小。然而,关键的是, BERT Transformer使用双向自注意力机制self-attention ,而 GPT Transformer使用受限自注意力机制constrained self-attention ,其中每个标记只能关注其左侧的上下文。
为了使 BERT 能处理大量不同的下游任务,作者将模型的输入设计成可以输入单个句子或句子对,这两种输入被建模成同一个 token 序列。作者使用了有 30000 个 token 的 vocabulary 词嵌入。
31 Pre-training BERT :
我们不使用传统的从左到右或从右到左的语言模型来预训练BERT。相反,我们使用本节所述的两个无监督任务对BERT进行预训练。这一步如图1的左半部分所示。
Task #1: Masked LM
标准的语言模型只能实现从左到右或从右到左的训练,不能实现真正的双向训练,这是因为双向的条件是每个单词能直接“看到自己”,并且模型可以在多层上下文中轻松的预测出目标词。
为了能够实现双向的深度预训练,作者选择 随机 mask 掉一些比例的 token ,然后预测这些被 masked 的 token,在这种设置下,被 masked 的 token 的隐向量表示被输出到词汇表的 softmax 上,这就与标准语言模型设置相同。作者将 这个过程称为“Masked LM”,也被称为“完形填空” 。
○ Masked LM 预训练任务的缺点 :
在于由于 [MASK] 标记不会出现在微调阶段,这就造成了预训练和微调阶段的不一致。为了解决该问题,作者提出了 一种折中的方案 :
○ BERT 的 mask策略:
Task #2: Next Sentence Prediction (NSP)
很多下游任务都是基于对两句话之间的关系的理解,语言模型不能直接捕获这种信息。为了训练模型理解这种句间关系,作者 设计了 next sentence prediction 的二分类任务 。具体来说,就是选择两个句子作为一个训练样本,有 50% 的概率是下一句关系,有 50% 的概率是随机选择的句子对, 预测将 [CLS] 的最终隐状态 C 输入 sigmoid 实现 。
○ Pre-training data :
作者选用了BooksCorpus (800M words) 和 English Wikipedia (2,500M words) 作为预训练的语料库,作者只选取了 Wikipedia 中的文本段落,忽略了表格、标题等。为了获取长的连续文本序列,作者选用了 BIllion Word Benchmark 这样的文档级语料库,而非打乱的句子级语料库。
32 Fine-tuning BERT :
因为 transformer 中的 self-attention 机制适用于很多下游任务,所以可以直接对模型进行微调。对于涉及文本对的任务,一般的做法是独立 encode 文本对,然后再应用双向的 cross attention 进行交互。Bert 使用 self-attention 机制统一了这两个阶段,该机制直接能够实现两个串联句子的交叉编码。
对于不同的任务,只需要简单地将特定于该任务的输入输出插入到 Bert 中,然后进行 end2end 的fine-tuning。
与预训练相比,微调相对便宜。从完全相同的预训练模型开始,本文中的所有结果最多可以在单个云TPU上复制1小时,或在GPU上复制几个小时。
在本节中,我们将介绍11个NLP任务的BERT微调结果。
41 GLUE:
GLUE (General Language Understanding Evaluation) 是多个 NLP 任务的集合。作者设置 batch size 为 32;训练 3 个 epochs;在验证集上从(5e-5, 4e-5, 3e-5, 2e-5)中选择最优的学习率。结果如下:
结果见表1。 BERT-base和BERT-large在所有任务上都比所有系统表现出色,与现有技术相比,平均准确率分别提高了45%和70% 。请注意,除了注意掩蔽,BERT-base和OpenAI GPT在模型架构方面几乎相同。
对于最大和最广泛报道的GLUE任务MNLI,BERT获得了46%的绝对准确率提高。在官方的GLUE排行榜10中,BERT-lagle获得805分,而OpenAI GPT在撰写本文之日获得728分。我们发现BERT-large在所有任务中都显著优于BERT-base,尤其是那些训练数据很少的任务。
42 SQuAD v11 :
斯坦福问答数据集(SQuAD v11)收集了10万对众包问答对。给出一个问题和一段维基百科中包含答案的文章,任务是预测文章中的答案文本。
如图1所示,在问答任务中,我们将输入的问题和段落表示为单个压缩序列,问题使用A嵌入,段落使用B嵌入。在微调过程,我们只引入一个起始向量S和一个端向量E。单词i作为答案范围开始的概率计算为Ti和S之间的点积,然后是段落中所有单词的softmax:
答案范围结束时使用类似公式。候选人从位置 i 到位置 j 的得分定义为:S·Ti + E·Tj ,最大得分跨度为 j≥ i 被用作预测。训练目标是正确起始位置和结束位置的对数概率之和。我们微调了3个阶段,学习率为5e-5,批量大小为32。
表2显示了顶级排行榜条目以及顶级发布系统的结果。SQuAD排行榜的前几名没有最新的公共系统描述,并且允许在训练系统时使用任何公共数据。因此,在我们的系统中使用适度的数据扩充,首先在TriviaQA上进行微调,然后再对团队进行微调。
我们表现最好的系统在ensembling方面的表现优于排名第一的系统,在ensembling方面的表现优于排名第一的系统+15 F1,在单一系统方面的表现优于排名第一的系统+13 F1得分。事实上,我们的单BERT模型在F1成绩方面优于顶级合奏系统。如果没有TriviaQA微调数据,我们只会损失01-04 F1,仍然远远超过所有现有系统。
其他实验:略
在本节中,我们对BERT的许多方面进行了消融实验,以便更好地了解它们的相对重要性。其他消融研究见附录C。
51 预训练任务的效果 :
○ 进行了如下消融测试:
○ 结果如下:
52 模型大小的影响 :
○ 结果如下:
作者证明了 :如果模型经过充分的预训练,即使模型尺寸扩展到很大,也能极大改进训练数据规模较小的下游任务。
53 将 Bert 应用于 Feature-based 的方法 :
○ feature-based 的方法是从预训练模型中提取固定的特征,不对具体任务进行微调 。
○ 这样的方法也有一定的优点 :
作者进行了如下实验:在 CoNLL-2003 数据集上完成 NER 任务,不使用 CRF 输出,而是从一到多个层中提取出激活值,输入到 2 层 768 维的 BiLSTM 中,再直接分类。结果如下:
结果说明:无论是否进行微调,Bert 模型都是有效的。
个人认为 Bert 的意义在于:
由于语言模型的迁移学习,最近的经验改进表明,丰富的、无监督的预训练是许多语言理解系统的一个组成部分。特别是,这些结果使得即使是低资源任务也能从深层单向体系结构中受益。我们的主要贡献是将这些发现进一步推广到深层双向体系结构中,使相同的预训练模型能够成功地处理广泛的NLP任务。
一、一般处理流程
语料获取 -> 文本预处理 -> 特征工程 -> 特征选择
1、语料获取
即需要处理的数据及用于模型训练的语料。
数据源可能来自网上爬取、资料积累、语料转换、OCR转换等,格式可能比较混乱。需要将url、时间、符号等无意义内容去除,留下质量相对较高的非结构化数据。
2、文本预处理
将含杂质、无序、不标准的自然语言文本转化为规则、易处理、标准的结构化文本。
①处理标点符号
可通过正则判定、现有工具(zhon包)等方式筛选清理标点符号。
②分词
将连续的自然语言文本,切分成具有语义合理性和完整性的词汇序列的过程。
一般看来英文较容易可通过空格符号分词,中文相对复杂,参考结巴分词、盘古分词、Ansj等工具。
常见的分词算法有:基于字符串匹配的分词方法、基于理解的分词方法、基于统计的分词方法和基于规则的分词方法,每种方法下面对应许多具体的算法。
③词性标注
为自然语言文本中的每个词汇赋予一个词性的过程,如名词、动词、副词等。可以把每个单词(和它周围的一些额外的单词用于上下文)输入预先训练的词性分类模型。
常用隐马尔科夫模型、N 元模型、决策树
④stop word
英文中含大量 a、the、and,中文含大量 的、是、了、啊,这些语气词、助词没有明显的实际意义,反而容易造成识别偏差,可适当进行过滤。
⑤词形还原
偏向于英文中,单数/复数,主动/被动,现在进行时/过去时/将来时等,还原为原型。
⑥统计词频
因为一些频率过高/过低的词是无效的,对模型帮助很小,还会被当做噪声,做个词频统计用于停用词表。
⑦给单词赋予id
给每一个单词一个id,用于构建词典,并将原来的句子替换成id的表现形式
⑧依存句法分析
通过分析句子中词与词之间的依存关系,从而捕捉到词语的句法结构信息(如主谓、动宾、定中等结构关系),并使用树状结构来表示句子的句法结构信息(如主谓宾、定状补等)。
3、特征工程
做完语料预处理之后,接下来需要考虑如何把分词之后的字和词语表示成计算机能够计算的类型。
如果要计算我们至少需要把中文分词的字符串转换成数字,确切的说应该是数学中的向量。有两种常用的表示模型分别是词袋模型和词向量。
①词向量
词向量是将字、词语转换成向量矩阵的计算模型。目前为止最常用的词表示方法是 One-hot,这种方法把每个词表示为一个很长的向量。
②词袋模型
即不考虑词语原本在句子中的顺序,直接将每一个词语或者符号统一放置在一个集合(如 list),然后按照计数的方式对出现的次数进行统计。统计词频这只是最基本的方式,TF-IDF 是词袋模型的一个经典用法。
常用的表示模型有:词袋模型(Bag of Word, BOW),比如:TF-IDF 算法;词向量,比如 one-hot 算法、word2vec 算法等。
4、特征选择
在文本挖掘相关问题中,特征工程也是必不可少的。在一个实际问题中,构造好的特征向量,是要选择合适的、表达能力强的特征。
举个自然语言处理中的例子来说,我们想衡量like这个词的极性(正向情感还是负向情感)。我们可以预先挑选一些正向情感的词,比如good。然后我们算like跟good的PMI,用到点互信息PMI这个指标来衡量两个事物之间的相关性。
特征选择是一个很有挑战的过程,更多的依赖于经验和专业知识,并且有很多现成的算法来进行特征的选择。目前,常见的特征选择方法主要有 DF、 MI、 IG、 CHI、WLLR、WFO 六种。
5、模型训练
在特征向量选择好了以后,接下来要做的事情是根据应用需求来训练模型,我们使用不同的模型,传统的有监督和无监督等机器学习模型,如 KNN、SVM、Naive Bayes、决策树、GBDT、K-means 等模型;深度学习模型比如 CNN、RNN、LSTM、 Seq2Seq、FastText、TextCNN 等。这些模型在分类、聚类、神经序列、情感分析等应用中都会用到。
当选择好模型后,则进行模型训练,其中包括了模型微调等。在模型训练的过程中要注意由于在训练集上表现很好,但在测试集上表现很差的过拟合问题以及模型不能很好地拟合数据的欠拟合问题。同时,也要防止出现梯度消失和梯度爆炸问题。
6、模型评估
在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。模型的评价指标主要有:错误率、精准度、准确率、召回率、F1 值、ROC 曲线、AUC 曲线等。
7、投产上线
模型的投产上线方式主要有两种:一种是线下训练模型,然后将模型进行线上部署提供服务;另一种是在线训练模型,在线训练完成后将模型 pickle 持久化,提供对外服务。
三、NLP应用方向
1、命名实体识别
指识别自然语言文本中具有特定意义的实体,主要包括人名、地名、机构名、时间日期等。
传统机器学习算法主要有HMM和CRF,深度学习常用QRNN、LSTM,当前主流的是基于bert的NER。
2、情感分析
文本情感分析和观点挖掘(Sentiment Analysis),又称意见挖掘(Opinion Mining)是自然语言处理领域的一个重要研究方向。简单而言,是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。
情感分析技术可以分为两类,一类是基于机器学习的方法,通过大量有标注、无标注的主观语料,使用统计机器学习算法,通过提取特征,进行文本情感分析。另一类是基于情感词典的方法,根据情感词典所提供的词的情感极性(正向、负向),从而进行不同粒度的(词语、短语、属性、句子、篇章)下的文本情感分析。
3、文章标签
文章标签是利用机器学习算法,对文章进行文字和语义的分析后,提取出若干个重要的词或者短语(关键短语)。关键短语是NLP基础的算法模块,有了关键短语,能为后续的搜索、推荐等更高级的应用提供有力的抓手。
适用场景:1、个性化推荐:通过对文章的标签计算,结合用户画像,精准的对用户进行个性化推荐;2、话题聚合:根据文章计算的标签,聚合相同标签的文章,便于用户对同一话题的文章进行全方位的信息阅读;3、搜索:使用中心词可以对query进行相似度计算、聚类、改写等,可以用于搜索相关性计算。
4、案件串并
①信息抽取
运用实体抽取、关系抽取,从案情中抽取关键信息,如从警情中可以抽取报警人项目、报警人电话、案发地址等信息
②实体对齐
相同的实体在不同的案情中会有不同的表述,会给串并带来困难。可针对地址、人名、组织名进行对齐处理。
③文本聚类
对于关键片段类信息,无法像实体那样对齐,需要借助文本聚类技术进行关联。
④构建图谱
将信息抽取结果存入图谱。每个警情id对应一个节点,实体、属性、关键片段作为节点,对齐的实体、同一类的文本存为同一个节点。
除了来自于从警情中抽取的信息,还可以将其他警务系统中存在的结构化数据导入(如来自户籍信息的人物关系),从而丰富图谱。
⑤图谱检索
完成以上工作,即完成了案件串并的必要基础建设,接下来通过图谱的查询功能自动完成案件的串并。首先需要设定串并的条件,案件串并的条件在警务实战中已有很多的积累,如“具有相似的作案手段”,又如“相似作案手段,嫌疑人有共同联系人”,只需要将这些条件用图谱查询语言表达出来。
分享嘉宾:张鸿志博士 美团 算法专家
编辑整理:廖媛媛 美的集团
出品平台:DataFunTalk
导读: 美团作为中国最大的在线本地生活服务平台,连接着数亿用户和数千万商户,其背后蕴含着丰富的与日常生活相关的知识。美团知识图谱团队从2018年开始着力于图谱构建和利用知识图谱赋能业务,改善用户体验。具体来说,“美团大脑”是通过对美团业务中千万数量级的商家、十亿级别的商品和菜品、数十亿的用户评论和百万级别的场景进行深入的理解来构建用户、商户、商品和场景之间的知识关联,进而形成的生活服务领域的知识大脑。目前,“美团大脑”已经覆盖了数十亿实体、数百亿的三元组,在餐饮、外卖、酒店、到综等领域验证了知识图谱的有效性。今天我们介绍美团大脑中生活服务知识图谱的构建及应用,主要围绕以下3个方面展开:
--
“美团大脑”是什么?
以下是“美团大脑”构建的整体RoadMap,最先是2018年开始餐饮知识图谱构建,对美团丰富的结构化数据和用户行为数据进行初步挖掘,并在一些重要的数据维度上进行深入挖掘,比如说对到餐的用户评论进行情感分析。2019年,以标签图谱为代表,重点对非结构化的用户评论进行深入挖掘。2020年以后,开始结合各领域特点,逐个领域展开深度数据挖掘和建设,包括商品、美食、酒旅和到综和cross图谱等。
--
在搜索中,通常用户需要将其意图抽象为搜索引擎能够支持的一系列精搜关键词。标签知识图谱则是通过“标签”来承载用户需求,从而提升用户搜索体验。例如,通过标签知识图谱,用户可直接搜索“带孩子”或者“情侣约会”,就可返回合适的商户/内容供给。从信息增益角度来说,用户评论这种非结构化文本蕴含了大量的知识(比如某个商户适合的场景、人群、环境等),通过对非结构化数据的挖掘实现信息增益。该团队以生活服务领域的海量评论数据作为主要知识来源,通过标签挖掘、标签间关系挖掘以及标签-商户关联等关键技术,自下而上梳理用户需求,场景及主要关注点完成图谱构建。
标签知识图谱构建分为以下四个部分:知识抽取、关系挖掘、图谱打标和图谱应用。
① 知识抽取
标签挖掘采用简单的序列标注架构,包括Single span标签挖掘和跳字标签挖掘,此外还会结合语义判别或者上下文判别,采用远监督学习+结果投票方式获取更精准的标签。
② 关系挖掘
同义词挖掘:同义词挖掘被定义为给定包含N个词的池子,M个业务标签词,查找M中每个词在N中的同义词。现有的同义词挖掘方法包括搜索日志挖掘、百科数据抽取、基于规则的相似度计算等,缺乏一定的通用性。当前我们的目标是寻找通用性强,可广泛应用到大规模数据集的标签同义词挖掘方法。
以下是作者给出的同义词挖掘的具体方案,首先将离线标签池或者线上查询标签进行向量表示获取向量索引,再进行向量哈希召回,进一步生成该标签的TopN的同义词对候选,最后使用同义词判别模型。该方案的优势在于降低了计算复杂度,提升了运算效率;对比倒排索引候选生成,可召回字面无overlap的同义词,准确率高,参数控制简单。
对于有标注数据,主流的标签词嵌入表示方法有word2vec、BERT等。word2vec方法实现较为简单,词向量取均值,忽略了词的顺序;BERT通过预训练过程中能捕捉到更为丰富的语义表示,但是直接取[CLS]标志位向量,其效果与word2vec相当。Sentence-Bert对于Bert模型做了相应的改进,通过双塔的预训练模型分别获取标签tagA和tagB表征向量,然后通过余弦相似性度量这两个向量的相似性,由此获取两个标签的语义相似性。
对于无标注数据来说,可以通过对比学习的方法获取句子的表示。如图所示,Bert原始模型对于不同相似度的句子的向量相似度都很高,经过对比学习的调整之后,向量的相似度能够较好地体现出文本相似度。
对比学习模型设计:首先给定一个sentence,对这个样本做扰动产生样本pair,常规来说,在embedding层加上Adversarial Attack、在词汇级别做Shuffling或者丢掉一些词等构成pair;在训练的过程中,最大化batch内同一样本的相似度,最小化batch内其他样本的相似度。最终结果显示,无监督学习在一定程度上能达到监督学习的效果,同时无监督学习+监督学习相对于监督学习效果有显著提升。
同义词判别模型设计:将两个标签词拼接到Bert模型中,通过多层语义交互获取标签。
标签上下位挖掘:词汇包含关系是最重要的上下位关系挖掘来源,此外也可通过结合语义或统计的挖掘方法。但当前的难点是上下位的标准较难统一,通常需要结合领域需求,对算法挖掘结果进行修正。
③ 图谱打标:如何构建标签和商户供给的关联关系?
给定一个标签集合,通过标签及其同义词在商户UGC/团单里出现的频率,卡一个阈值从而获取候选tag-POI。这样会出现一个问题是,即使是频率很高但不一定有关联,因此需要通过一个商户打标判别模块去过滤bad case。
商户打标考虑标签与商户、用户评论、商户Taxonomy等三个层次的信息。具体来讲,标签-商户粒度,将标签与商户信息(商户名、商户三级类目、商户top标签)做拼接输入到Bert模型中做判别。
微观的用户评论粒度,判断每一个标签与提到该标签的评论(称为evidence)之间是正面、负面、不相关还是不确定的关系,因此可当作四分类的判别模型。我们有两种方案可选择,第一种是基于多任务学习的方法, 该方法的缺点在于新增标签成本较高,比如新增一个标签,必须为该标签新增一些训练数据。笔者最终采用的是基于语义交互的判别模型,将标签作为参数输入,使该模型能够基于语义判别,从而支持动态新增标签。
基于语义交互的判别模型,首先做向量表示,然后是交互,最终聚合比较结果,该方法的计算速度较快,而基于BERT的方法,计算量大但准确率较高。我们在准确率和速度上取balance,例如当POI有30多条的evidence,倾向于使用轻量级的方式;如果POI只有几条evidence,可以采用准确率较高的方式进行判别。
从宏观角度,主要看标签和类目是否匹配,主要有三种关系:一定不会,可能会,一定会。一般通过商户层关联结果进行投票结果,同时会增加一些规则,对于准确率要求较高时,可进行人工review。
④ 图谱应用:所挖掘数据的直接应用或者知识向量表示应用
在商户知识问答相关的场景,我们基于商户打标结果以及标签对应的evidence回答用户问题。
首先识别用户query中的标签并映射为id,然后通过搜索召回或者排序层透传给索引层,从而召回出有打标结果的商户,并展示给C端用户。A/B实验表明,用户的长尾需求搜索体验得到显著提升。此外,也在酒店搜索领域做了一些上线实验,通过同义词映射等补充召回手段,搜索结果有明显改善。
主要采用GNN模型实现,在构图中构建了两种边,Query-POI点击行为和Tag-POI关联信息;采用Graph Sage进行图学习,学习的目标是判断Tag和POI是否有关联关系或者Query和POI是否点击关系,进一步依据关联强度进行采样。上线后结果显示,在仅利用Query-POI信息构图时,线上无收益,在引入Tag-POI关联信息后线上效果得到显著提升。这可能是因为排序模型依赖于Query-POI点击行为信息去学习,引入Graph Sage学习相当于换了一种学习的方式,信息增益相对较少;引入Tag-POI信息相当于引入了新的知识信息,所以会带来显著提升。
此外,仅接入Query-POI向量相似度线上效果提升不佳,将Query和POI向量接入后效果得到显著提升。这可能是因为搜索的特征维度较高,容易忽略掉向量相似度特征,因此将Query和POI向量拼接进去后提升了特征维度。
该任务通过当前已知的Item去预测用户点击的Masked Item。比如说获取Item的上下文表征的时候,将相关的Attribute信息也进行向量表征,从而去判断Item是否有Attribute信息。
此外,还可以做Masked Item Attribute 预测,从而将标签的知识图谱信息融入到序列推荐任务中去。实验结果表明,引入知识信息后的准确率在不同的数据集上均有数量级的提升。同时,我们也做了线上转化的工作,将Item表征做向量召回;具体来说,基于用户历史上点击过的Item去召回topN相似的Item,从而补充线上推荐结果,在美食列表推荐页有显著提升。
--
菜品知识图谱的构建目标,一方面是构建对菜品的系统理解能力,另一方面是构建较为完备的菜品知识图谱,这里从不同的层次来说明菜品知识图谱的构建策略。
菜名理解
菜名中蕴含着最精准、获取成本最低的菜品信息,同时对菜名的理解也是后续显式知识推理泛化能力的前提。首先是抽取菜名的本质词/主体菜,然后序列标注去识别菜名中的每个成分。针对两种场景设计了不同的模型,对于有分词情况,将分词符号作为特殊符号添加到模型中,第一个模型是识别每个token对应的类型;对于无分词情况,需要先做Span-Trans的任务,然后再复用有分词情况的模块。
菜名理解是一个较为重要的信息来源,但是所蕴含的知识相对有限,从而提出了基于深度学习模型进行初步字符推断,可实现对不同字面表述的泛化处理。但是对需要专业知识的case表现欠佳,偶尔在字面极其匹配时出现case。
从知识内容丰富的文本中挖掘某些菜谱的基础知识,来构建源知识库;然后通过泛化推理去映射到具体SKU中。在食材推理中,比如菜品种有多道红烧肉,统计10道五花肉中有4道是指五花肉,6道是指带皮五花肉,因此肉就转化为带皮五花肉。对应地,佛跳墙有多道菜谱,先通过统计每种食材出现的概率,可以卡一个阈值,然后表明该菜谱的食谱是什么。
多源数据挖掘,基于菜名理解结果构建solid knowledge triple,同时也依赖菜名理解结果泛化规则。该策略主要适用于处理食材、功效、人群等标签。该方法准确率OK,有一定泛化能力,但覆盖率偏低。
业务内有一些比较好用的训练数据,例如1000万商户编辑自洽的店内分类树。基于该数据可产生5亿的 positive pairs 和 30G corpus。在模型训练中,会随机替换掉菜谱分类的 tab/shop,模型判断 tab/shop 是否被替换;50%的概率drop shop name,使得模型仅输入菜名时表现鲁棒。同时,对模型做了实体化改进,将分类标签作为bert的词进行训练,将该方法应用到下游模型中,在10w标注数据下,菜谱上下位/同义词模型准确率提升了18%。
首先使用ReseNet对菜谱进行编,使用Bert模型对菜谱文本信息做编码,通过对比学习loss去学习文本和店菜的匹配信息。这里采用双塔模型,一方面是下游应用较为方便,单塔模型可独立使用,也可inference出菜品的表示并缓存下来;另一方面是内容单纯,暂无交互式建模的必要。训练目标分别是与店菜匹配、与菜名对齐,与Tab对齐。
可基于多模态信息做菜品品类预测或者菜谱信息补全。比如,预测“猪肉白菜”加上了信息将更加直观和准确。基于文本和视图模态信息进行多视图半监督的菜谱属性抽取,以烹饪方式抽取为例,首先通过产生烹饪方法训练样本(红烧肉-红烧);然后采用CNN模型去训练预测菜谱烹饪方法,指导Bert模型Finetune文本模型或者多模态模型,基于商户/tab/菜品及评论信息预测菜品烹饪方法;最终对两个模型进行投票或者将两个特征拼接做预测。
综上,我们对菜品知识图谱构建进行相应的总结。菜品理解比较适合SKU的初始化;深度学习推理模型和显式推理模型比较适合做同义词、上下位、菜系等;最终是想通过多模态+结构化预训练和推理来解决单模态信息不完整、属性维度多、需要大量标注数据等问题,因此该方法被应用到几乎所有的场景中。
今天的分享就到这里,谢谢大家。
分享嘉宾:
Bert和Transformer都是深度学习领域的 pretrained language model(预训练语言模型),但它们在模型结构和应用上有以下几点主要区别:
1 模型结构:
Bert是基于Transformer编码器结构的模型,只有Encoder部分。而Transformer是由Encoder和Decoder组成的完整序列到序列结构的模型。
Bert的模型结构更简单,主要用于上下文语义理解任务,如文本分类、文本相似度计算等。Transformer可以应用于更复杂的任务,如机器翻译、摘要生成等需要生成语言序列的任务。
2 预训练语料:
Bert使用Wikipedia和BookCorpus进行预训练,语料广泛且无监督。Transformer通常使用有监督的平行语料,如WMT数据集进行预训练。
Bert的预训练更广泛,可以学习到更丰富的语义知识。而Transformer得到的知识更加专业和针对性。
3 应用领域:
Bert用于NLP下游任务更广泛,主要用于语言理解相关任务,如命名实体识别、情感分析、文本分类等。
Transformer应用于机器翻译、摘要生成、对话等生成模型更为广泛。
4 权重共享:
Bert使用相同的参数进行多层Transformer Encoder堆叠,权重共享,模型更加简洁。
Transformer的Encoder和Decoder具有不同的参数,权重不共享,模型相对更复杂。
总之,Bert和Transformer虽有Transformer Encoder的共同点,但实际上是两个不同的预训练语言模型,在模型结构、预训练语料、应用领域和权重共享等方面具有很大差异。根据不同的任务需求选择使用Bert或者Transformer可以获得更好的效果。 它们的创新也推动了NLP领域的蓬勃发展。
2018年是迁移学习模型在NLP领域大放异彩的一年。像Allen AI的ELMO,Open AI的GPT和Google的BERT模型,研究人员通过对这些模型进行微调(fine-tuning)不断刷新了NLP的多项benchmarks。
在本教程中,我们将使用BERT从文本数据中提取特征,即单词和句子嵌入向量。这些单词和句子的嵌入向量可以做什么?首先,这些嵌入可用于关键字/搜索扩展,语义搜索和信息检索。例如,如果您想将客户问题或搜索结果与已回答的问题或有据可查的搜索结果进行匹配,即使没有关键字或词组重叠,这些表示形式也可以帮助您准确地检索出符合客户意图和上下文含义的结果。
其次,也许更重要的是,这些向量被用作下游模型的高质量特征输入。 NLP模型(例如LSTM或CNN)需要以向量形式输入,这通常意味着将诸如词汇和语音部分之类的特征转换为数字表示。过去,单词被表示为唯一索引值(one-hot编码),或者更有用地表示为神经词嵌入,其中词汇词与诸如Word2Vec或Fasttext之类的模型生成的固定长度特征嵌入相匹配。 BERT提供了优于Word2Vec之类的模型的优势,因为尽管每个单词在Word2Vec下都具有固定的表示形式,而不管该单词出现的上下文如何,但BERT都会根据周围的单词动态地产生单词表示形式。例如,给出两个句子:
“The man was accused of robbing a bank”
“The man went fishing by the bank of the river”
Word2Vec将在两个句子中为单词“ bank”嵌入相同的单词,而在BERT下,每个单词中“ bank”嵌入的单词将不同。除了捕获诸如多义性之类的明显差异外,上下文通知的单词嵌入还捕获其他形式的信息,这些信息可产生更准确的特征表示,从而带来更好的模型性能。
从学习的角度来看,仔细检查BERT单词嵌入是学习使用BERT及其迁移学习模型系列的好方法,它为我们提供了一些实践知识和背景知识,可以更好地理解该模型的内部细节。
BERT是预训练的模型,它期望的输入应该是有特定格式的。接口为我们处理好了一部分的输入规范。
(持续更新中)
n-gram语言模型:根据前面n个词预测当前词,它的缺点是,一般只能取1-2,n越大计算成本越高,这就使得它关注的信息是非常局限的。
预训练语言模型:wordvec\glove\fasttext。wordvec是根据周围词预测当前词或当前词预测周围词,相比于n-gram,它关注了下文,但它仍然是关注局部信息。glove通过构建词频共现矩阵来训练词向量,将全局信息融入到词向量中。fasttext仍然是局部的,只是他分词是基于subword,对于oov词相对友好。三者共同的缺点是,无法解决一词多义问题。
高级语言模型:elmo\GPT,elmo采用1层静态向量+2层单向LSTM提取特征,并且能够解决一词多义,elmo是一个双向语言模型,但实际上是两个单向语言模型(方向相反)的拼接,这种融合特征的能力比 BERT 一体化融合特征方式弱。GPT采用Transformer的decoder单元提取特征,同样也可以解决一词多义问题,但GPT是单向的。所以,对上下文信息的融合,二者能力还不够。
bert是双向语言模型,句子没有shift_mask操作,所以是完整的上下文环境,证实了双向语言模型对文本特征表示的重要性。bert同时证实了预训练模型能够简化很多繁重任务的网络结构,在11个nlp任务上都有显著提升。
bert采用Transformer的encoder单元提取特征,encoder中包含几个重要的机制:self-attention、muti-head attention、position encoding。
bert分为bert_base和bert_large大小两个模型,bert_base采用了12个encoder单元,768维隐藏层,12个attention。bert_base采用了24个encoder单元,1024维隐藏层,16个attention。
input:单句或句对组合,有[cls]作为句子开头的标记,[sep]作为句子分隔和结束的标记。
token embedding:对于英文采用WordPiece embeddings,也就是一个单词会被拆成词根词缀的,比如图中的playing被拆成了play和ing两个token;对于中文,就是单子拆分。
segment embedding:相邻句子采用不同的标志分隔,形如111111111100000011111100000。
position embedding:在transformer中,单词之间是没有先后顺序的,而语言本身是有序的,所以采用采用正余弦函数来计算每个单词的先后顺序,这种方式有点勉强,算是折中方式。
前面讲到elmo也是双向语言模型,它是采用bi-LSTM来提取特征,如下:
比如一句话:‘北京是中国的首都’,在LSTM中从左往右,预测‘中国’的时候只能看到‘北京’,从右往左,预测‘中国’的时候只能看到‘首都’,然后将两个lstm的输出做拼接来达到上下文信息融合的目的。其实是没有完全做到双向,只是以结构的改变来接近双向语言模型。真正的双向是预测‘中国’的时候,需要同时看到‘北京’和‘首都’。由此,mask LM产生了。
mask LM的原理是将‘中国’遮盖住,同时用‘北京’和‘首都’来预测‘中国’。‘北京’和‘首都’联系起来语言模型很容易联想到就是‘中国’啦。这个思想和wordvec的CBOW模型如出一辙,就是用周围词预测当前词,只是这个思想放在厉害的transformer中,便能大显其能。
BERT的mask方式:在选择mask的15%的词当中,80%情况下使用mask掉这个词,10%情况下采用一个任意词替换,剩余10%情况下保持原词汇不变。这样mask的优点是什么?
1)被随机选择15%的词当中以10%的概率用任意词替换去预测正确的词,相当于文本纠错任务,为BERT模型赋予了一定的文本纠错能力;
2)被随机选择15%的词当中以10%的概率保持不变,缓解了finetune时候与预训练时候输入不匹配的问题(预训练时候输入句子当中有mask,而finetune时候输入是完整无缺的句子,即为输入不匹配问题)。
在Mask LM任务中,模型学到了词与词之间的关系,而NSP任务是要模型学到句子与句子之间的关系,比如问答、推理等。它将训练语料分为两类,一是将50%语料构建成正常语序的句子对,比如A-B句子对,B就是A的实际下一个句子,并做标记为isnext;二是将50%语料构建成非正常语序句子对,B是来自语料库的随机句子,并做标记为notnext。然后通过对句子对的关系做分类,预测B到底是不是A句子的下一个句子,使模型具有句子级别的识别能力。
微调的目的在于我们的任务与bert预训练任务是不一致的,但是bert是非常好的语言模型,他具备提取词法和句法的强大能力。将bert嵌入到我们的网络结构中,能够简化在语言模型方面的复杂结构。只需要将输入做成和bert适配的格式就行,而在bert后面接上全连接、CNN等简单模型进行训练,就能够使训练得到一个比较好的效果。
GPT 和 BERT 都采用Transformer,Transformer 是encoder-decoder 结构,GPT 的单向语言模型采用 decoder 部分,decoder 的部分见到的都是不完整的句子;BERT 的双向语言模型则采用 encoder 部分,采用了完整句子。他俩最主要的区别在于BERT是双向语言模型,更适合文本分类等任务,GPT是单向语言模型,更适合生成式任务。
1)低层网络捕捉了短语级别的结构信息
2)表层信息特征在底层网络(3,4),句法信息特征在中间层网络(6~9),语义信息特征在高层网络。(9~12)
3)主谓一致表现在中间层网络(8,9)
1)ROBERTA
•静态mask->动态mask:在bert中每一个epoch被mask的是相同的词,而ROBERTA在每一个epoch结束,重新随机15%的词,使不同的词被mask。
•去除句对NSP任务,输入连续多个句子:在bert中最长是512个token,输入单句或者句对不容易把512个token占满,ROBERTA输入更多句子占满512个坑位。
•训练使用更多数据 更大batch size 更长时间
2)ALBERT
•减少参数:词表 V 到隐层 H 的中间,插入一个小维度 E,即一个VxH的embedding变成两个VxE, ExH的两个fc。
•共享所有层的参数:Attention 和 FFN,在bert中每一层的Attention 和 FFN的参数是不一样的。
•SOP 替换 NSP:负样本换成了同一篇文章中的两个逆序的句子,bert中是A-->B和A-->随机,ALBERT中是A-->B,B-->A。
•BERT对MASK 15% 的词来预测。ALBERT 预测的是 n-gram 片段,包含更完整的语义信息。
•训练数据长度:90%取512,BERT90% 128
•对应BERT large:H:1024 ->4096 L:24->12 窄而深->宽而浅
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)