如何利用hownet进行情感极性分析

如何利用hownet进行情感极性分析,第1张

情感分析(Sentiment Analysis)

第一步,就是确定一个词是积极还是消极,是主观还是客观。这一步主要依靠词典。

英文已经有伟大词典资源:SentiWordNet 无论积极消极、主观客观,还有词语的情感强度值都一并拿下。

但在中文领域,判断积极和消极已经有不少词典资源,如Hownet,NTUSD但用过这些词典就知道,效果实在是不咋滴(最近还发现了大连理工发布的情感词汇本体库,不过没用过,不好评价)。中文这方面的开源真心不够英文的做得细致有效。而中文识别主客观,那真的是不能直视。

中文领域难度在于:词典资源质量不高,不细致。另外缺乏主客观词典。

第二步,就是识别一个句子是积极还是消极,是主观还是客观。

有词典的时候,好办。直接去匹配看一个句子有什么词典里面的词,然后加总就可以计算出句子的情感分值。

但由于不同领域有不同的情感词,比如看上面的例子,“蓝屏”这个词一般不会出现在情感词典之中,但这个词明显表达了不满的情绪。因此需要另外根据具体领域构建针对性的情感词典。

如果不那么麻烦,就可以用有监督的机器学习方法。把一堆评论扔到一个算法里面训练,训练得到分类器之后就可以把评论分成积极消极、主观客观了。

分成积极和消极也好办,还是上面那个例子。5颗星的评论一般来说是积极的,1到2颗星的评论一般是消极的,这样就可以不用人工标注,直接进行训练。但主客观就不行了,一般主客观还是需要人来判断。加上中文主客观词典不给力,这就让机器学习判断主客观更为困难。

中文领域的难度:还是词典太差。还有就是用机器学习方法判断主客观非常麻烦,一般需要人工标注。

另外中文也有找到过资源,比如这个用Python编写的类库:SnowNLP 就可以计算一句话的积极和消极情感值。但我没用过,具体效果不清楚。

到了第三步,情感挖掘就升级到意见挖掘(Opinion Mining)了。

这一步需要从评论中找出产品的属性。拿手机来说,屏幕、电池、售后等都是它的属性。到这一步就要看评论是如何评价这些属性的。比如说“屏幕不错”,这就是积极的。“电池一天都不够就用完了,坑爹啊”,这就是消极的,而且强度很大。

这就需要在情感分析的基础上,先挖掘出产品的属性,再分析对应属性的情感。

分析完每一条评论的所有属性的情感后,就可以汇总起来,形成消费者对一款产品各个部分的评价。

接下来还可以对比不同产品的评价,并且可视化出来。如图。

这一步的主要在于准确挖掘产品属性(一般用关联规则),并准确分析对应的情感倾向和情感强度。因此这需要情感分析作为基础。首先要找到评论里面的主观句子,再找主观句子里的产品属性,再计算属性对应的情感分。所以前面基础不牢固,后面要准确分析就有难度。

中文这个领域的研究其实很完善了,技术也很成熟。但需要完善前期情感分析的准确度。

总的来说,就是中文词典资源不好,工作做得不是很细很准。前期的一些基础不牢固,后面要得到准确的分析效果就不容易了。

零基础如何学好python,作为一个学了python两三年的过来人,我当初也是从0开始一路摸索过来的,这里给想学python的小白们分享一点我的学习心得。

1《笨方法学Python》、《流畅的python》、《EffectivePython:编写高质量Python代码的59个有效方法》、《PythonCookbook》。

2《利用Python进行数据分析(原书第2版)》、《Python数据科学手册(图灵出品)》。

在我看来,Python 可以做任何事情。无论是从入门级选手到专业级选手都在做的爬虫,还是Web 程序开发、桌面程序开发还是科学计

算、图像处理,Python都可以胜任。

Python为我们提供了非常完善的基础代码库,覆盖了网络、文件、GUI、数据库、文本等大量内容,被形象地称作“内置电池(Batteries

included)”。用Python开发,许多功能不必从零编写,直接使用现成的即可。

除了内置的库外,Python还有大量的第三方库,也就是别人开发的,供你直接使用的东西。当然,如果你开发的代码通过很好的封装,

也可以作为第三方库给别人使用。

许多大型网站就是用Python开发的,例如YouTube、Instagram,还有国内的豆瓣。很多大公司,包括Google、Yahoo等,甚至

NASA(美国航空航天局)都大量地使用Python。

龟叔给Python的定位是“优雅”、“明确”、“简单”,所以Python程序看上去总是简单易懂,初学者学Python,不但入门容易,而且

将来深入下去,可以编写那些非常非常复杂的程序。

总的来说,Python的哲学就是简单优雅,尽量写容易看明白的代码,尽量写少的代码。如果一个资深程序员向你炫耀他写的晦涩难懂、

动不动就几万行的代码,你可以尽情地嘲笑他。

python学习网,免费的python学习网站,欢迎在线学习!

产品网络情绪分析使用的工具有:社交媒体分析工具、

自然语言处理工具、情绪检测工具、数据可视化工具等。

1、社交媒体分析工具:例如Hootsuite、Brandwatch、Sprout Social等工具可以帮助企业从社交媒体上收集大量用户评论、反馈,从而进行情绪分析。

2、自然语言处理工具:例如Google Natural Language API、IBM Watson、Python NLP库等工具可以利用机器学习和语料库对文本进行分词、情感分析等操作。

3、情绪检测工具:例如Clarabridge、MeaningCloud等工具可以帮助企业分析和评估用户的情绪反应,以识别其对该产品的态度和对其的满意度。

4、数据可视化工具:例如Tableau、Power BI、Google Data Studio等工具可以将情绪分析数据以图表和可视化图像的形式呈现,以帮助企业更好地理解和分析数据。

进行产品网络情绪分析需要综合运用多种工具和技术,以收集、分析、评估和呈现相应的数据和分析结果。通过数据分析,企业可以更好地洞察产品市场,提升产品质量和用户满意度,实现可持续的发展。

阶段一、人工智能篇之Python核心

1、Python扫盲

2、面向对象编程基础

3、变量和基本数据类型

4、Python机器学习类库

5、Python控制语句与函数

6、Python数据库操作+正则表达式

7、Lambda表达式、装饰器和Python模块化开发

阶段二、人工智能篇之数据库交互技术

1、初识MySQL数据库

2、创建MySQL数据库和表

3、MySQL数据库数据管理

4、使用事务保证数据完整性

5、使用DQL命令查询数据

6、创建和使用索引

7、MySQL数据库备份和恢复

阶段三、人工智能篇之前端特效

1、HTML+CSS

2、Java

3、jQuery

阶段四、人工智能篇之Python高级应用

1、Python开发

2、数据库应用程序开发

3、Python Web设计

4、存储模型设计

5、智联招聘爬虫

6、附加:基础python爬虫库

阶段五、人工智能篇之人工智能机器学习篇

1、数学基础

2、高等数学必知必会

3、Numpy前导介绍

4、Pandas前导课程

5、机器学习

阶段六、人工智能篇之人工智能项目实战

1、人脸性别和年龄识别原理

2、CTR广告点击量预测

3、DQN+遗传算法

4、图像检索系统

5、NLP阅读理解

阶段七、人工智能篇之人工智能项目实战篇

1、基于Python数据分析与机器学习案例实战教程

2、基于人工智能与深度学习的项目实战

3、分布式搜索引擎ElasticSearch开发

4、AI法律咨询大数据分析与服务智能推荐项目

5、电商大数据情感分析与AI推断实战项目

6、AI大数据互联网**智能推荐

AlphaGo都在使用的Python语言,是最接近AI的编程语言。

教育部考试中心近日发布了“关于全国计算机等级(NCRE)体系调整”的通知,决定自2018年3月起,在全国计算机二级考试中加入了“Python语言程序设计”科目。

9个月前,浙江省信息技术课程改革方案已经出台,Python确定进入浙江省信息技术教材,从2018年起浙江省信息技术教材编程语言将会从vb更换为Python。

小学生都开始学Python了,天呐撸,学习Python看完这些准没错。

安利一波书单

Python入门

《Python编程快速上手——让繁琐工作自动化》

作者:美AlSweigart(斯维加特)

Python3编程从入门到实践

亚马逊畅销Python编程图书

本书是一本面向实践的Python编程实用指南。本书不仅介绍了Python语言的基础知识,而且还通过项目实践教会读者如何应用这些知识和技能。本书的第一部分介绍了基本Python编程概念,第二部分介绍了一些不同的任务,通过编写Python程序,可以让计算机自动完成它们。第二部分的每一章都有一些项目程序,供读者学习。每章的末尾还提供了一些习题和深入的实践项目,帮助读者巩固所学的知识,附录部分提供了所有习题的解答。

《“笨办法”学Python(第3版)》

作者:美ZedAShaw

《“笨办法”学Python(第3版)》是一本Python入门书籍,适合对计算机了解不多,没有学过编程,但对编程感兴趣的读者学习使用。这本书以习题的方式引导读者一步一步学习编程,从简单的打印一直讲到完整项目的实现,让初学者从基础的编程技术入手,最终体验到软件开发的基本过程。

《“笨办法”学Python(第3版)》结构非常简单,共包括52个习题,其中26个覆盖了输入/输出、变量和函数三个主题,另外26个覆盖了一些比较高级的话题,如条件判断、循环、类和对象、代码测试及项目的实现等。每一章的格式基本相同,以代码习题开始,按照说明编写代码,运行并检查结果,然后再做附加练习。

《Python编程初学者指南》

作者:美MichaelDawson

《Python编程初学者指南》尝试以轻松有趣的方式来帮助初学者掌握Python语言和编程技能。全书共12章,每一章都会用一个完整的游戏来演示其中的关键知识点,并通过编写好玩的小软件这种方式来学习编程,引发读者的兴趣,降低学习的难度。每章最后都会对该章的知识点进行小结,还会给出一些小练习让读者试试身手。作者很巧妙的将所有编程知识嵌入到了这些例子中,真正做到了寓教于乐。

《数据结构(Python语言描述)》

作者:美KennethALambert(兰伯特)

在计算机科学中,数据结构是一门进阶性课程,概念抽象,难度较大。Python语言的语法简单,交互性强。用Python来讲解数据结构等主题,比C语言等实现起来更为容易,更为清晰。

本书第1章简单介绍了Python语言的基础知识和特性。第2章到第4章对抽象数据类型、数据结构、复杂度分析、数组和线性链表结构进行了详细介绍,第5章和第6章重点介绍了面向对象设计的相关知识、第5章包括接口和实现之间的重点差异、多态以及信息隐藏等内容,第6章主要讲解继承的相关知识,第7章到第9章以栈、队列和列表为代表,介绍了线性集合的相关知识。第10章介绍了各种树结构,第11章讲解了集和字典的相关内容,第12章介绍了图和图处理算法。每章最后,还给出了复习题和案例学习,帮助读者巩固和思考。

像计算机科学家一样思考Python》

作者:美AllenBDowney

本书按照培养读者像计算机科学家一样的思维方式的思路来教授Python语言编程。全书贯穿的主体是如何思考、设计、开发的方法,而具体的编程语言,只是提供一个具体场景方便介绍的媒介。并不是一本介绍语言的书,而是一本介绍编程思想的书。和其他编程设计语言书籍不同,它不拘泥于语言细节,而是尝试从初学者的角度出发,用生动的示例和丰富的练习来引导读者渐入佳境。

Python进阶

Python高级编程(第2版)》

作者:波兰MichaJaworski(贾沃斯基),法TarekZiadé(莱德)

本书基于Python35版本进行讲解,通过13章的内容,深度揭示了Python编程的高级技巧。本书从Python语言及其社区的现状开始介绍,对Python语法、命名规则、Python包的编写、部署代码、扩展程序开发、管理代码、文档编写、测试开发、代码优化、并发编程、设计模式等重要话题进行了全面系统化的讲解。

本书适合想要进一步提高自身Python编程技能的读者阅读,也适合对Python编程感兴趣的读者参考学习。全书结合典型且实用的开发案例,可以帮助读者创建高性能的、可靠且可维护的Python应用。

《Python高性能编程》

作者:美戈雷利克(MichaGorelick),欧日沃尔德(IanOzsvald)

本书共有12章,围绕如何进行代码优化和加快实际应用的运行速度进行详细讲解。本书主要包含以下主题:计算机内部结构的背景知识、列表和元组、字典和集合、迭代器和生成器、矩阵和矢量计算、并发、集群和工作队列等。最后,通过一系列真实案例展现了在应用场景中需要注意的问题。

本书适合初级和中级Python程序员、有一定Python语言基础想要得到进阶和提高的读者阅读

《Python极客项目编程》

作者:美MaheshVenkitachalam

Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。通过Python编程,我们能够解决现实生活中的很多任务。

本书通过14个有趣的项目,帮助和鼓励读者探索Python编程的世界。全书共14章,分别介绍了通过Python编程实现的一些有趣项目,包括解析iTunes播放列表、模拟人工生命、创建ASCII码艺术图、照片拼接、生成三维立体图、创建粒子模拟的烟花喷泉效果、实现立体光线投射算法,以及用Python结合Arino和树莓派等硬件的电子项目。本书并不介绍Python语言的基础知识,而是通过一系列不简单的项目,展示如何用Python来解决各种实际问题,以及如何使用一些流行的Python库。

《Python核心编程(第3版)》

作者:美WesleyChun(卫斯理春)

本书是经典畅销图书《Python核心编程(第二版)》的全新升级版本,总共分为3部分。第1部分讲解了Python的一些通用应用,包括正则表达式、网络编程、Internet客户端编程、多线程编程、GUI编程、数据库编程、MicrosoftOffice编程、扩展Python等内容。第2部分讲解了与Web开发相关的主题,包括Web客户端和服务器、CGI和WSGI相关的Web编程、DiangoWeb框架、云计算、高级Web服务。第3部分则为一个补充/实验章节,包括文本处理以及一些其他内容。

本书适合具有一定经验的Python开发人员阅读。

Python机器学习——预测分析核心算法》

作者:美MichaelBowles(鲍尔斯)

在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知所措。本书从算法和Python语言实现的角度,帮助读者认识机器学习。

本书专注于两类核心的“算法族”,即惩罚线性回归和集成方法,并通过代码实例来展示所讨论的算法的使用原则。全书共分为7章,详细讨论了预测模型的两类核心算法、预测模型的构建、惩罚线性回归和集成方法的具体应用和实现。

《Python机器学习实践指南》

作者:美AlexanderTCombs

机器学习是近年来渐趋热门的一个领域,同时Python语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和Python语言两个热门的领域,通过利用两种核心的机器学习算法来将Python语言在数据分析方面的优势发挥到极致。

全书共有10章。第1章讲解了Python机器学习的生态系统,剩余9章介绍了众多与机器学习相关的算法,包括各类分类算法、数据可视化技术、推荐引擎等,主要包括机器学习在公寓、机票、IPO市场、新闻源、内容推广、股票市场、图像、聊天机器人和推荐引擎等方面的应用。

《精通Python自然语言处理》

作者:印度DeeptiChopra,NisheethJoshi,ItiMathur

自然语言处理是计算语言学和人工智能之中与人机交互相关的领域之一。

本书是学习自然语言处理的一本综合学习指南,介绍了如何用Python实现各种NLP任务,以帮助读者创建基于真实生活应用的项目。全书共10章,分别涉及字符串操作、统计语言建模、形态学、词性标注、语法解析、语义分析、情感分析、信息检索、语篇分析和NLP系统评估等主题。

本书适合熟悉Python语言并对自然语言处理开发有一定了解和兴趣的读者阅读参考。

Python数据科学指南》

作者:印度GopiSubramanian(萨伯拉曼尼安)

60多个实用的开发技巧,帮你探索Python及其强大的数据科学能力

Python作为一种高级程序设计语言,凭借其简洁、易读及可扩展性日渐成为程序设计领域备受推崇的语言,并成为数据科学家的首选之一。

本书详细介绍了Python在数据科学中的应用,包括数据探索、数据分析与挖掘、机器学习、大规模机器学习等主题。每一章都为读者提供了足够的数学知识和代码示例来理解不同深度的算法功能,帮助读者更好地掌握各个知识点。

本书内容结构清晰,示例完整,无论是数据科学领域的新手,还是经验丰富的数据科学家都将从中获益。

《用Python写网络爬虫》

作者:澳RichardLawson(理查德劳森)

本书讲解了如何使用Python来编写网络爬虫程序,内容包括网络爬虫简介,从页面中抓取数据的三种方法,提取缓存中的数据,使用多个线程和进程来进行并发抓取,如何抓取动态页面中的内容,与表单进行交互,处理页面中的验证码问题,以及使用Scarpy和Portia来进行数据抓取,并在最后使用本书介绍的数据抓取技术对几个真实的网站进行了抓取,旨在帮助读者活学活用书中介绍的技术。

本书适合有一定Python编程经验,而且对爬虫技术感兴趣的读者阅读。

《贝叶斯思维:统计建模的Python学习法》

作者:美AllenBDowney

这本书帮助那些希望用数学工具解决实际问题的人们,仅有的要求可能就是懂一点概率知识和程序设计。而贝叶斯方法是一种常见的利用概率学知识去解决不确定性问题的数学方法,对于一个计算机专业的人士,应当熟悉其应用在诸如机器翻译,语音识别,垃圾邮件检测等常见的计算机问题领域。

Python自然语言处理》

作者:美StevenBird,EwanKlein,EdwardLoper

自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能够实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及所有用计算机对自然语言进行的操作。

《Python自然语言处理》是自然语言处理领域的一本实用入门指南,旨在帮助读者学习如何编写程序来分析书面语言。《Python自然语言处理》基于Python编程语言以及一个名为NLTK的自然语言工具包的开源库,但并不要求读者有Python编程的经验。全书共11章,按照难易程度顺序编排。第1章到第3章介绍了语言处理的基础,讲述如何使用小的Python程序分析感兴趣的文本信息。第4章讨论结构化程序设计,以巩固前面几章中介绍的编程要点。第5章到第7章介绍语言处理的基本原理,包括标注、分类和信息提取等。第8章到第10章介绍了句子解析、句法结构识别和句意表达方法。第11章介绍了如何有效管理语言数据。后记部分简要讨论了NLP领域的过去和未来。

本书的实践性很强,包括上百个实际可用的例子和分级练习。可供读者用于自学,也可以作为自然语言处理或计算语言学课程的教科书,还可以作为人工智能、文本挖掘、语料库语言学等课程的补充读物。

Python数据分析》

作者:印尼IvanIdris

Python是一种多范型编程语言,既适用于面向对象的应用开发,又适合函数式设计模式。Python已经成为数据科学家进行数据分析、可视化以及机器学习的一种理想编程语言,它能帮助你快速提升工作效率。

本书将会带领新手熟悉Python数据分析相关领域的方方面面,从数据检索、清洗、操作、可视化、存储到高级分析和建模。同时,本书着重讲解一系列开源的Python模块,诸如NumPy、SciPy、matplotlib、pandas、IPython、Cython、scikit-learn和NLTK等。此外,本书还介绍了数据可视化、信号处理、时间序列分析、数据库、预测性分析和机器学习等主题。通过阅读本书,你将华丽变身数据分析高手。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/3923416.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-19
下一篇2023-08-19

发表评论

登录后才能评论

评论列表(0条)

    保存