简述语音识别原理。

简述语音识别原理。,第1张

语音识别的基本过程 根据实际中的应用不同,语音识别系统可以分为:特定人与非特定人的识别、独立词与连续词的识别、小词汇量与大词汇量以及无限词汇量的识别。但无论那种语音识别系统,其基本原理和处理方法都大体类似。

语音识别过程主要包括语音信号的预处理、特征提取、模式匹配几个部分。预处理包括预滤波、采样和量化、加窗、端点检测、预加重等过程。语音信号识别最重要的一环就是特征参数提取。提取的特征参数必须满足以下的要求:

(1)提取的特征参数能有效地代表语音特征,具有很好的区分性; (2)各阶参数之间有良好的独立性;

(3)特征参数要计算方便,最好有高效的算法,以保证语音识别的实时实现。

在训练阶段,将特征参数进行一定的处理后,为每个词条建立一个模型,保存为模板库。在识别阶段,语音信号经过相同的通道得到语音特征参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。同时,还可以在很多先验知识的帮助下,提高识别的准确率。

语音识别技术是一种将语音转换为文本的技术。它通常包括两个主要步骤:语音预处理和语音识别。

语音预处理步骤包括语音信号的采集、降噪、分帧、特征提取等操作。其中特征提取是指从语音信号中提取具有语音识别意义的信息,这些信息可以是声谱图、倒谱图等。

语音识别步骤使用机器学习算法,将特征提取出来的信息与语音库中的信息进行匹配,进而得到文本。这些算法包括HMM,DNN,RNN,CTC,Transformerandsoon。

语音识别技术可以分为两类,即基于模型的语音识别和基于统计的语音识别,HMM,DNN,RNN,CTC,Transformeristypicalmodel-basedmethodandGMM-HMM,i-vectoristypicalstatistical-basedmethod

语音信号处理的三个方面以及各自的目标:

1语音合成。

语音合成的是为了让计算机产生高质量的、高自然度的连续语音。计算机语音合成系统又称文语转换系统(TTS),主要是将文本输出语音。发展过程:共振峰合成、LPC合成、PSOLA技术。

2语音编码。

在语音信号传输过程中,频率资源的合理使用,显得很珍贵,所以在传输之前,先将语音信号进行语音编码压缩。

3语音识别。

语音识别涉及到语言学、计算机科学、信号处理、生理学等相关学科,是模式识别的分支。其主要目的是让计算机通过识别和理解将语音翻译成可执行的命令或者是文本。

主要研究方向:根据说话方式,孤立语音识别系统,连接词语音识别系统,连续语音识别系统。根据说话人,特点人识别系统,非特点人识别系统。根据词汇量,小词汇语音识别系统,中等词汇语音识别系统,大词汇语音识别系统,无穷词汇识别系统。

语音识别技术原理及应用

语音识别技术是一种计算机技术,它可以将人类说出的话语转换成文字或数字。它是一种自然语言处理技术,可以将语音信号转换成文本,从而实现人机交互。

语音识别技术的原理是:首先,将语音信号转换成数字信号,然后,通过语音识别算法,将数字信号转换成文本。语音识别算法的核心是语音识别模型,它可以根据语音信号的特征,将语音信号转换成文本。

语音识别技术的应用非常广泛,可以用于智能客服、智能家居、智能导航、智能汽车等领域。它可以帮助人们更快更准确地完成任务,提高工作效率。此外,它还可以用于语音识别软件,帮助人们更快更准确地输入文字,提高工作效率。

《语音信号处理(第2版)》介绍了语音信号处理的基础、原理、方法和应用,以及该学科领域近年来取得的一些新的研究成果和技术。全书共分14章,包括绪论、语音信号处理基础知识、语音信号分析、矢量量化技术、隐马尔可夫模型、神经网络在语音信号处理中的应用、语音编码、语音合成、语音识别、说话人识别与语种辨识、语音转换与语音隐藏、语音信号中的情感信息处理、耳语音信号处理、语音增强等内容。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/4093936.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-21
下一篇2023-08-21

发表评论

登录后才能评论

评论列表(0条)

    保存