基于情感词典的情感分析,要是没那个词怎么办

基于情感词典的情感分析,要是没那个词怎么办,第1张

文本相似度。基于词典情感分析,依赖人工标记的词典,所以需要大量的人力。如果遇到是情感词但是词典里没有,就设计到另一种在NLP经常用到的技术文本相似度。以上步骤可以更加优化,比如用决策树来判断句法规则。下一步实现,基于朴素贝叶斯的情感分析

<article>

课程地址: https://classcourseraorg/nlp/lecture/31

情感分析 (Sentiment analysis)又可以叫做

意见抽取 (Opinion extraction)

意见挖掘 (Opinion mining)

情感挖掘 (Sentiment mining)

主观分析 (Subjectivity analysis)等等。

引用的论文:

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan 2002 Thumbs up Sentiment Classification using Machine Learning Techniques EMNLP-2002, 79—86

Bo Pang and Lillian Lee 2004 A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts ACL, 271-278

另外需注意,Binarized (Boolean feature) Multinomial Naïve Bayes不同于Multivariate Bernoulli Naïve Bayes,MBNB在文本情感分析上的效果并不好。另外课中也提到可以用交叉验证的方式进行训练验证。

下面罗列了一些比较流行的词典:

当我们拿到一个词我们如何判断他在每个类别中出现的概率呢?以IMDB影评为例

但是!我们不能用单纯的原始计数(raw counts)方法来进行打分,如下图

可以看出,这些否定词同样可以作为单词极性的一个判断依据。

具体步骤为:

联合概率 / 独立的两个概率乘积

之后我们可以看一下统计结果,分别来自于用户好评和差评的统计:

可以看到极性划分的还不错

</article>

</main>

转自csdn

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/7526714.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-06
下一篇2023-09-06

发表评论

登录后才能评论

评论列表(0条)

    保存