初中人教版数学教案

初中人教版数学教案,第1张

  要讲好课,就必须设计好教案。认真拟定教案, 是说课取得成功的前提,是教师提高业务素质的有效途径。下面是我分享给大家的初中人教版数学教案的资料,希望大家喜欢!

  初中人教版数学教案一

 反比例函数

 一、教材分析:

 反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

 二、教学目标分析

 根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

 因此把教学目标确定为:1掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3通过学习培养学生积极参与和勇于探索的精神。

 三、教学重点难点分析

 本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

 难点则是如何抓住特征准确画出反比例函数的图象。

 为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

 四、 教学 方法

 鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法

 和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流—— 总结 ” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

 五、学法指导

 本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、

 对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

 六、教学过程

 (一) 复习引入——反函数解析式

 练习1:写出下列各题的关系式:

 (1) 正方形的周长C和它的一边的长a之间的关系

 (2) 运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系

 (3) 矩形的面积为10时,它的长x和宽y之间的关系

 (4) 王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系

 问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数

 问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。

 问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗

 通过问题2来引出反比例函数的解析式 ,请学生对比正比例函数的定

 义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。

 例题1:已知变量y与x成反比例,且当x=2时,y=9

 (1) 写出y与x之间的函数解析式

 (2) 当x=35时,求y的值

 (3) 当y=5时,求x的值

 通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在

 解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为 ,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。

 课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式

 (1)x=2,y=3 (2)x= ,y=

 通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。

 (二)探究学习1——函数图象的画法

 问题3:如何画出正比例函数的图象

 通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。

 问题4:那反比例函数的图象应该怎样去画呢

 在教学过程中可以引导学生仿照正比例函数图象的的画法。

 设想的教学设计是:

 (1) 引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数 和 的图象;

 (2) 老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;

 (3) 随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。

 初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:

 (1) 在“列表”这一环节

 在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。

 (2) 在“连线”这一环节

 学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。

 从而引导学生画出正确的函数图象。

 (3) 图象与x轴或y轴相交

 在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。

 需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第一次学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。

 巩固练习:画出函数 和 的图象

 通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。

 (三) 探究学习2——函数图象性质

 1、图象的分布情况

 问题5:请大家回忆一下正比例函数 的分布情况是怎么样的呢

 提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。

 问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢

 在这一环节中的设计:

 (1) 引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;

 (2) 充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;

 (3) 组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。

 2、 图象的变化情况

 问题7:正比例函数 图象的变化情况是怎么样的呢

 提出问题7主要是起到巩固复习,为引导学生学习反比例函数图象的变化情况打下基础。

 问题8:那反比例函数的图象,是否也具有这样的性质呢

 在这一环节的教学设计是:

 (1)回顾反比例函数 和 的图象,通过实际观察;

 (2)根据解析式对 进 行取值,比较x在取不同值时函数值的变化情况;

 (3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k<0时,自变量x逐渐增大时,y的值也随着逐渐增大。

 (4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢若没有,则可以举例:当k>0,分别比较在第三象限x=-2,第一象限x=2时的y的值的大小,则以上性质是否依然成立学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。

 问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗为什么

 在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式 ,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。

 (四) 备用思考题

 1、 反比例函数 的图象在第一、三象限,求a的取值范围

 2、

 (1) 当m为何值时,y是x的正比例函数

 (2) 当m为何值时,y是x的反比例函数

 (五) 小结:

初中人教版数学教案二

 《探索勾股定理》

 一、 教材分析

 (一)教材地位

 这节课是九年制义务 教育 初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

 (二)教学目标

 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题

 过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想

 情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学

 (三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

 教学难点:用面积法(拼图法)发现勾股定理。

 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解

 二、教法与学法分析:

 学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强

 教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人

 三、 教学过程设计1创设情境,提出问题 2实验操作,模型构建 3回归生活,应用新知

 4知识拓展,巩固深化5感悟收获,布置作业

 (一)创设情境提出问题

 (1)欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树 2002年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的 文化 价值

 (2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来65米长的云梯,如果梯子的底部离墙基的距离是25米,请问消防队员能否进入三楼灭火

 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节

 二、实验操作模型构建

 1等腰直角三角形(数格子)

 2一般直角三角形(割补)

 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系

 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想

 问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗(割补法是本节的难点,组织学生合作交流)

 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高

 通过以上实验归纳总结勾股定理

 设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律

 三回归生活应用新知

 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心

 四、知识拓展巩固深化

 基础题,情境题,探索题

 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展知识的运用得到升华

 基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题你能解决所提出的问题吗

 设计意图:这道题立足于双基通过学生自己创设情境 ,锻炼了 发散思维

 情境题:小明妈妈买了一部29英寸(74厘米)的电视机小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了你同意他的想法吗

 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

 探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么试用今天学过的知识说明。

 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力

 五、感悟收获布置作业:这节课你的收获是什么

 作业: 1、课本习题21   2、搜集有关勾股定理证明的资料

 板书设计 探索勾股定理

 如果直角三角形两直角边分别为a,b,斜边为c,那么

 设计说明::1探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法

 2让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平

初中人教版数学教案三

 勾股定理

 一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

 教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

 据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

 二、教学重点:勾股定理的证明和应用。

 三、 教学难点:勾股定理的证明。

 四、教法和学法: 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

 以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

 切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

 通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

 五、教学程序  :本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

 (一)创设情境 以古引新

 1、由 故事 引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

 2、是不是所有的直角三角形都有这个性质呢教师要善于激疑,使学生进入乐学状态。

 3、板书课题,出示学习目标。(二)初步感知 理解教材

 教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

 (三)质疑解难 讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;

 (1)这两个图形有什么特点(2)你能写出这两个图形的面积吗

 (3)如何运用勾股定理是否还有其他形式

 这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

 (四)巩固练习 强化提高

 1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

 2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

 (五)归纳总结 练习反馈

 引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

 本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

1人教版七年级上册数学教学设计

2初一数学教案人教版

3 七年级数学 上册教学设计

4初中数学集体备课计划

5七年级数学上册教学案例

知识与技能、过程与方法、情感态度与价值观是新课程的三维目标

1、知识与能力目标。“知识和技能”维度的目标立足于让学生学会。 它是对课程中知识与能力的具体规定,是“知识和能力”教学的基本依据。我们要深入钻研新课标,了解新课标中的知识能力要求与旧大纲比较有什么变化,从而正确把握新课程“知识与能力”的要求。

2、过程与方法目标。“过程和方法”维度的目标立足于让学生会学。“这是新课标所特有的。过程与方法的要求,倡导“探究性学习”,强调在实践过程中学习。“过程”,重在“亲历。“方法”,应是具体的,而不是抽象的,应伴随着知识的学习,技能的训练,情感的体验,审美的陶冶,如影随形,而不能游离其外。

3、情感态度价值观目标。“情感、态度和价值观”维度的目标立足于让学生乐学。“情感态度价值观”目标体现的是人文性。

从理论上说,新课程的“三维目标”体现了学生的全面发展、个性发展和终身发展的基本规律,体现了学生各种素质在学科课程培养中的有机联系,体现了时代对基础性学习能力、发展性学习能力和创新性学习能力培养的整体要求。

在教学目标中强调知识与技能、过程与方法、情感态度与价值观三个维度,并非简单的并列关系,而是彼此渗透,相互融合,统一于学生的成长和发展之中。知识与技能是实现过程与方法、情感态度与价值观两个目标维度的载体,过程与方法是链接知识与技能、情感态度与价值观两个目标维度的桥梁,情感态度与价值观是教学中知识与技能、过程与方法的进一步升华。

初中数学教学设计5篇

作为一名初中数学老师,就难以避免地要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。下面是我给大家整理的初中数学教学设计,希望大家喜欢!

初中数学教学设计篇1

随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。

1教学目标的制定

制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。

2教法学法的制定

制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。

3教学重难点的制定

教学重难点的制定也应结合各层次学生的具体情况而定。

4教学过程的设计

41情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。

42分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。

43集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。

5练习与作业的设计

教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。

分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。

初中数学教学设计篇2

一、教材分析

全期共有六章。新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算 、轴对称图形、数据的分析与比较。

二、学情分析

本学期是本年级学生初中学习阶段的第二学期。通过上期的学习,大多数学生对学习数学产生了浓厚的学习兴趣。更有像陈琦、严细毛、瞿俐纯等同学更是对数学探究活动情有独衷。上期期末考试中,0901整体水平稍高于兄弟班级,但有两极分化的趋势。0902班的及格率稍高于兄弟班,但低分段学生高于10%,而且这部分学生对学习缺乏应有的热情和自信,有自暴自弃之嫌。

三、目标任务

本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期中、期末考试中力争生均分70分左右,合格率60%以上,优秀率30%以上,并将低分率控制到10%以下。

四 主要教学措施

1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。

2、把握学生思想动态,及时与学生沟通,搞好师生关系。

3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。

4、改进教学方法,用多媒体课件,实物等创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。

5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。

6、 开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力。

初中数学教学设计篇3

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标:

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程:

一、复习引入,输入并贮存信息:

1提问:如图,在Rt△ABC中,∠C=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠A、∠B有怎样的关系?

⑶边与角之间有怎样的关系?

2提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求AB可以解Rt△ABD和

Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

⑶解题过程,学生练习。

⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

例2(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

分析:

⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

解:设山高AB=x米

在Rt△ADB中,∠B=90°∠ADB=45°

∵BD=AB=x(米)

在Rt△ABC中,tgC=AB/BC

∴BC=AB/tgC=√3(米)

∵CD=BC-BD

∴√3x-x=20 解得 x=(10√3+10)米

答:山高AB是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

练习3:在塔PQ的正西方向A点测得顶端P的

仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

五、作业布置,反馈信息

《几何》第三册P57第10题,P58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

初中数学教学设计篇4

一、 基本情况分析

1、学生情况分析:

通过上学期的努力,我班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于我班一些学生数学基础太差,学生数学 成绩两极分化的现象没有显着改观,给教学带来很大难度。设法关注每一个学生,重视学生的全面协调发展是教学的首要任务。本学期是初中学习的关键时期,教学 任务非常艰巨。因此,要完成教学任务,必须紧扣教学目标,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教 学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。经过与外校九年级数学教学有丰富经验的教师请教交流, 特制定以下教学复习计划。

2、教材分析:

本学期教学内容共四章,第二十六章、二次函数主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的 综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。

第二十七章、相似

本章主要是通过探究相似图形尤其是相似三角形的性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。

第二十八章、锐角三角函数

本章主要是探究直角三角形的三边关系,三角函数的概念及特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的概念。

第二十九章、投影与视图

本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的三视图。本章教学难点是画简单立体图形的三视图。

二、 教学目标和要求

1、 知识与能力目标知识技能目标

理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,掌握锐角三角函数有关的计算方法。理解投影与视图在生活中的应用。

2、过程与方法目标

通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

3、情感、态度与价值观目标

(1)进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教。

(2)通过体验探索的成功与失败,培养学生克服困难的勇气。

(3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。

(4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。

三、 提高教学质量的主要措施

l、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。

4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对要给予奖励。

7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。

8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。

初中数学教学设计篇5

公式

教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例

公式

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题.

2.使学生理解公式与代数式的关系.

(二)能力训练点

1.利用数学公式解决实际问题的能力.

2.利用已知的公式推导新公式的能力.

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践.

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

二、学法引导

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2.学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式.

2.难点:同重点.

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

教法说明让学生感知用割补法求图形的面积。

1高二数学教师优秀说课稿

一、说教材:

 1.地位及作用:

 “椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。

 2.教学目标:

 根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:

 (1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。

 (2)能力目标:

 (a)培养学生灵活应用知识的能力。

 (b)培养学生全面分析问题和解决问题的能力。

 (c)培养学生快速准确的运算能力。

 (3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。

 3.重点、难点和关键点:

 因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。

 二、说教材处理

 为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:

 1.学生状况分析及对策:

 2.教材内容的组织和安排:

 本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:

 (1)复习提问

 (2)引入新课

 (3)新课讲解

 (4)反馈练习

 (5)归纳总结

 (6)布置作业

 三、说教法和学法

 1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。

 2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。

 四、教学过程

 教学环节

 3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。

 例1属基础,主要反馈学生掌握基本知识的程度。

 例2可强化基本技能训练和基本知识的灵活运用。

 小结

 为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。

 1.椭圆的定义和标准方程及其应用。

 2.椭圆标准方程中a,b,c诸关系。

 3.求椭圆方程常用方法和基本思路。

 通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。

 布置作业

 (1)77页——78页1,2,3,79页11

 (2)预习下节内容

 巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。

2高二数学教师优秀说课稿

 一、教材地位与作用

 本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

 二、学情分析

 作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

 教学重点:正弦定理的内容,正弦定理的证明及基本应用。

 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

 根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标

 教学目标分析:

 知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

 能力目标:探索正弦定理的证明过程,用归纳法得出结论。

 情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

 三、教法学法分析

 教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

 学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

 四、教学过程

 (一)创设情境,布疑激趣

 “兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

 (二)探寻特例,提出猜想

 1激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

 2那结论对任意三角形都适用吗指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

 3让学生总结实验结果,得出猜想:

 在三角形中,角与所对的边满足关系

 这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

 (三)逻辑推理,证明猜想

 1强调将猜想转化为定理,需要严格的理论证明。

 2鼓励学生通过作高转化为熟悉的直角三角形进行证明。

 3提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

 4思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。

 (四)归纳总结,简单应用

 1让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

 2正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

 3运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

3高二数学教师优秀说课稿

一、教材分析

 (一)教材的地位和作用

 “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

 (二)教学内容

 本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

 二、教学目标分析

 根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

 知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

 能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

 情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

 三、重难点分析

 一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

 要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

 四、教法与学法分析

 (一)学法指导

 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

 (二)教法分析

 本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

 建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

 本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

 五、课堂设计

 本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

4高二数学教师优秀说课稿

 今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

 一、教材分析

 教材的地位和作用

 本节内容选自北师大版高中数学必修1,第二章第41节。二次函数的图像在教材中起着承上启下的作用。

 学情分析

 本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

 二、教学目标分析

 基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

 1知识与技能

 理解二次函数中参数a,b,c,h,k对其图像的影响;

 2过程与方法

 通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。

 3情感态度与价值观

 通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。

 三、教学重难点分析

 通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下

 重点:

 二次函数图像的平移变换规律及应用。

 难点:

 探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。

 四、教法与学法分析

 1、教法分析

 基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

 2、学法分析

 新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。

5高二数学教师优秀说课稿

 今天我说课的题目是XX是必修XX章XX第XX节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。

 一、教材分析

 是在学习了基础上进一步研究并为后面学习做准备,在整个

 高中数学中起着承上启下的作用,因此本节内容十分重要。

 根据新课标要求和学生实际水平我制定以下教学目标

 1、知识能力目标:使学生理解掌握

 2、过程方法目标:通过观察归纳抽象概括使学生构建领悟数学思想,培养能力

 3、情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于

 观察勇于思考的学习习惯和严谨的科学态度

 根据教学目标、本节特点和学生实际情况本节重点是,由于学生对缺少感性认识,所以本节课的重点是

 二、教法学法

 根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。

 三、教学过程

 六、教学程序及设想

 1、由……引入:

 把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

 对于本题:……

 2、由实例得出本课新的知识点是:……

 3、讲解例题。

 我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

 4、能力训练。

 课后练习……

 使学生能巩固羡慕自觉运用所学知识与解题思想方法。

 5、总结结论,强化认识。

 知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

 6、变式延伸,进行重构。

 重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

 四、教学评价

 学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。

 数学的导数是比较重要的一个知识点,下面是我整理的相关内容,希望对你有帮助。

高二文科数学导数课件一

  、教材依据

 导数的概念是北师大版全日制普通高级中学教科书数学选修2-2第三章第一节的内容。

  二、设计思想

  教材分析:

 导数是微积分的重要部分,是从生产技术和自然科学的需要中产生的;同时,又促进了生产技术和自然科学的发展。它不但在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。

 本节内容分了四部分,一是过曲线上一点的切线的斜率;二是非匀速直线运动物体的瞬时速度;三是导数的定义;四是导数的几何意义。学习切线的斜率与瞬时速度是为了引出导数的概念,介绍导数的几何意义,是为了加深对导数概念的理解。

  设计理念

 学生为本,重视思维发生的过程,重视数学概念的形成过程,激发学生的学习兴趣,有意识培养学生的学习毅力。让学生学习有趣的数学,学习有用的数学,充分体现数学的应用价值、思维价值和人文价值。

  三、教学目标

  1 、知识与技能目标:

 通过两个实例的分析,经历导数概念的形成过程,了解导数概念的实际背景,从而掌握导数的概念。

 通过动手计算培养学生观察、分析、比较和归纳能力并领悟极限思想。

  2 、过程与方法目标:

 通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。

  3 、情感、态度与价值观目标:

 通过导数概念的学习,体验和认同“有限和无限对立统一”的辩证观点,接受用运动变化的辩证唯物主义思想处理数学问题的积极态度。

  四、教学重点

 导数的概念的形成过程。

  五、教学难点

 对导数概念的理解。

 重、难点突破措施:

 1、以情感人,以理醒人

 创设情境中:“二新”开题,扣人心弦;层层探究中:分三类探究,步步为营,丝丝入扣,形成概念。

 2、数形结合,古今结合

 传统的计算数据给学生提供了初步的感受和体验;现代的多媒体技术直观、形象展示切线、瞬时速度的形成过程,突破重难点。

 3、切合实际,分层提高

 利用分层训练和分层作业达到因材施教的效果。

  六、教学准备

 计算器、多媒体电脑、课件等。

  七、教学过程

 结合可接受性和可操作性原则,把教学目标的落实融入到教学过程之中,通过演绎导数的形成,发展和应用过程,帮助学生主动建构导数的概念。

  八、教学反思

 1、“以学生为本”的教育观是教学设计的根本指导思想。

 学生通过“经历”,“体会”,“感受”,最后形成概念的过程学习,充分体现了学生为本的现代教育观;练习和作业的分层设计尽量满足多样化的学习需求做到因材施教。但在具体实施中,分寸的把握需视情况而定。

 2、在难点的突破上采取了有效的分解策略。

 (1)宏观上的三类探究符合学生认知规律;

 (2)微观上的4步探究有效分解、突破重难点;

 (3)情景贯穿始终,兴趣伴随学习;

 (4)充分利用现代多媒体技术,数形结合分解难点。

 3、形式和内容得到统一,具有很强的可操作性。

 各类探究中,形式和内容和谐统一,教师指导及时、到位,具有很强的可操作性。

高二文科数学导数课件二

  一、教学内容解析

 导数是微积分学的核心概念之一,导数是导函数的简称,本质仍是函数,其实也就是微商

 导数不仅是数学知识,也是一种数学思想,也蕴含着函数思想和极限的思想方法,本节内容的核心是用平均变化率的极限来刻划瞬时变化率,从课标要求与教材的编写看,淡化了极限的形式化定义,不把导数作为一种特殊的极限来处理,而是直接通过实例来反映导数的思想和本质,因此,让学生充分体验“极限的过程及研究的思想方法”为本节课的重点.

 导数属于事实型知识——函数的瞬时变化率是客观存在的,用平均变化率的极限来刻划,并用形式化的极限符号表示只是我们研究导数的方法.导数为研究变量和函数提供了重要的方法和手段,具有将复杂问题归纳为简单规则和步骤的非凡能力,不仅是研究初等函数最有效的工具,还是研究微积分学的必备基础,也是研究各种科学的工具,黎曼曾说过“只有在微积分发明之后,物理学才成为一门科学”, 天地通用微积分.

 变量和函数在自然界和社会中有着几乎地处不在的实际背景,所以高中学生不论他将来是否进入高校学习,都应学习导数及其应用的内容,并应用它考察和理解实际现象中的变化.毫不夸张地说,不学或未学懂微积分,学生思维难以达到较高的水平,从某种意义上看,对导数所蕴含的数学思想方法的研究价值,远高于对其知识的学习.通过本课导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟“逼近”思想、数形结合思想和函数思想,进一步体会数学的本质.

  二、教学目标设置

 知识与技能:

 (1)知道平均变化率与瞬时变化率的关系;能正确区分平均变化率与瞬时变化率;会描述导数概念的实际背景,知道瞬时变化率就是导数,知道函数在某点的导数与在某个区间内的导函数的关系,体会导数的思想及其内涵.

 (2)会依据定义求简单函数在某点处的导数,能初步按定义归纳求函数在某点处导数的基本步骤.

 过程与方法:

 (1)通过用几何画板的动态演示,让学生观察、经历由平均变化率到瞬时变化率的“逼近”过程,体会极限的思想方法.

 (2)通过自主与合作交流的系列探究活动,感知用平均变化率刻划瞬时变化率研究方法——无限地接近.

 (3)通过从实例——速度——变化率的抽象过程,培养学生观察、分析、比较、归纳与类比能力,体验从特殊到一般的研究问题方法.

 情感、态度与价值观:

 (1)感受导数在解决实际问题中的作用,体会导数思想的作用与价值.

 (2)通过导数概念形成的系列探究活动,进一步认识合作学习的意义,增强学生的合作交流意识与能力.

 (3)通过引入奥运会跳水夺金实例,渗透爱国教育,激发学生的爱国热情.

  三、学生学情分析

 学生已较好地掌握了函数的平均变化率及高一物理学中的平均速度、瞬时速度,并积累了大量的关于函数变化率的经验;另外,高二年级的学生思维较活跃,并具有一定归纳、概括、类比、抽象思维能力;对导数这一新鲜的概念,具有强烈求知欲和渴望探究的积极情感态度,这为本课的学习奠定了基础.

 由于瞬时变化率就是导数,又是用平均变化率“无限接近”进行研究,而“无限”是非常抽象的,是学生首次接触,要求学生既要具备一定的直观感悟能力,又要具有较高的抽象思维能力,这是本节学习必备的认知基础.

 从平均速度、瞬时速度到平均变化率、瞬时变化率,是将实例抽象为数学模型,是本节认识的第一次飞跃;由平均变化率用极限的思想方法刻划瞬时变化率是本节思维与认识的第二次飞跃.第一次飞跃学生可完成,第二次飞跃借助几何画板的动态演示学生能初步感悟,但是对“

 是无限趋近于0,但始终不能为0”,学生不能自主或合作顺利完成,需要教师在此充分发挥主导作用进行点拨.

 综上分析确定本节的难点是:对极限思想的感悟及用平均变化率的极限刻划瞬时变化率的科学性.突破策略为:用几何画板动态直观演示以降低思维难度;多利用实例以降低抽象程度,强化对过程的感悟;给足时间让学生充分合作交流;教师恰当精讲点拨,用“动”来看“静”.

  四、教学策略分析

 教学中遵循“学生为主体,教师为主导,训练为主线,发展思维为主旨”的“四主”原则.以恰当的系列活动为纽带,给学生创设自主探究、合作交流的时间与空间,引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.

 强化对平均变化率的认识,夯实认知基础.增加实例,多模型、多角度感悟让学生用平均变化率的无限逼近刻划瞬时变化率的的思想方法.

 在知识内容的处理方面,淡化了较难理解的极限思想,不追求严格形式化,突出以直观的方式让学生体验无限逼近的思想方法.

 根据平均变化率的直观意义和学生的思维水平,首先充分利用几何画板的直观展示,强化引导学生发现学习;其次是在一定的自主探究基础上,让学生们充分的进行合作学习,以发现导数的内涵,领会其中的数学思想方法,体验成功的快乐;再次是对于个别难点,教师精讲点拨,以提高课堂效率.

 以“奇怪的平均速度”为问题情境,创设认知冲突,激发学生的求知欲;从感受平均速度的直观变化开始,共设计了四个系列的探究活动,逐层递进,分层设问,引导学生在充分直观感知的基础上,逐步抽象达到对导数概念的形成.让学生在导数概念形成的过程中充分体验“极限”的思想与方法.

 针对学生中存在的客观差异及本节内容的抽象程度,主要以各数学课堂学习小组中思维水平较好的同学帮助对本节学习有一定困难的学生为主,让“学困生”在组内有较好的展示与交流机会;尽可能给水平较好的学生在班级充分展示的机会;教师加强对学生自主学习与合作学习过程的反馈,对各小组存在的共性问题进行精讲点拨,努力使全体学生在学习过程中,分析问题、解决问题的能力都能得到不同程度的提升.

 由于本节为概念类新授课,重点是让学生体验“极限的过程及研究的思想方法”,所以用学生最为熟悉的二次函数

 为模型,反馈学生对导数概念及研究思想方法的感悟;以按定义归纳求导数的方法步骤反馈学生的思维能力发展水平。

 五、小结。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/7665166.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存