机器学习算法虽多,却没有什么普适的解决方案。决策树、随机森林、朴素贝叶斯、深度网络等等等等,是不是有时候觉得挑花了眼呢?福利来啦~本文将教你慧眼识精,快速挑选出满意的算法!
机器学习既是一门科学,也是一种艺术。纵观各类机器学习算法,并没有一种普适的解决方案或方法。事实上,有几个因素会影响你对机器学习算法的选择。
有些问题是非常特别的,需要用一种特定的解决方法。例如,如果你对推荐系统有所了解,你会发现它是一类很常用的机器学习算法,用来解决一类非常特殊的问题。而其它的一些问题则非常开放,可能需要一种试错方法(例如:强化学习)。监督学习、分类、回归等问题都是非常开放的,可以被用于异常检测或建立更加广泛的预测模型。
此外,我们在选择机器学习算法时所做出的一些决定与算法的优化或技术层面关系并不大,而更多地与业务决策相关。下面,让我们一起来看看有哪些因素能帮你缩小机器学习算法的选择范围。
数据科学过程
在你开始研究不同的机器学习算法前,你需要对自己拥有的数据、面对的问题及相关约束有清晰的了解。
理解你的数据
当我们决定使用哪种算法时,我们所拥有的数据的类型和形态起着关键性的作用。有些算法可以利用较小的样本集合工作,而另一些算法则需要海量的样本。特定的算法对特定类型的数据起作用。例如,朴素贝叶斯算法对处理待分类的输入特别有效,但是对于缺失值则一点都不敏感。
因此,你需要做到:
了解你的数据
1 查看总结统计和数据可视化的结
百分比可以帮助你识别大多数数据的范围
平均数和中位数可以描述集中趋势
相关系数可以指出强的关联性
2 数据可视化
箱形图可以识别出异常值
密度图和直方图可以显示出数据的散布情况
散点图可以描述二元关
数据清洗
1 处理缺失值。缺失的数据对于某些模型的影响比对其它模型更大。即使是对于那些被用于处理缺失数据的模型来说,它们也可能对缺失数据很敏感(某些变量的缺失数据可能导致预测性能变差)
2 选择处理异常值的方法
异常值在多维数据中十分常见。
有些模型对异常值的敏感性比其它模型要低。通常而言,树模型对于异常值的存在不太敏感。然而回归模型、或者任何试图使用方程的模型都会受到异常值的严重影响。
异常值可能是糟糕的数据收集造成的,也可能是合理的极值。
3 数据需要被聚合吗?
数据增强
1 特征工程是从原始数据中产生能够被用于建模的数据的过程,可以起到以下几种作用:
使模型更容易被解释(如数据分箱(binning))
捕获更复杂的关系(如神经网络)
减少数据冗余并降低数据维度(如主成分分析(PCA))
重新缩放变量(如标准化或归一化)
2 不同的模型可能有不同的特征工程的要求。有的模型有内置的特征工程。
对问题进行分类
下一步是对问题进行分类。这是一个需要分两步实现的过程。
1 根据输入分类:
如果你拥有的是带标签的数据,那么这就是一个监督学习问题。
如果你拥有的是未标注过的数据,并且希望从中找到有用的结构,那么这就是一个无监督学习问题。
如果你想要通过与环境的交互来优化一个目标函数,那么这就是一个强化学习问题。
2 根据输出分类:
如果模型的输出是一个(连续的)数字,那么这就是一个回归问题。
如果模型的输出是一个类别,那么这就是一个分类问题。
如果模型的输出是一组用输入数据划分出的簇,那么这就是一个聚类问题。
你想发现一个异常点吗?此时你面对的就是一个异常检测问题。
理解你要满足的约束条
你需要考虑你能够存储数据的容量有多大?这取决于系统的存储容量,你可能无法存储若干 GB 大小的分类、回归模型或者若干 GB 的用于聚类分析的数据。例如,在嵌入式系统中,你就会面临这种情况。
对预测过程的速度是否有要求?在实时应用中,很显然,尽快得出预测结果是十分重要的。例如,在自动驾驶问题中,应用必须尽可能快地对道路标志进行分类,以免发生交通事故。
对学习过程的速度是否有要求?在某些情况下,快速训练模型是十分必要的:有时,你需要使用不同的数据集快速地实时更新你的模型。
寻找可用的算法
当对自己的任务环境有了一个清晰的认识后,你就可以使用你所掌握的工具确定适用于待解决的问题并切实可行的算法。一些影响你选择模型的因素如下:
模型是否满足业务目标
模型需要多少数据预处理工作
模型有多准确
模型的可解释性如何
模型运行的速度有多快:构造模型需要多久?模型做出预测需要多长时间?
模型的可伸缩性如何
模型的复杂度是一个影响算法选择的重要标准。一般来说,一个更复杂的模型具备下列特征:
它依赖于更多的特征进行学习和预测(例如,使用十个而不是两个特征来预测目标)
它依赖于更复杂的特征工程(例如,使用多项式特征、交互特征或主成分)
它有更大的计算开销(例如,需要一个由 100 棵决策树组成的随机森林,而不是一棵单独的决策树)
除此之外,同样的机器学习算法可以基于参数的个数和某些超参数的选择而变得更加复杂。例如:
回归模型可以拥有更多的特征,或者多项式项和交互项。
决策树可以拥有更大或更小的深度。
将相同的算法变得更加复杂增加了发生过拟合的几率。
常用的机器学习算法
线性回归
这可能是机器学习中最简单的算法。例如,当你想要计算一些连续值,而不是将输出分类时,可以使用回归算法。因此,当你需要预测一个正在运行的过程未来的值时,你可以使用回归算法。然而,当特征冗余,即如果存在多重共线性(multicollinearity)时,线性回归就不太稳定。
在下列情况下可以考虑使用线性回归:
从一个地方移动到另一个地方所需的时间
预测下个月某种产品的销售情况
血液中的酒精含量对协调能力的影响
预测每个月礼品卡的销售情况,并改善年收入的估算
Logistic 回归
Logistic 回归执行二进制分类,因此输出二值标签。它将特征的线性组合作为输入,并且对其应用非线性函数(sigmoid),因此它是一个非常小的神经网络的实例。
logistic回归提供了许多方法对你的模型进行正则化处理,因此正如在朴素贝叶斯算法中那样,你不必担心你的特征是否相关。该模型还有一个很好的概率化的解释。不像在决策树或者支持向量机中那样,你可以很容易地更新你的模型以获取新的数据。如果你想要使用一个概率化的框架,或者你希望在未来能够快速地将更多的训练数据融合到你的模型中,你可以使用 logistic 回归算法。logistic 回归还可以帮助你理解预测结果背后起作用的因素,它不完全是一个黑盒方法。
在下列情况下可以考虑使用 logistic 回归算法:
预测客户流失
信用评分和欺诈检测
评价市场营销活动的效果
决策树
决策树很少被单独使用,但是不同的决策树可以组合成非常高效的算法,例如随机森林或梯度提升树算法。
决策树很容易处理特征交互,并且决策树是一种非参数模型,所以你不必担心异常值或者数据是否是线性可分的。决策树算法的一个缺点是,它们不支持在线学习,因此当你要使用新的样本时,你不得不重新构建决策树。决策树的另一个缺点是,它很容易发生过拟合,而这就是像随机森林(或提升树)这样的集成学习方法能够派上用场的地方。决策树也需要大量的内存空间(拥有的特征越多,你的决策树可能会越深、越大)
决策树能够很好地帮助你在诸多行动路径中做出选择:
做出投资决策
预测客户流失
找出可能拖欠银行贷款的人
在「建造」和「购买」两种选择间进行抉择
销售主管的资质审核
K-均值
有时,你完全没有数据的标签信息,并且你的目的是根据对象的特征来为其打上标签。这种问题被称为聚类任务。聚类算法可以在这种情况下被使用:例如,当你有一大群用户,你希望根据他们共有的一些属性将其划分到一些特定的组中。
如果在你的问题声明中有这样的问题:例如,找出一群个体的组织形式,或将某些东西分组,或找出特定的组。这时,你就应该使用聚类算法。
该方法最大的缺点是,K-均值算法需要提前知道你的数据会有多少簇,因此这可能需要进行大量的试验去「猜测」我们最终定义的簇的最佳个数——K。
主成分分析(PCA)
主成分分析能够对数据进行降维。有时,你拥有各种各样的特征,这些特征之间的相关性可能很高,而模型如果使用如此大量的数据可能会产生过拟合现象。这时,你可以使用主成分分析(PCA)技术。
主成分分析(PCA)能够起作用的关键因素是:除了低维的样本表征,它还提供了各种变量的一种同步的低维表征。同步的样本和变量的表征提供了一种能够可视化地找到能够表示一组样本的特征的变量的方法。
支持向量机
支持向量机(SVM)是一种在模式识别和分类问题中被广泛应用的监督机器学习技术——当你的数据恰好有两类时。
支持向量机准确率高,对于防止过拟合很好的理论保障。当你使用一个合适的核函数时,即使你的数据在基(低维)特征空间中是线性不可分的,他们也可以很好地工作。支持向量机在文本分类问题中非常流行,在该问题中,输入是一个维度非常高的空间是很正常的。然而,SVM 是一种内存密集型算法,它很难被解释,并且对其进行调优十分困难。
在下列现实世界的应用中,你可以使用支持向量机:
发现患有糖尿病等常见疾病的人
手写字符识别
文本分类——将文章按照话题分类
股票市场价格预测
朴素贝叶斯
这是一种基于贝叶斯定理的分类技术,它很容易构建,非常适用于大规模数据集。除了结构简单,据说朴素贝叶斯的表现甚至比一些复杂得多的分类方法更好。当 CPU 和内存资源有限时,朴素贝叶斯算法也是一个很好的选项。
朴素贝叶斯非常简单,你仅仅是在做大量的计数工作。如果朴素贝叶斯的条件独立假设确实成立,朴素贝叶斯分类器的收敛速度会比 logistic 回归这样的判别模型更快,因此需要的训练数据更少。即使朴素贝叶斯的假设不成立,朴素贝叶斯分类器往往也能很好地完成任务。如果你想使用一种快速的、简单的、性能也不错的模型,朴素贝叶斯是一个很好的选择。这种算法最大的缺点就是它不能学习到特征之间的相互作用。
在下列真实世界的应用中,你可以使用朴素贝叶斯:
情感分析和文本分类
类似于 Netflix、Amazon 这样的推荐系统
识别垃圾邮件
人脸识别
随机森林
随机森林是一种决策树的集成方法。它能够同时解决具有大规模数据集的回归问题和分类问题,还有助于从数以千计的输入变量中找出最重要的变量。随机森林具有很强的可伸缩性,它适用于任何维数的数据,并且通常具有相当不错的性能。此外,还有一些遗传算法,它们可以在具有最少的关于数据本身的知识的情况下,很好地扩展到任何维度和任何数据上,其中最简单的实现就是微生物遗传算法。然而,随机森林学习的速度可能会很慢(取决于参数设置),并且这种方法不能迭代地改进生成模型。
在下列现实世界的应用中,你可以使用随机森林:
预测高危患者
预测零件在生产中的故障
预测拖欠贷款的人
神经网络
神经网络中包含着神经元之间连接的权重。这些权重是平衡的,逐次对数据点进行学习。当所有的权重都被训练好后,如果需要对新给定的数据点进行回归,神经网络可以被用于预测分类结果或一个具体数值。利用神经网络,可以对特别复杂的模型进行训练,并且将其作为一种黑盒方法加以利用,而在训练模型之前,我们无需进行不可预测的复杂特征工程。通过与「深度方法」相结合,甚至可以采用更加不可预测的模型去实现新任务。例如,最近人们已经通过深度神经网络大大提升了物体识别任务的结果。深度学习还被应用于特征提取这样的非监督学习任务,也可以在人为干预更少的情况下,从原始图像或语音中提取特征。
另一方面,神经网络很难被解释清楚,其参数设置也复杂地让人难以置信。此外,神经网络算法也都是资源密集型和内存密集型的。
SCIKIT 参考手册
Scikit learning 为大家提供了一个非常深入的、解释地很清楚的流程图,它能够帮助你选择正确的算法。我认为此图十分方便。
结论
一般来说,你可以根据上面介绍的要点来筛选出一些算法,但是要想在一开始就知道哪种方法最好是很难的。你最好多迭代几次选择算法的过程。将你的数据输入给那些你确定的潜在优秀机器学习算法,通过并行或串行的方式运行这些算法,最终评估算法性能,从而选择出最佳的算法。
在最后,我想告诉你:为现实生活中的问题找到正确的解决方案,通常不仅仅是一个应用数学方法的问题。这要求我们对业务需求、规则和制度、相关利益者的关注点有所了解,并且具备大量的专业知识。在解决一个机器学习问题的同时,能够结合并平衡这些问题是至关重要的,那些能做到这一点的人可以创造最大的价值。
超级通俗的解释:支持向量机是用来解决分类问题的。先考虑最简单的情况,豌豆和米粒,用晒子很快可以分开,小颗粒漏下去,大颗粒保留。用一个函数来表示就是当直径d大于某个值D,就判定为豌豆,小于某个值就是米粒。d>D, 豌豆d<D,米粒在数轴上就是在d左边就是米粒,右边就是绿豆,这是一维的情况。但是实际问题没这么简单,考虑的问题不单单是尺寸,一个花的两个品种,怎么分类,假设决定他们分类的有两个属性,花瓣尺寸和颜色。单独用一个属性来分类,像刚才分米粒那样,就不行了。这个时候我们设置两个值尺寸x和颜色y我们把所有的数据都丢到x-y平面上作为点,按道理如果只有这两个属性决定了两个品种,数据肯定会按两类聚集在这个二维平面上。
参考以下资料,希望对你有用
模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。
模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。
模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、、照片、文字、符号、生物的传感器等对象进行测量的具体模式进行分类和辨识。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
应用计算机对一组事件或过程进行鉴别和分类。所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。
模式识别所分类的类别数目由特定的识别问题决定。有时,开始时无法得知实际的类别数,需要识别系统反复观测被识别对象以后确定。
模式识别与统计学、心理学、语言学、 计算机科学 、生物学、控制论等都有关系。它与 人工智能 、 图像处理 的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。
一、模式识别方法
1、决策理论方法
又称统计方法,是发展较早也比较成熟的一种方法。被识别对象首先数字化,变换为适于计算机处理的数字信息。一个模式常常要用很大的信息量来表示。许多模式识别系统在数字化环节之后还进行预处理,用于除去混入的干扰信息并减少某些变形和失真。随后是进行特征抽取,即从数字化后或预处理后的输入模式中抽取一组特征。所谓特征是选定的一种度量,它对于一般的变形和失真保持不变或几乎不变,并且只含尽可能少的冗余信息。特征抽取过程将输入模式从对象空间映射到特征空间。这时,模式可用特征空间中的一个点或一个特征矢量表示。这种映射不仅压缩了信息量,而且易于分类。在决策理论方法中,特征抽取占有重要的地位,但尚无通用的理论指导,只能通过分析具体识别对象决定选取何种特征。特征抽取后可进行分类,即从特征空间再映射到决策空间。为此而引入鉴别函数,由特征矢量计算出相应于各类别的鉴别函数值,通过鉴别函数值的比较实行分类。
2、句法方法
又称结构方法或语言学方法。其基本思想是把一个模式描述为较简单的子模式的组合,子模式又可描述为更简单的子模式的组合,最终得到一个树形的结构描述,在底层的最简单的子模式称为模式基元。在句法方法中选取基元的问题相当于在决策理论方法中选取特征的问题。通常要求所选的基元能对模式提供一个紧凑的反映其结构关系的描述,又要易于用非句法方法加以抽取。显然,基元本身不应该含有重要的结构信息。模式以一组基元和它们的组合关系来描述,称为模式描述语句,这相当于在语言中,句子和短语用词组合,词用字符组合一样。基元组合成模式的规则,由所谓语法来指定。一旦基元被鉴别,识别过程可通过句法分析进行,即分析给定的模式语句是否符合指定的语法,满足某类语法的即被分入该类。
模式识别方法的选择取决于问题的性质。如果被识别的对象极为复杂,而且包含丰富的结构信息,一般采用句法方法;被识别对象不很复杂或不含明显的结构信息,一般采用决策理论方法。这两种方法不能截然分开,在句法方法中,基元本身就是用决策理论方法抽取的。在应用中,将这两种方法结合起来分别施加于不同的层次,常能收到较好的效果。
二、模式识别的应用
模式识别可用于文字和语音识别、遥感和医学诊断等方面。
① 文字识别
汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可磨灭的功勋。所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了连机手写体识别。到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。
② 语音识别
语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。而且利用基因算法训练连续隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术,该方法在语音识别时识别速度较快,也有较高的识别率。 23 指纹识别
我们手掌及其手指、脚、脚趾内侧表面的皮肤凹凸不平产生的纹路会形成各种各样的图案。而这些皮肤的纹路在图案、断点和交叉点上各不相同,是唯一的。依靠这种唯一性,就可以将一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。一般的指纹分成有以下几个大的类别:left loop,right loop,twin loop,whorl,arch和tented arch,这样就可以将每个人的指纹分别归类,进行检索。指纹识别基本上可分成:预处理、特征选择和模式分类几个大的步骤。
③ 遥感
遥感图像识别已广泛用于农作物估产、资源勘察、气象预报和军事侦察等。
④ 医学诊断
在癌细胞检测、X射线照片分析、血液化验、染色体分析、心电图诊断和脑电图诊断等方面,模式识别已取得了成效。
三、统计模式识别
统计模式识别的基本原理是:有相似性的样本在模式空间中互相接近,并形成“集团”,即“物以类聚”。其分析方法是根据模式所测得的特征向量Xi=(xi1,xi2,…,xid)T(i=1,2,…,N),将一个给定的模式归入C个类ω1,ω2,…, ωc中,然后根据模式之间的距离函数来判别分类。其中,T表示转置;N为样本点数;d为样本特征数。
统计模式识别的主要方法有:判别函数法, k近邻分类法,非线性映射法,特征分析法,主因子分析法等。
在统计模式识别中,贝叶斯决策规则从理论上解决了最优分类器的设计问题,但其实施却必须首先解决更困难的概率密度估计问题。BP神经网络直接从观测数据(训练样本)学习,是更简便有效的方法,因而获得了广泛的应用,但它是一种启发式技术,缺乏指定工程实践的坚实理论基础。统计推断理论研究所取得的突破性成果导致现代统计学习理论——VC理论的建立,该理论不仅在严格的数学基础上圆满地回答了人工神经网络中出现的理论问题,而且导出了一种新的学习方法——支撑向量机。
四、模式识别技术的近乎无限的发展潜力
模式识别技术是人工智能的基础技术,21世纪是智能化、信息化、计算化、网络化的世纪,在这个以数字计算为特征的世纪里,作为人工智能技术基础学科的模式识别技术,必将获得巨大的发展空间。在国际上,各大权威研究机构,各大公司都纷纷开始将模式识别技术作为公司的战略研发重点加以重视。
1、语音识别技术
语音识别技术正逐步成为信息技术中人机接口的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。中国互联网中心的市场预测:未来5年,中文语音技术领域将会有超过400亿人民币的市场容量,然后每年以超过30%的速度增长。
2、生物认证技术
生物认证技术本世纪最受关注的安全认证技术,它的发展是大势所趋。人们愿意忘掉所有的密码、扔掉所有的磁卡,凭借自身的唯一性来标识身份与保密。国际数据集团(IDC)预测:作为未来的必然发展方向的移动电子商务基础核心技术的生物识别技术在未来10年的时间里将达到100美元的市场规模。
3、数字水印技术
90年代以来才在国际上开始发展起来的数字水印技术是最具发展潜力与优势的数字媒体版权保护技术。IDC预测,数字水印技术在未来的5年内全球市场容量超过80亿美元。
五、结 语
模式识别从20世纪20年代发展至今,人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决识别问题的单一技术,我们现在拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把统计模式识别或句法模式识别与支持向量机的机器学习结合起来,把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。
模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、、照片、文字、符号、生物的传感器等对象进行测量的具体模式进行分类和辨识。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
大数据分析到底需要多少种工具?
摘要
JMLR杂志上最近有一篇论文,作者比较了179种不同的分类学习方法(分类学习算法)在121个数据集上的性能,发现Random Forest(随机森林)和SVM(支持向量机)分类准确率最高,在大多数情况下超过其他方法。本文针对“大数据分析到底需要多少种工具?”这一问题展开讨论,总结机器学习领域多年来积累的经验规律,继而导出大数据分析应该采取的策略。
1.分类方法大比武
大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用问题,比如垃圾邮件过滤、人脸检测、用户画像、文本情感分析、网页归类等,本质上都是分类问题。分类学习也是机器学习领域,研究最彻底、使用最广泛的一个分支。
机器学习
图1 机器学习分类体系
最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,机器学习顶级期刊)杂志发表了一篇有趣的论文。他们让179种不同的分类学习方法(分类学习算法)在UCI 121个数据集上进行了“大比武”(UCI是机器学习公用数据集,每个数据集的规模都不大)。结果发现Random Forest(随机森林)和SVM(支持向量机)名列第一、第二名,但两者差异不大。在843%的数据上、Random Forest压倒了其它90%的方法。也就是说,在大多数情况下,只用Random Forest 或 SVM事情就搞定了。
2.几点经验总结
大数据分析到底需要多少种机器学习的方法呢?围绕着这个问题,我们看一下机器学习领域多年得出的一些经验规律。
大数据分析性能的好坏,也就是说机器学习预测的准确率,与使用的学习算法、问题的性质、数据集的特性包括数据规模、数据特征等都有关系。
一般地,Ensemble方法包括Random Forest和AdaBoost、SVM、Logistic Regression 分类准确率最高。
没有一种方法可以“包打天下”。Random Forest、SVM等方法一般性能最好,但不是在什么条件下性能都最好。
不同的方法,当数据规模小的时候,性能往往有较大差异,但当数据规模增大时,性能都会逐渐提升且差异逐渐减小。也就是说,在大数据条件下,什么方法都能work的不错。参见图2中Blaco & Brill的实验结果。
对于简单问题,Random Forest、SVM等方法基本可行,但是对于复杂问题,比如语音识别、图像识别,最近流行的深度学习方法往往效果更好。深度学习本质是复杂模型学习,是今后研究的重点。
在实际应用中,要提高分类的准确率,选择特征比选择算法更重要。好的特征会带来更好的分类结果,而好的特征的提取需要对问题的深入理解。
大数据
图2 不同机器学习方法在数据集增大时的学习曲线。
3.应采取的大数据分析策略
建立大数据分析平台时,选择实现若干种有代表性的方法即可。当然,不仅要考虑预测的准确率,还有考虑学习效率、开发成本、模型可读性等其他因素。大数据分析平台固然重要,同时需要有一批能够深入理解应用问题,自如使用分析工具的工程师和分析人员。
只有善工利器,大数据分析才能真正发挥威力。
以往的技术要求用户张嘴、点头,如果用户在公开场所对着手机做这些动作,感觉有些傻(真的有点尴尬不骗你)。像以前实名认证手机号的时候,也是这样:张张嘴、点点头、头向左、头向右…对着手机是不是有点逗比了,有一些还加了语音认证,就是给你一串数字让你念出来。而为了提高人脸识别体验感、减少依靠使用者动作配合,有不少企业正在研究一种能让用户在面对检测时不做任何动作,不去配合,也能检测面前是个活人,目前关注静默活体检测的就有商汤科技、世纪晟科技等知名科技公司。
静默活体检测技术的需求与主要应用场景
一、来自以往活体检测技术的尴尬
随机动作人脸活体检测有着很高的安全性,但是按照指示让用户去做动作比较死板,对用户来说体验不是最好的。同时,不少科技公司,如世纪晟科技等,考虑到整个活检过程需用户高度配合,存在推广困难、检测时间长的问题,尤其是在针对老年人用户使用的场景下该问题更为棘手
二、主要应用场景
活体检测是人脸识别中最重要的一环,是确保真人检测、防止面具攻击、视频攻击、照片攻击最重要的检测环节。实际生活中,活体检测的主要应用场景可以是门禁签到、商务签到、家庭门锁、进出授权管理、银行开户、备案登记等。
静默活体检测技术解读
一、技术简介
静默活体检测,顾名思义,就是在没有眨眼、张嘴、数数等一系列的动作配合下来判断到底是不是一个真活人,恰恰与动态活体验证相反,静默活体验证不仅技术上实现难度更高,在实际应用中对准确性要求也更高。
二、技术原理
以面部特征作为身份核对依据,通过动态核对面部轮廓方式准确识别用户。真实的人脸和照片相比,即使不刻意做动作,也会有微表情存在的,比如眼皮、眼球的律动眨眼、嘴唇以及周边面颊的伸缩等,静默活体检测技术正是利用了这些特征。
三、技术要点
(1)人脸框的提取
Adaboost人脸检测算法是一种用来分类的方法,它能把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
近年来,为更好地区分不同模式,出现了一些新的特征定义,使其便于特征提取拓展了特征库,而采用AdaBoost算法从弱特征中选取分类能力强的特征组成强分类器的方法来设计层次型分类器,可以很好地解决直立正面人脸检测问题
(2)活体判断——基于传统特征
step1:人脸的特征提取与编码
step2:SVM分类
——SVM的简介
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题,用于进行人脸识别,2009年至2012年,稀疏表达(Sparse Representation)因为其优美的理论和对遮挡因素的鲁棒性成为当时的研究热点。
——SVM的优点:
[if !supportLists]A、 [endif]不需要很多样本,不需要有很多样本并不意味着训练样本的绝对量很少,而是说相对于其他训练分类算法比起来,同样的问题复杂度下,SVM需求的样本相对是较少的。并且由于SVM引入了核函数,所以对于高维的样本,SVM也能轻松应对。
结构风险最小。这种风险是指分类器对问题真实模型的逼近与问题真实解之间的累积误差。
非线性,是指SVM擅长应付样本数据线性不可分的情况,主要通过松弛变量(也叫惩罚变量)和核函数技术来实现,这一部分也正是SVM的精髓所在。
静默活体检测技术优势明显
· 用户免去动作配合
· 活动检测时间减少一半以上
· 私密性保护好
· 用户体验更佳
目前,业界有一种错误的较为普遍的意识,即“深度学习最终可能会淘汰掉其他所有机器学习算法”。这种意识的产生主要是因为,当下深度学习在计算机视觉、自然语言处理领域的应用远超过传统的机器学习方法,并且媒体对深度学习进行了大肆夸大的报道。
深度学习,作为目前最热的机器学习方法,但并不意味着是机器学习的终点。起码目前存在以下问题:
1 深度学习模型需要大量的训练数据,才能展现出神奇的效果,但现实生活中往往会遇到小样本问题,此时深度学习方法无法入手,传统的机器学习方法就可以处理;
2 有些领域,采用传统的简单的机器学习方法,可以很好地解决了,没必要非得用复杂的深度学习方法;
3 深度学习的思想,来源于人脑的启发,但绝不是人脑的模拟,举个例子,给一个三四岁的小孩看一辆自行车之后,再见到哪怕外观完全不同的自行车,小孩也十有八九能做出那是一辆自行车的判断,也就是说,人类的学习过程往往不需要大规模的训练数据,而现在的深度学习方法显然不是对人脑的模拟。
深度学习大佬 Yoshua Bengio 在 Quora 上回答一个类似的问题时,有一段话讲得特别好,这里引用一下,以回答上述问题:
Science is NOT a battle, it is a collaboration We all build on each other's ideas Science is an act of love, not war Love for the beauty in the world that surrounds us and love to share and build something together That makes science a highly satisfying activity, emotionally speaking!
这段话的大致意思是,科学不是战争而是合作,任何学科的发展从来都不是一条路走到黑,而是同行之间互相学习、互相借鉴、博采众长、相得益彰,站在巨人的肩膀上不断前行。机器学习的研究也是一样,你死我活那是邪教,开放包容才是正道。
结合机器学习2000年以来的发展,再来看Bengio的这段话,深有感触。进入21世纪,纵观机器学习发展历程,研究热点可以简单总结为2000-2006年的流形学习、2006年-2011年的稀疏学习、2012年至今的深度学习。未来哪种机器学习算法会成为热点呢?深度学习三大巨头之一吴恩达曾表示,“在继深度学习之后,迁移学习将引领下一波机器学习技术”。但最终机器学习的下一个热点是什么,谁又能说得准呢。
编辑于 2017-12-27
29918 条评论
分享
收藏感谢收起
阿里云云栖社区
用户标识1
已认证的官方帐号
39 人赞同了该回答
人工智能并不是一个新的术语,它已经有几十年的历史了,大约从80年代初开始,计算机科学家们开始设计可以学习和模仿人类行为的算法。
在算法方面,最重要的算法是神经网络,由于过拟合而不是很成功(模型太强大,但数据不足)。尽管如此,在一些更具体的任务中,使用数据来适应功能的想法已经取得了显着的成功,并且这也构成了当今机器学习的基础。
在模仿方面,人工智能专注于图像识别,语音识别和自然语言处理。人工智能专家们花费了大量的时间来创建诸如边缘检测,颜色配置文件,N-gram,语法树等。不过,这些进步还不足以达到我们的需求。
传统的机器学习:
机器学习(ML)技术在预测中发挥了重要的作用,ML经历了多代的发展,形成了具有丰富的模型结构,例如:
1线性回归。
2逻辑回归。
3决策树。
4支持向量机。
5贝叶斯模型。
6正则化模型。
7模型集成(ensemble)。
8神经网络。
这些预测模型中的每一个都基于特定的算法结构,参数都是可调的。训练预测模型涉及以下步骤:
1 选择一个模型结构(例如逻辑回归,随机森林等)。
2 用训练数据(输入和输出)输入模型。
3 学习算法将输出最优模型(即具有使训练错误最小化的特定参数的模型)。
每种模式都有自己的特点,在一些任务中表现不错,但在其他方面表现不佳。但总的来说,我们可以把它们分成低功耗(简单)模型和高功耗(复杂)模型。选择不同的模型是一个非常棘手的问题。
由于以下原因,使用低功率/简单模型是优于使用高功率/复杂模型:
在我们拥有强大的处理能力之前,训练高功率模型将需要很长的时间。
在我们拥有大量数据之前,训练高功率模型会导致过度拟合问题(因为高功率模型具有丰富的参数并且可以适应广泛的数据形状,所以我们最终可能训练一个适合于特定到当前的训练数据,而不是推广到足以对未来的数据做好预测)。
然而,选择一个低功率的模型会遇到所谓的“欠拟合”的问题,模型结构太简单,如果它复杂,就无法适应训练数据。(想象一下,基础数据有一个二次方关系:y = 5 x ^ 2;你无法适应线性回归:y = a x + b,不管我们选择什么样的a和b。
为了缓解“不适合的问题”,数据科学家通常会运用他们的“领域知识”来提出“输入特征”,这与输出关系更为直接。(例如,返回二次关系y = 5 square(x),如果创建了一个特征z = x ^ 2,则可以拟合线性回归:y = a z + b,通过选择a = 5和b = 0)。
机器学习的主要障碍是特征工程这个步骤,这需要领域专家在进入训练过程之前就要找到非常重要的特征。特征工程步骤是要靠手动完成的,而且需要大量领域专业知识,因此它成为当今大多数机器学习任务的主要瓶颈。
换句话说,如果我们没有足够的处理能力和足够的数据,那么我们必须使用低功耗/更简单的模型,这就需要我们花费大量的时间和精力来创建合适的输入特征。这是大多数数据科学家今天花时间去做的地方。
神经网络的回归:
在大数据时代,云计算和大规模并行处理基础架构的共同发展,使得机器处理能力在二十一世纪初得到了极大的提升。我们不再局限于低功耗/简单的模型。例如,当今最流行的两种主流机器学习模型是随机森林和梯度提升树。尽管如此,两者都非常强大,并且提供了非线性模型拟合的训练数据,但数据科学家仍然需要仔细地创建特征以获得良好的性能。
与此同时,计算机科学家重新使用神经网络的许多层来完成这些人类模仿的任务。这给DNN(深度神经网络)带来了新的生机,并在图像分类和语音识别任务方面提供了重大突破。DNN的主要区别在于,你可以将原始信号(例如RGB像素值)直接输入DNN,而不需要创建任何域特定的输入功能。通过多层神经元(这就是为什么它被称为“深度”神经网络),DNN可以“自动”通过每一层产生适当的特征,最后提供一个非常好的预测。这极大地消除了寻找“特征工程”的麻烦,这是数据科学家们最喜欢看到的。
DNN也演变成许多不同的网络拓扑结构,所以有CNN(卷积神经网络),RNN(递归神经网络),LSTM(长期短期记忆),GAN(生成敌对网络),转移学习,注意模型(attention model)所有的这些被统称为深度学习(Deep Learning),它正在引起整个机器学习界的关注。
强化学习:
另一个关键组成部分是关于如何模仿一个人(或动物)的学习,设想感知/行为/奖励循环的非常自然的动物行为。一个人或者一个动物首先会通过感知他或者她所处的状态来了解环境。在此基础上,他或者她会选择一个“动作”,将他或者她带到另一个“状态”。那么他或她将获得“奖励”,循环重复,直到他或她消失。这种学习方式(称为强化学习)与传统监督机器学习的曲线拟合方法有很大不同。尤其是,强化学习学习得非常快,因为每一个新的反馈(例如执行一个行动并获得奖励)都被立即发送到影响随后的决定。
强化学习也提供了预测和优化的平滑整合,因为它在采取不同的行动时保持当前状态的信念和可能的转换概率,然后做出决定哪些行动可以导致最佳结果。
深度学习+强化学习= AI
与经典的ML技术相比,DL提供了一个更强大的预测模型,通常可以产生良好的预测结果。与经典优化模型相比,强化学习提供了更快的学习机制,并且更适应环境的变化。
机器学习 vs 深度学习
在深度探讨machine learning和data science的联系之前,这里简要地讨论一下machine learning 和deep learning。machine learning是一套算法,来训练数据集做预测或者采取行动以使得系统最优化。举例来说,supervised classification algorithms被用来根据历史数据将想要贷款的客户分成预期好的和预期差的(good or bad prospects)。对于给定的任务(比如监督聚类),需要的技术多种多样:naive Bayes、SVM、neural nets、ensembles、association rules、decision trees、logistic regression,或者是很多技术的组合。所有这些都是数据科学的子集。当这些算法自动化后,比如无人驾驶飞机或者无人驾驶汽车,这就叫AI了,或者说的具体一点,deep learning。如果采集的数据来自传感器并且通过互联网传播,那么这就是机器学习或数据科学或深度学习应用于物联网了。
有些人对深度学习有不同的定义,他们认为深度学习是更深层次的神经网络(一种机器学习的技术)。AI(Artificial Intelligence)是创建于20世纪60年代的计算机科学的一个子领域,是关于解决那些对人类来讲非常容易但是对计算机而言很难的任务。值得一提的是,所谓的strong AI可能可以做所有人类可以做的事情(可能除了纯粹的物理问题)。这是相当广泛的,包括各种各样的事情,比如做计划,在世界上到处溜达,识别物体和声音,说话,翻译,社交或者商业交易,还有创造性工作(比如写诗画画)等等。
NLP(Natural language processing)只是AI要处理的语言部分,尤其是写。
Machine learning是这样的一种情况:给出一些可以被以离散形式描述的AI问题(比如从一系列动作中选出对的那个),然后给定一堆外部世界的信息,在不需要程序员手动写程序的情况下选出那个“正确的”行为。通常情况需要借助外界的一些过程来判断这个动作对不对。在数学上,这就是函数:你给一些输入,然后你想要他处理一下得到正确的输出,所以整个问题就简化为用一些自动的方式建立这种数学函数模型。和AI区分一下:如果我写了一段特别机智的程序有着人类的行为,那这就可以是AI,但是除非它的参量都是自动从数据中学会的,否则就不是机器学习。
Deep learning是当下非常流行的机器学习的一种。它包含一种特殊的数学模型,可以想成是一种特定类型的简单块的组合(或者说是块的功能的组合),这些块可以进行调整来更好的预测最终结果。
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
基本简介:
机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。
学习是人类具有的一种重要智能行为,但究竟什么是学习,长期以来却众说纷纭。社会学家、逻辑学家和心理学家都各有其不同的看法。比如,Langley(1996) 定义的机器学习是“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。(Machine learning is a science of the artificial The field's main objects of study are artifacts, specifically algorithms that improve their performance with experience')Tom Mitchell的机器学习(1997)对信息论中的一些概念有详细的解释,其中定义机器学习是提到,“机器学习是对能通过经验自动改进的计算机算法的研究”。(Machine Learning is the study of computer algorithms that improve automatically through experience)Alpaydin(2004)同时提出自己对机器学习的定义,“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”(Machine learning is programming computers to optimize a performance criterion using example data or past experience)
尽管如此,为了便于进行讨论和估计学科的进展,有必要对机器学习给出定义,即使这种定义是不完全的和不充分的。顾名思义, 机器学习是研究如何使用机器来模拟人类学习活动的一门学科。稍为严格的提法是:机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。这里所说的“机器”,指的就是计算机;现在是电子计算机,以后还可能是中子计算机、光子计算机或神经计算机等等。
机器能否象人类一样能具有学习能力呢?1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断的对弈中改善自己的棋艺。4年后,这个程序战胜了设计者本人。又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。
机器的能力是否能超过人的,很多持否定意见的人的一个主要论据是:机器是人造的,其性能和动作完全是由设计者规定的,因此无论如何其能力也不会超过设计者本人。这种意见对不具备学习能力的机器来说的确是对的,可是对具备学习能力的机器就值得考虑了,因为这种机器的能力在应用中不断地提高,过一段时间之后,设计者本人也不知它的能力到了何种水平。
机器学习是人工智能研究较为年轻的分支,它的发展过程大体上可分为4个时期。
第一阶段是在50年代中叶到60年代中叶,属于热烈时期。…>
第二阶段是在60年代中叶至70年代中叶,被称为机器学习的冷静时期。
第三阶段是从70年代中叶至80年代中叶,称为复兴时期。
机器学习的最新阶段始于1986年。
机器学习进入新阶段的重要表现在下列诸方面:
(1) 机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。
(2) 结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。
(3) 机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。
(4) 各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。
(5) 与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)