人教版初中函数知识点总结 要最全的

人教版初中函数知识点总结 要最全的,第1张

函数及其图像

一、平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

二、不同位置的点的坐标的特征

1、各象限内点的坐标的特征

第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-)

2、坐标轴上的点的特征

在x轴上纵坐标为0 , 在y轴上横坐标为, 原点坐标为(0,0)

3、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线上 x与y相等

点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数

4、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征

点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数

点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数

点P与点p’关于原点对称 横、纵坐标均互为相反数

6、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)到x轴的距离等于 (2)到y轴的距离等于 (3)到原点的距离等于

三、函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数的三种表示法(1)解析法(2)列表法(3)图像法

3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线

4、自变量取值范围

四、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,如果 (k,b是常数,k 0),那么y叫做x的一次函数。

特别地,当一次函数 中的b为0时, (k为常数,k 0)。这时,y叫做x的正比例函数。

2、一次函数的图像:是一条直线

3、正比例函数的性质,,一般地,正比例函数 有下列性质:

(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;

(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

4、一次函数的性质,,一般地,一次函数 有下列性质:

(1)当k>0时,y随x的增大而增大

(2)当k<0时,y随x的增大而减小

5、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。解这类问题的一般方法是待定系数法。

6、 设两条直线分别为, : :

若 且 。 若

7、平移:上加下减,左加右减。

8、较点坐标求法:联立方程组

五、反比例函数

1、反比例函数的概念

一般地,函数 (k是常数,k 0)叫做反比例函数。反比例函数的解析式也可以写成 或xy=k的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像是双曲线。

3、反比例函数的性质

(1)当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。

(2)当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x 的增大而增大。

(3) 图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

(4)图像既是轴对称图形又是中心对称图形

(5)图像上任意一点向坐标轴作垂线,与坐标轴所围成矩形面积等于|k|

4、反比例函数解析式的确定

只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

六、二次函数

1、二次函数的概念:一般地,如果 ,那么y叫做x 的二次函数。

2、二次函数的图像是一条抛物线

3、二次函数的性质:

(1)a>0抛物线开口向上,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x< 时,y随x的增大而减小;在对称轴的右侧,即当x> 时,y随x的增大而增大;抛物线有最低点,当x= 时,y有最小值,

(2) a<0抛物线开口向下,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x< 时,y随x的增大而增大;在对称轴的右侧,即当x> 时,y随x的增大而减小,;

抛物线有最高点,当x= 时,y有最大值,

4、二次函数的解析式有三种形式:

(1)一般式:

(2)顶点式:

(3)两根式:

5、抛物线 中, 的作用:

表示开口方向: >0时,抛物线开口向上,,, <0时,抛物线开口向下

与对称轴有关:对称轴为x= ,a与b左同右异

表示抛物线与y轴的交点坐标:(0, )

6、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的 ,在二次函数中表示图像与x轴是否有交点。

当 >0时,图像与x轴有两个交点;

当 =0时,图像与x轴有一个交点;

当 <0时,图像与x轴没有交点。

7、求抛物线的顶点、对称轴的方法

(1)公式法:顶点是 ,对称轴是直线

(2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线

8、平移: 可以由 平移得到。上加下减,左加右减。

一般的,自变量(通常为x)和因变量(通常为y)之间存在如下关系:

二次函数的解法

  二次函数的通式是 y等于 a乘以x的平方 加 b乘以x 加 c 用数学等式写出来就是 y=ax+bx+c如果知道三个点 将三个点的坐标带入 也就是说三个方程解三个未知数 如题 方程一 8=aº^+bº+c 化简 8=c 也就是说c就是函数与Y轴的交点 方程二 7=a6^2+b6+c 化简 7=36a+6b+c 方程三 7=a(-6)^2+b(-6)+c化简 7=36a-6b+c 解出abc 就可以了 上边这种是老老实实的解法 对(6,7)(-6,7) 这两个坐标 可以求出一个对称轴 也就是X=0 通过对称轴公式x=-b/2a 也可以算 如果知道过x轴的两个坐标(y=0的两个坐标的值叫做这个方程的两个根)也可以用对称轴公式x=-b/2a算 或者使用韦达定理 一元二次方程ax+bx+c=0 (a≠0 且△=b-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1·X2=c/a

一般式

  y=ax+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b²/4a) ;

顶点式

  y=a(x-h)²;+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax²;的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

交点式

  y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b2-4ac≥0] ; 由一般式变为交点式的步骤:

二次函数(16张)  ∵X1+x2=-b/a x1·x2=c/a ∴y=ax²;+bx+c=a(x²;+b/ax+c/a)=a[﹙x²;-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。

牛顿插值公式(已知三点求函数解析式)

  y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1·x2) (y1为截距) 求根公式

二次函数表达式的右边通常为二次三项式。

求根公式

  x是自变量,y是x的二次函数 x1,x2=[-b±(√(b²;-4ac)]/2a (即一元二次方程求根公式)(如右图)  求根的方法还有因式分解法和配方法 二次函数与X轴交点的情况 当△=b²;-4ac>0时, 函数图像与x轴有两个交点。 当△=b²;-4ac=0时,函数图像与x轴有一个交点。 当△=b²;-4ac<0时,函数图像与x轴没有交点。

编辑本段如何学习二次函数

  1。要理解函数的意义。 2。要记住函数的几个表达形式,注意区分。 3。一般式,顶点式,交点式,等,区分对称轴,顶点,图像等的差异性。 4。联系实际对函数图像的理解。 5。计算时,看图像时切记取值范围。

编辑本段二次函数的图像

  在平面直角坐标系中作出二次函数y=ax2+bx+c的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。 注意:草图要有 1本身图像,旁边注明函数。 2画出对称轴,并注明直线X=什么 (X= -b/2a) 3与X轴交点坐标 (x1,y1);(x2, y2),与Y轴交点坐标 (0,c),顶点坐标(-b/2a, (4ac-bx²)/4a)抛物线的性质

轴对称

  1二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。 特别地,当h=0时,二次函数图像的对称轴是y轴(即直线x=0) a,b同号,对称轴在y轴左侧  b=0,对称轴是y轴 a,b异号,对称轴在y轴右侧

顶点

  2二次函数图像有一个顶点P,坐标为P ( h,k ) 当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)²+k h=-b/2a k=(4ac-b²)/4a

开口

  3二次项系数a决定二次函数图像的开口方向和大小。 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。 |a|越大,则二次函数图像的开口越小。

决定对称轴位置的因素

  4一次项系数b和二次项系数a共同决定对称轴的位置。 当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号 当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号 可简单记忆为同左异右,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时 (即ab< 0 ),对称轴在y轴右。 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的 斜率k的值。可通过对二次函数求导得到。

决定二次函数图像与y轴交点的因素

  5常数项c决定二次函数图像与y轴交点。 二次函数图像与y轴交于(0,C) 注意:顶点坐标为(h,k) 与y轴交于(0,C)

二次函数图像与x轴交点个数

  6二次函数图像与x轴交点个数 a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。 k=0时,二次函数图像与x轴有1个交点。 a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点 _______ 当a>0时,函数在x=h处取得最小值ymix=k,在x<h范围内是减函数,在 x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向 上,函数的值域是y>k 当a<0时,函数在x=h处取得最大值ymax=k,在x>h范围内事增函数,在 x<h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下 ,函数的值域是y<k 当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数

特殊值的形式

  7特殊值的形式 ①当x=1时 y=a+ah2+2ah+k ②当x=-1时 y=a+ah2-2ah+k ③当x=2时 y=4a+ah2+8ah+k ④当x=-2时 y=4a+ah2-8ah+k

二次函数的性质

  8定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a, 正无穷);②[t,正无穷) 奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数 。 周期性:无 解析式: ①y=ax²+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b²;)/4a); ⑷Δ=b2-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ<0,图象与x轴无交点; ②y=a(x-h)2+k[顶点式] 此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b²)/4a; ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0) 对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X 的增大而减小 此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连 用)。 交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。

两图像对称

  ①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称; ②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称; ③y=ax2+bx+c与y=-a(x-h﹚2+k关于顶点对称; ④y=ax2+bx+c与y=-a(x+h﹚2-k关于原点对称。

编辑本段二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax²+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax²+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax²;;;,y=a(x-h)²;;;,y=a(x-h)²;;+k,y=ax²;;+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 顶点坐标 对 称 轴 y=ax² (0,0) x=0 y=ax²;+K (0,K) x=0 y=a(x-h)²; (h,0) x=h y=a(x-h)²;+k (h,k) x=h y=ax²;+bx+c (-b/2a,4ac-b²;/4a) x=-b/2a  当h>0时,y=a(x-h)²;;的图象可由抛物线y=ax²;;向右平行移动h个单位得到, 当h<0时,则向左平行移动|h|个单位得到。 当h>0,k>0时,将抛物线y=ax²;;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象; 当h>0,k<0时,将抛物线y=ax²;;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²;-k的图象; 当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)²;+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x+h²;-k的图象;在向上或向下。向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。 因此,研究抛物线 y=ax²;+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)²;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。 2.抛物线y=ax²;+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b²;;]/4a)。 3.抛物线y=ax²;+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大。若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小。 4.抛物线y=ax²;+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b&²;-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax²+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标) 当△=0.图象与x轴只有一个交点; 当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。 5.抛物线y=ax²;+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a。 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax²;+bx+c(a≠0)。 (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)²;+k(a≠0)。 (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0)。 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。中考典例 1.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点: 甲:对称轴是直线x=4; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式: . 考点:二次函数y=ax²;+bx+c的求法 评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2) 『因为交点式a(x-x1)(x-x2),又因为与y轴交点的横坐标为0,所以a(0+x1)(0+x2),也就是ax1x2 ∵抛物线对称轴是直线x=4, ∴x2-4=4 - x1即:x1+ x2=8 ① ∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 6, 即:x2- x1= ② ①②两式相加减,可得:x2=4+,x1=4- ∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。 当ax1x2=±1时,x2=7,x1=1,a=± 1 当ax1x2=±3时,x2=5,x1=3,a=± 1 因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3) 即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3 说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。 解析法二: 猜测法 假设以原点标记为O(0,0)点,抛物线与Y轴交点为C(0,c),A(x1,0), B(x2,0),则S△ABC=3,即是1/2·OC·AB=3,OC·AB=6=c·(x2-x1)(即是三角形的底乘以高等于6,而底是AB的距离,高为OC的距离,由条件乙、条件丙可知,三角形的底和高均为整数,即使A、B两点到对称轴的距离均相等且为整数,6=23=61,可知只可能有两种情况(1)AB间距离为2且高OC 为3,(2)AB间距离为6,高OC为1,便可简单解析出,当然后面需添加验证步骤。 2.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-01x2+26x+43(0<x<30)。y值越大,表示接受能力越强。 (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低? (2)第10分时,学生的接受能力是什么? (3)第几分时,学生的接受能力最强? 考点:二次函数y=ax²+bx+c的性质。 评析:将抛物线y=-01x2+26x+43变为顶点式为:y=-01(x-13)²;+599,根据抛物线的性质可知开口向下,当x<13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0<x<30,所以两个范围应为0<x<13;13<x<30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下: 解:(1)y=-01x2+26x+43=-01(x-13)²;+599 所以,当0<x<13时,学生的接受能力逐步增强。 当13<x<30时,学生的接受能力逐步下降。 (2)当x=10时,y=-01(10-13)2+599=59。 所以,第10分时,学生的接受能力为59。 (3)x=13时,y取得最大值, 所以,在第13分时,学生的接受能力最强。 3.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题: (1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围); (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为 :(55–40)×450=6750(元). (2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为: y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x^2+1400x–40000(元), ∴y与x的函数解析式为:y =–10x^2+1400x–40000. (3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000, 即:x2–140x+4800=0, 解得:x1=60,x2=80. 当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为: 40×400=16000(元); 当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为: 40×200=8000(元); 由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元. 5.2006义乌市经济继续保持平稳较快的增长态势,全市实现生产总值Y元,已知全市生产总值=全市户籍人口×全市人均生产产值,设义乌市2006年户籍人口为x(人),人均生产产值为y(元). (1)求y关于x的函数关系式; (2)2006年义乌市户籍人口为706 684人,求2006年义乌市人均生产产值(单位:元,结果精确到个位):若按2006年全年美元对人民币的平均汇率计(1美元=796元人民币),义乌市2006年人均生产产值是否已跨越6000美元大关? 6.(北京西城区)抛物线y=x2-2x+1的对称轴是( ) (A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2 考点:二次函数y=ax2+bx+c的对称轴. 评析:因为抛物线y=ax2+bx+c的对称轴方程是:x=-b/2a,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确. 另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选A. 7某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,图中的二次函数图像(部分)刻画了了该公司年初以来累计利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系) 根据图像提供的信息,解答下列问题: (1)由已知图像上的三点坐标,求累计利润s(万元)与销售时间t(月)之间的函数表达式; (2)求截止到几月末公司累计利润可达30万元; (3)求第8个月公司所获利润是多少万元。 图像我整不来,我只能把图标说一下:横坐标是(t/月),纵坐标是(s/万元),然后图上画了3个坐标点,(1,-15)(2,-2)(5,25)。 (^2代表平方,代表乘号) 解:(1)设函数关系试为S=at²+bt+c 因为S=at²+bt+c经过(1,-15)(2,-2)(5,25) 所以-15=a+b+c -2=4a+2b+c 25=25a+5b+c 解得a=1/2 b=-2 c=-0 所以函数关系试为S=1/2t²-2t (2)将S=30代入关系试得30 =1/2t²-2t 解得t1=10 t2=-6(舍去) (3)将t=8代入关系式得S=1/264-28=16 解析式求法  ①一般式:根据y=ax^2;+bx+c将(a,b)(c,d)(m,n)同时带入y=ax2+bx+c 可得解析式 ②顶点式:y=a(x-h)+k , h为顶点横坐标 k为顶点的纵坐标 将顶点和一个任意坐标带入顶点式后化简 可得解析式 ③交点式:y=a(x-x1)(x-x2) -x1 -x2为与x轴的交点横坐标 将x1 x2带入交点式 再带入任意一个坐标 可得交点式 化简后可得解析式

1定义:一般地,如果是常数,,那么叫做的二次函数

2二次函数用配方法可化成:的形式,其中

3抛物线的三要素:开口方向、对称轴、顶点

①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;

相等,抛物线的开口大小、形状相同

②平行于轴(或重合)的直线记作特别地,轴记作直线

4顶点决定抛物线的位置几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同

5求抛物线的顶点、对称轴的方法

(1)公式法:,∴顶点是,对称轴是直线

(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线

(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失

6抛物线中,的作用

(1)决定开口方向及开口大小,这与中的完全一样

(2)和共同决定抛物线对称轴的位置由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧

(3)的大小决定抛物线与轴交点的位置

当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴

以上三点中,当结论和条件互换时,仍成立如抛物线的对称轴在轴右侧,则

7用待定系数法求二次函数的解析式

(1)一般式:已知图像上三点或三对、的值,通常选择一般式(2)顶点式:已知图像的顶点或对称轴,通常选择顶点式

(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:

12直线与抛物线的交点

(1)轴与抛物线得交点为(0, )

(2)与轴平行的直线与抛物线有且只有一个交点(,)

(3)抛物线与轴的交点

二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:

①有两个交点抛物线与轴相交;

②有一个交点(顶点在轴上)抛物线与轴相切;

③没有交点抛物线与轴相离

(4)平行于轴的直线与抛物线的交点

同(3)一样可能有0个交点、1个交点、2个交点当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根

(5)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:①方程组有两组不同的解时与有两个交点; ②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点

(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故

二次函数的图象和性质2010-11-20 14:341、二次函数y=ax2+c的图象与性质

  (1)抛物线y=ax2+c的形状由a决定,位置由c决定.

  (2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.

  当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.

  当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.

  (3)抛物线y=ax2+c与y=ax2的关系.

  抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.

2、二次函数y=a(x-h)2的图象与性质

  ①抛物线y=a(x-h)2的对称轴为x=h,顶点为(h,0).

  ②y=a(x-h)2的形状与y=ax2的图象的形状相同,只是位置不同,它们彼此可以通过平移而得到.

  ③把y=ax2的图象向左(或向右)平移|h|个单位,即得y=a(x-h)2的图象,由实践可知,当h>0时,向右平移,当h<0时,向左平移.

3、二次函数y=a(x-h)2+k的图象与性质

  一般地,抛物线y=a(x-h)2+k与y=ax2的形状相同,只是位置不同.抛物线y=a(x-h)2+k有如下特点:

  ①a>0时,开口向上;a<0时,开口向下;

  ②对称轴是平行于y轴的直线x=h;

  ③顶点坐标是(h,k).

  二次函数y=a(x-h)2+k的图象可由抛物线y=ax2向左(或向右)平移|h|个单位,再向上(或向下)平移|k|个单位而得到.

4、二次函数y=ax2+bx+c(a≠0)的图象和性质

  即可化为y=a(x-h)2+k的形式,因此y=ax2+bx+c与y=a(x-h)2+k的图象具有一致性,即y=ax2+bx+c的图象是一条抛物线,它的顶点坐标为,对称轴是直线.

  当a>0时,抛物线开口向上,有最低点(即顶点),当时,,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.

  当a<0时,抛物线开口向下,有最高点(即顶点),当时,.在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.

  由于y=ax2+bx+c可化为的形式,所以抛物线y=ax2+bx+c可由抛物线y=ax2平移得到:

  第一步:若时,把y=ax2的图象向右平移个单位;若时,把y=ax2的图象向左平移个单位;

  第二步:若时,再把第一次平移后的图象向上平移个单位;若时,再把第一步平移后的图象向下平移个单位.

  所以抛物线y=ax2+bx+c与抛物线y=ax2的形状相同,只是位置不同.

5、二次函数y=ax2+bx+c(a≠0)的图象的画法

  (1)先确定二次函数的对称轴,在对称轴的左右两侧取自变量x的值,通过列表、描点,用光滑曲线连接得到图象.

  (2)通过二次函数的图象进行平移得到抛物线y=ax2+bx+c的图象.

6、抛物线y=ax2+bx+c(a≠0)与系数a、b、c的关系

a、b、c的代数式

作用

字母的符号

图象的特征

a

1.决定抛物线的开口方向;

2.决定增减性

a>0

开口向上

a<0

开口向下

c

决定抛物线与y轴交点的位置,交点坐标为(0,c)

c>0

交点在x轴上方

c=0

抛物线过原点

c<0

交点在x轴下方

决定对称轴的位置,对称轴是

ab>0

对称轴在y轴左侧

ab<0

对称轴在y轴右侧

二、重难点知识讲解

1、二次函数的三种形式:

  (1)一般式:y=ax2+bx+c(a、b、c是常数,a≠0);

  (2)顶点式:y=a(x-h)2+k,(h,k)为函数图象的顶点;

  (3)交点式:y=a(x-x1)(x-x2),(x1,0) , (x2,0)为函数图象与x轴的交点

2、图象的变换

  二次函数的平移规律:任意抛物线y=ax2+bx+c都可转化为y=a(x-h)2+k,便可以由y=ax2适当平移得到.

y=ax2

h>0向右平移个单位

y=a(x-h)2

k>0向上平移个单位长度

y=a(x-h)2+k

h<0向左平移个单位

k<0向下平移个单位长度

3、根据已知条件正确求出二次函数的关系式

  用待定系数法求函数解析式时,应当根据已知条件选择适当的二次函数的形式.如果知道函数图象与x轴的交点,那么选择交点式;如果知道函数图象的顶点,那么选择顶点式;如果知道函数图象上三个一般的点,那么选择一般式.

一次函数

I、定义与定义式: 一次函数

自变量x和因变量y有如下关系:

y=kx+b(k,b为常数,k≠0)

则称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

II、一次函数的性质:

y的变化值与对应的x的变化值成正比例,比值为k

即 △y/△x=k

III、一次函数的图象及性质:

1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。

2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

3. k,b与函数图象所在象限。

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

IV、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:

y1=kx1+b① 和 y2=kx2+b②。

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

V、在y=kx+b中,两个坐标系必定经过(0,b)和(-k/b,0)两点

1)反比例函数的图象是双曲线,反比例函数图象的两个分支关于原点对称.

(2)当k>0时,反比例函数图象的两个分支分别在第一、三象限内,且在每个象限内,y随x的增大而减小;当k<0时,图象的两个分支分别在第二、四象限内,且在每个象限内,y随x的增大而增大.

注意:不能说成“当k>0时,反比例函数y随x的增大而减小,当k<0时,反比例函数y随x的增大而增大”因为,当x由负数经过0变为正数时,上述说法不成立

(3) 反比例函数解析式的确定:反比例函数的解析式y= (k≠0)中只有一个待定系数k,因而只要有一组x、y的对应值或函数图象上一点的坐标,代入函数解析式求得k的值,就可得到反比例函数解析式

5.反比例函数解析式的确定

在反比例函数y= (k≠0)定义中,只有一个常数,所以求反比例函数的解析式只需确定一个待定系数k,反比例函数即可确定 所以只要将图象上一点的坐标代入y= 中即可求出k值

关于二次函数的解析式,我没有什么长篇大论,精炼而扎实基础才能有利于提高阿

二次函数一般形式:y=ax2+bx+c

(已知任意三点)

顶点式:y=a(x+d)2+h

(已知顶点和任意除顶点以外的点)

有的版本教材也注

原理相同

例:已知某二次函数图像顶点(-2,1)且经过(1,0),求二次函数解析式

设y=a(x+2)2+1

注意:y=a(x-d)2+h中d是顶点横坐标,h是顶点纵坐标

由于

二次函数图像过点(1,0)

因此

a3的平方+1=0

解得a=-1/9

所以所求作二次函数解析式为

y=-1/9(x+2)2+1

(此题是样题,所以就不进一步化简成一般形式)

两根式:已知函数图像与x轴两交点与另外一点

首先必须有交点(b2-4ac>0)

y=a(x-x1)(x-x2)

其中x1,x2是图像与x轴两交点

并且是ax2+bx+c=0的两根

如果已知二次函数一般形式和与x轴的一个交点,则可以求出另一个交点

利用根与系数的关系

例:y=x2+4x+3与x轴的一个交点是(-1,0),求其与x轴的另一交点坐标

由根与系数的关系得:

x1+x2=-b/a=-4

则x2=-4-x1=-4-(-1)=-3

所以与x轴的另一交点坐标为(-3,0)

另外将y=ax2+bx+c向右平移2个单位可得

y=a(x-2)2+b(x-2)+c

再向下平移2个单位得:y=a(x-2)2+b(x-2)+c-2

记住:“左加右减

上加下减”

本回答纯属原创

如有雷同

不是巧合

1函数y=(2m-9)x^(m^2-9m+19),当实数m为何值时

(1)此函数为正比例函数,且它的图像在第二,四象限内

(2)此函数为反比例函数,且它的图像在第一,三象限内

解:函数为正比例函数,则x的指数为1,即m^2-9m+19=1

图像在二四象限内,则系数2m-9<0

解方程得到m=3(m=6舍去了)

(2)反比例函数则,m^2-9m+19=-1

图像在一三象限则2m-9<0

解方程得m=4(m=5舍去了)

2已知y=y1y2,y1与x^2成正比例,y2与x成反比例,且x=1/2时,y=5,求y与x的函数关系式

解:设y1=mx^2 y2=n/x

则y=y1y2=mnx

当x=1/2时 ,y=5,故mn=10 。所以y=10x

3已知二次函数的图像与x轴交于点A(-2,0),B(3,0)两点,且函数有最大值2

(1)求二次函数的解析式

(2)设此二次函数的图像的顶点为P,求三角形ABP的面积

解:设函数解析式为y=ax^2+bx+c

由函数图像过AB两点得到:4a-2b+c=0,9a+3b+c=0;

函数最大值是2,故a<0,(4ac-b^2)/4a=2

联立以上三个方程可得到a b c的解,从而能够确定二次函数解析式

(2)确定了二次函数解析式,就可以求出顶点坐标,三角形ABP的面积=1/25(P的纵坐标)

4已知二次函数y=ax^2+bx+c的图像经过直线y=-3x+3与x轴,y轴的交点,对称轴为x=-1

(1)求此二次函数解析式

(2)设该函数图像与x轴的交点为A,B,(A在左边),与y轴的交点为C,其顶点为D,求四边形ABCD的面积

解:直线y=-3x+3与x轴,y轴的交点分别是(1,0)(0,3)

二次函数图像经过该点故:a+b+c=0,c=3

又有对称轴是x=-1,故-b/2a=-1

解三个方程可得二次函数为:y=-x^2-2x+3

(2)A(-3,0)B(1,0)C(0,3)D(-1,4)

可从C,D向x轴做垂线,把图形分成两个三角形和一个梯形,最后将三个面积加起来就可以得到四边形ABCD的面积是9

(一)一般式法

已知二次函数图像经过三点的坐标,求函数解析式像这样的题型可以设二次函数解析式为y=ax2+bx+c,根据抛物线所经过三点的坐标可列出关于a,b,c的方程组,解出a,b,c这种题型相对比较简单,下面看例题:

例题已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图像如图所示求抛物线的解析式,写出顶点坐标

分析通过图像可以看出,抛物线经过A(0,2),B(4,0),C(5,-3)三点,我们可以借助二次函数一般式求出其解析式,再转化为顶点式,得出顶点坐标

点评可以看出这是数形结合的一道题目,通过图像可以看出抛物线所经过的三点坐标,然后设出二次函数的一般解析式,解出a,b,c需要注意的是:如果这道题是求“图像所表示的函数解析式”,那就必须加上自变量的取值范围x≥0对于二次函数的一般式和顶点式的转化,学生必须要灵活掌握,可以通过配方,也可以通过顶点式

(二)顶点式法

已知二次函数的图像的顶点坐标(h,k),并且图像上另一点坐标,求函数解析式对于这样的问题,我们可以设函数的解析式为y=a(x-h)2+k,将另一点坐标代入求出a

例题已知二次函数的图像经过点(0,3),且顶点坐标为(-1,4)求这个函数解析式

点评对于这种题型,设顶点式比较简单,但这并不是的方法,也可以设一般式,代入顶点坐标的表达式,再通过代入一点的坐标列出相关等式,解出a,b,c这种方法计算比较烦琐,不建议用,但要让学生知道一道题往往有多种方法

(三)交点式法

已知二次函数图像上的一点坐标及x轴交点的坐标(c,0)(b,0),求函数解析式我们可以设函数解析式为y=a(x-b)(x-c),再将另一点坐标代入求出a

例题已知二次函数图像经过(2,-3),对称轴x=1,抛物线与x轴两交点距离为4,求这个二次函数的解析式

分析解这类题将点的坐标与线段的长互相转化非常重要,但要注意坐标的符号,会运用抛物线与x轴的两交点坐标与抛物线对称轴的关系这块知识及x轴上两点之间的距离确定抛物线与x轴的交点,再利用交点式法求抛物线的表达式

点评本题考查了抛物线的对称性和用顶点式法求抛物线的表达式,题目比较典型,并且运用抛物线的对称性迅速地求出该抛物线与x轴两交点的坐标

小结求二次函数的解析式的常用几种方法是:一般式法、顶点式法、交点式法, 如果学生都掌握好了, 拥有看图的能力了, 具备找点的能力了, 遇到具体求二次函数解析式的问题能迅速设出相应解析式, 使用待定系数法求出待定系数, 进一步求出抛物线的解析式, 这几种方法学生都掌握了, 无论题设怎样变化, 相信学生都能将函数的解析式求出来, 一定能很轻松地过求二次函数解析式这一关

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3243668.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-13
下一篇2023-08-13

发表评论

登录后才能评论

评论列表(0条)

    保存