世界上最浪漫的数学情书

世界上最浪漫的数学情书,第1张

我们的心就是一个圆形,

因为它的离心率永远是零。

我对你的思念就是一个循环小数,

一遍一遍,执迷不悟。

我们就是抛物线,你是焦点,我是准线,

你想我有多深,我念你便有多真。

零向量可以有很多方向,却只有一个长度,

就像我,可以有很多朋友,却只有一个你,值得我来守护。

生活,可以是甜的,也可以是苦的,但却不能没有你,枯燥平平,

就像分母,可以是正的,也可以是负的,却不能没有意义,取值为零。

有了你,我的世界才有无穷大,

因为任何实数,都无法表达,我对你深深的love。

我对你的感情,就像以自然对数e为底的指数函数,

不论经过多少求导的风雨,依然不改本色,真情永驻。

不论我们前面是怎样的随机变量,不论未来有多大的方差,相信波谷过了,波峰还会远吗?

你的生活就是我的定义域,你的思想就是我的对应法则,

你的微笑肯定,就是我存在于此的充要条件。

如果你的心是x轴,那我就是个正弦函数,围你转动,有收有放。

如果我的心是x轴,那你就是开口向上、Δ为负的抛物线,永远都在我的心上。

我每天带给你的惊喜和希望,

就像一个无穷集合里的每个元素,虽然取之不尽,却又各不一样。

如果我们有一天身处地球的两侧,咫尺天涯,

笛卡尔坐标系中,心脏线的参数方程为:

其中r是圆的半径。曲线的尖点位于(r,0)

在极坐标系中的方程为:ρ(θ)=2r(1-cosθ)。

数学的故事》里面说到了数学家笛卡尔的爱情故事。笛卡尔于1596年出生在法国,欧洲大陆爆发黑死病时他流浪到瑞典,认识了瑞典一个小公国18岁的小公主克里斯蒂娜(Kristina),后成为她的数学老师,日日相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,后因女儿求情将其流放回法国,克里斯汀公主也被父亲软禁起来。笛卡尔回法国后不久便染上黑死病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,大发慈悲就把这封信交给一直闷闷不乐的克里斯汀,公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。公主在纸上建立了极坐标系,用笔在上面描下方程的点,看到了方程所表示的心脏线,理解了笛卡尔对自己的深深爱意。这也就是著名的“心形线”。

世界上浪漫的表达方式有很多很多,文学家玩转文字来展示浪漫,艺术家玩转图画或音乐来渲染浪漫,而数学家也有自己的浪漫方式。最为著名的便是大数学家笛卡尔与其发现的心形图曲线(也成为心脏图)。

 

勒内·笛卡尔(Rene Descartes,1596——1650),著名的法国哲学家、科学家和数学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者提出了“普遍怀疑”的主张。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。据说笛卡尔57岁时邂逅了18岁的瑞典公主克里斯汀,笛卡尔总共给她寄出过13封情书,也就是在最后一封信中,只有短短的一个数学公式:r=a(1- sinθ)。而这正是著名的心形图曲线:

欧拉公式是最浪漫的数学公式:

复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。

拓扑学中,在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明 ,后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。

把复指数函数与三角函数联系起来的一个公式,e是自然对数的底,i是虚数单位。它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它不仅出现在数学分析里,而且在复变函数论里也占有非常重要的地位,更被誉为“数学中的天桥”。

这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π;两个单位:虚数单位i和自然数的单位1;以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”。

数学浪漫表白公式有1、(52805-39343)÷05=5201314——我爱你一生一世。2、250x2+38-178686=5201314——我爱你一生一世。3、[(n+528)5–39343]÷05-10n=5201314(N=任意数)——我爱你一生一世等。

数学(英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths])是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

数学透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察而产生。数学已成为许多国家及地区的教育范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。数学家也研究纯数学,就是数学本身的实质性内容,而不以任何实际应用为目标。

发展历史:

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά。

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3306310.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-14
下一篇2023-08-14

发表评论

登录后才能评论

评论列表(0条)

    保存