NASA讲起情话,我们都输了!

NASA讲起情话,我们都输了!,第1张

素材来源于网络

我很不喜欢黑暗

却爱上了黑夜的繁星璀璨

人间或许总会有令人失望的情感

会有“得不到”和“已失去”的遗憾

还好宇宙有它的浪漫

至少我们可以在同一片星空下互道晚安

前段时间,“宇宙级浪漫机构”——NASA在哈勃望远镜30岁生日之际,送给全人类一份生日礼物:你生日那天的宇宙星辰。

我有整个宇宙想讲给你听,张嘴却吐不出半粒星辰所以我整理了一些NASA的文案分享给你~

01

没有艺术(ART),就无法拼成地球(Earth)

You can’t spell Earth without ART

02

看见那些明亮的光了吗?

那些都是垂死的星星

03

你确实渺小,但这并不意味着你不能闪耀。

Just because you’re small,doesn’t mean you don’t shine bright

04

对于某个人来说,你就是宇宙的中心。就像小麦哲伦星云一样,你散发着整个宇宙的光芒,帮助他们找到方向。

05

没有黑暗,也就无所谓光的存在。

The light cannot exist without the dark

06

“你所爱的每一个人,你认识的每一个人,你听说过的每一个人,曾经存在过的每一个人,都在它上面度过他们的一生。”——Curt Stager

07

无论有多少相似和不同,每个星系都以自己的方式迷人着。

No matter the similarities and differences, every galaxy is beautiful in its own way

08

情人节快乐——玫瑰星云

09

“你我皆为星辰之子,每一个细胞都书写着整个宇宙的历史,当你凝视自己,也望见了宇宙的轮廓。”——Curt Stager

10

成为自己的探险家宇宙在等你。

Be your own explorer the cosmos is waiting ⁣⁣

11

星星从尘雾中诞生,散落在宇宙之中,它们将我们与宇宙联系在一起。

12

想象一下慢动作的烟花:从170年前就开始并持续至今的爆炸。

Imagine slow-motion fireworks that started exploding 170 years ago and are still continuing

13

今年春天的发现:一只宇宙蝴蝶正在用星际气体和尘埃组成的翅膀振荡。

14

当你读到这句话时,它已经转了三圈半。

By the time you read this sentence, the tiny star will have spun 35 times

15

“其实分别也没有这么可怕。65万个小时后,当我们氧化成风,就能变成同一杯啤酒上两朵相邻的泡沫,就能变成同一盏路灯下两粒依偎的尘埃。宇宙中的原子并不会湮灭,而我们,也终究会在一起。”——Lawrence M Krauss

16

夜空这副杰作上的一小滴颜料。

A little blob of paint on the masterpiece of the night sky

17

“我们身体里的每一个原子都可以追溯到宇宙大爆炸,以及50多亿年前发生爆炸的大质量恒星里的核聚变。我们是获得了生命的星辰,然后被宇宙赋予了发现自我的使命,而我们的旅程才刚刚开始。”——Neil deGrasse Tyson

18

不是所有的星系都是孤独的,有些就有它的“银河小分队”。

Not all galaxies are lonely Some have galaxy squads

19

你看这一片混乱的星系,就像一棵盛开的樱花树。

明亮的区域是恒星们的幼儿园,在那里,新的星星正在绽放。

20

你身体里的每一个原子都来自一颗爆炸了的恒星, 你左手的原子与右手的原子也许来自不同的恒星。这实在是我所知道的物理学中最富诗意的东西:你的一切都是星尘。——Lawrence M Krauss

就像《小时代》里说的那样:

“我们活在浩瀚的宇宙里,漫天漂浮的宇宙尘埃和星河光尘,我们是比这些还要渺小的存在。

你并不知道生活什么时候就突然改变方向,陷入墨水一般浓稠的黑暗里去。

你被失望拖进深渊,你被疾病拉进坟墓,你被挫折践踏地体无完肤,你被嘲笑、被讽刺、被讨厌、被怨恨、被放弃。

但是我们却总是 在内心里保留着希望,保留着不甘心被放弃的跳动的心。我们依然在大大的绝望里小小地努力着。这种不想放弃的心情,它们变成无边黑暗里的小小星辰。

我们都是小小的星辰。”

宇宙十大情花星系是小说里杜撰的。事实上不存在。

但是宇宙有十个很迷人的星系,分别是:

1、草帽星系 

草帽星系(Sombrero Galaxy)的编号是M104 or NGC 4594,位于室女座里,是一个无棒螺旋星系(unbarred spiral

galaxy)。它的核子非常明亮,中心隆起,倾斜圆盘里拥有庞大的尘埃带。黑色尘埃带和中心明亮的隆起部位,让这个星云看起来像一个草帽。

这个星云的光度是+90,因此利用普通望远镜就能看到它。它的隆起部位、中心的超大质量黑洞和尘埃带都吸引着天文爱好者的注意。

2、黑眼星系

后发星座里著名的黑眼星系(Black Eye Galaxy)又叫睡美人星系,编号为Messier

64。它有一条引人入胜的黑色尘带,横亘在明亮的星系核心之前,因而被称为“黑眼星系”或“魔眼星系”。

这个星系在天文爱好者中间非常有名,因为用小型望远镜就能看到它。

3、双胞胎星系

双胞胎星系(2MASX J00482185-2507365 occulting pair) 由两个重叠的螺旋星系构成,位于玉夫座星系(NGC

253)附近。

两个重叠星系与地球之间的距离,比玉夫座星系与地球之间的距离更远,背景星系2MASX J00482185-2507365位于redshift

z=006,前景星系位于玉夫座星系和背景星系之间。这对星系照亮了其中一个螺旋星云的可见柱状物周围的尘埃带。

布满行星和恒星的柱状物周围向外无限延伸的尘埃带,为银河系外的天文学研究提供了新探索领域。这些尘埃臂的半径是这个星系半径的六倍。HST图上显示了这个尘埃臂和背景星系的横截面。

4、涡状星系

涡状星系(The Whirlpool Galaxy)又被称作51a、M51a或者 NGC 5194,它是位于北天的猎犬座(Canes

Venatici)里的一个庞大的螺旋星系,距离地球大约2300万光年。它是天空中最著名的一个螺旋星系。

天文爱好者很容易就能观察到这个星系和它的伙伴,在观测条件良好的天气下,天文爱好者甚至可以通过双筒望远镜看到这两个星系。涡状星系还是天文学家最喜欢的观察对象,他们通过研究这种星系,进一步了解星系的结构和星系之间的相互作用。

5、大螺旋星系

大螺旋星系(NGC

123)是一个非常迷人的星系,无数明亮的恒星和黑色尘埃点缀期间,大片星际气体围绕中心形成螺旋臂。这些螺旋臂上分布着无数蓝色恒星,恒星之间点缀着黑色星际尘埃带。

虽然很难看到这个星系,但是通过特殊装置,还是能观测到数十亿颗昏暗的恒星和大量星际气体,它们的质量很大,是内部星系的原动力。我们只有利用看不见的暗物质理论,才能解释清楚这些可见的外部星系的运动原因。

6、超新星1987A

20年前,天文学家发现一颗最明亮的爆炸恒星,这就是超新星1987A,它已经有400多岁。

它最突出的特征在于中心由许多发光点组成像戒指一样的环状结构,这是由于爆炸时冲击波释放的物质散播在恒星周围的环内区域,使得这些区域“暖和”起来,进而发出光。这些直径大约是1光年的圆环,可能是该恒星在发生爆炸20000年前发出的。

在接下来的几年里,随着它吸收完这次爆炸发出的所有能量,它的亮度将达到最大值。届时这个不断增长的圆环的亮度,足以把它周围的恒星照亮,为天文学家提供有关恒星在爆炸前是如何释放体内物质的新信息。

7、星系NGC 1512

星系NGC 1512是一个位于时钟座星系里的棒旋星系,距离地球大约3000万光年。星系NGC

1512非常明亮,人们利用普通望远镜就能看到它。这个星系的直径大约是70000光年,几乎跟我们的银河系的直径一样大。

这个星系中心是高度向心的星环,四周是由无数年轻的恒星构成的直径大约是2400光年的星团。恒星爆炸的景象表明该星系里不断有新恒星形成,这种推测在其他几种宇宙环境中已经得到证实。

8、星系NGC 3370 

星系NGC 3370是一个充满尘埃的螺旋星系,位于狮子座里,距离地球大约9800万光年。星系NGC

3370的中心分布着轮廓鲜明的尘埃带和一个不太容易辨认的核。1994年,星系NGC

3370里的一颗Type Ia sypernova发生爆炸。

 9、M81

M81位于大熊座星系里,是一个美丽的螺旋星系,也是地球上空肉眼可以看到的最明亮的星系之一。科学家对M81

的变星进行的探测活动,最终使他们确定了一个银河外星系距地球最准确的距离之一——118亿光年。

10、哈氏天体

哈氏天体(Hoag's Object)是一个非常著名的环星系。天文爱好者和天文学家对这个星系的独特外貌和与众不同的结构非常感兴趣。 

当1950年天文学家亚特·霍格(Art

Hoag)偶然发现这个不寻常的河外星系天体后,这个问题就浮现在大家眼前。它外围是由明亮的蓝色恒星组成的环状物,而中心处的圆球则主要是由许多可能较老的红色恒星构成。

鸡西新闻网(中共鸡西市委宣传部主管)-宇宙十大迷人的星系:壮观黑眼星系上榜

昴星团 Pleiades

  赤经 03 : 470(小时:分) 

  赤纬 +24 : 07(度:分) 

  距离 038(千光年) 

  视亮度 16(星等) 

  视大小 1100(角分)

  昴星团(Pleiades, M45,汉语拼音:mǎo xīng tuán)是疏散星团之一,在北半球看是位于西方大而明亮的疏散星团,位于金牛座,在晴朗的夜空单用肉眼就可以看到它。它的几个亮星位于昴宿,由此而得名。梅西叶星表编号为 M45,肉眼通常见到有六、七颗亮星,所以又常被称为是七姊妹星团,它是离我们最近也是最亮的几个疏散星团之一。昴星团总共含有超过3000 颗的恒星,它的横宽大约13光年,距离128秒差距(417光年),直径约4秒差距。

  中国古代把其中的亮星列为昴宿。有关的传说和神话很多,也被称为“七姊妹星团”。一般肉眼能看到6颗星,因为此星团中您看不到的那颗星星的能见度较低,它是一颗低等星。在此星团中并不是七颗,而是近三百多颗,不过都是非常暗罢了,您不用担心您的眼睛,因为大部分人(即使在很晴朗的夜空下)也很难分辨出这颗星星。 

  其中最亮的 6颗星自西向东的星名、光电目视星等和MK光谱分类依次是:

  金牛座17(昴宿一),371,B6Ⅲ;

  金牛座19(昴宿二),431,B6Ⅳ;

  金牛座20(昴四),388,B7ⅢSn;

  金牛座23(昴宿五),418,B6V;

  金牛座η(昴宿六),287,B7Ⅲ;

  金牛座27(昴宿七),364,B8Ⅲ。

  这些星都在作快速自转。蓝巨星昴宿六表面有效温度约13,500K,总辐射光度约为太阳的2,200倍,半径约为太阳的8倍,但赤道自转一周所需时间还不到3天。昴宿七是轨道周期为好几年的分光双星。昴星团有百分之七的成员星是轨道周期小于 100天的双星。著名气壳星金牛座28(即金牛座BU)就在昴星团内。在昴星团方向已经发现了460个以上的耀星。这个星团没有红巨星。照片上看到的昴星团亮星附近的星云叫作NGC1432,是由星际尘粒反射和散射星光形成的反射星云。这也许是昴星团恒星形成时剩下的星,但更可能是昴星团在运动中遇到的物质。

[编辑本段]星团年龄

  昴星团距离太阳400光年,因含有早B型星,从天文时间尺度来说正处在年少时期。质量为九个太阳的B型星,若收缩到主星序,耗尽其核部的氢并开始膨胀到红巨星,照估计需历时2100万年左右。因此,这个值就应该是疏散星团的年龄。可是,唯有昴星团的颜色一光度图却又清楚地表明,仅含02太阳质量的那些恒星业已渡过了初始收缩阶段,基本上处于零龄主星序上.照最近恒星演化理论估计,质量为02太阳的恒星收缩到零龄主星序所需时间, 大致为60000万年。那么,昴星团的年龄到底是多少呢?究竟是2100万年还是60000万年?

  事实上,矛盾并不像看起来那样尖锐。赫尔比希认为,在形成大质量的恒星之前,先已由星云物质形成了小质量的恒星。如果晚型主序星首先形成,它们就会在早型星收缩到主星序的相同时间内到达零龄主星序,然后燃烧它们核部的氢, 并开始向红巨星阶段膨胀。这一理论好像得到了观测的支持。关于小质量恒星形成较早的又一证据是金牛一御夫座暗星云,在这些星云中大量含有暗弱的红星,而不含有亮的蓝星。 

  所有这一切都表明,拥有大约三百颗星的昴星团开始形成于六亿年以前,一直持续到终于形成了B型星.这些非常亮的恒星辐射着极其丰富的紫外线,它们已把气体电离并彻底吹散,只在银河系中残留下一些气体的痕迹。随着气体的离去,恒星的形成过程也就趋于停止。琢磨一下玫瑰星云很有意思的,它的中心有一群非常亮的恒星,这团星云可能就是因发生这种从中央向外吹散气体的过程而形成的。这一设想或许能解释这种异常有趣的气体与恒星集合体的环状结构.

  昴星团星云是蓝色的,这意味着它们是反射星云,反射着位于它们附近(或者之中)的明亮恒星的光线。这些星云中最明亮的部分,即围绕在昴宿五周围的星云,是1859年10月19日被(意大利)威尼斯的Ernst Wilhelm Leberecht (Wilhelm) Tempel利用4英寸折射镜发现的;它被收入NGC星表中,编号为NGC 1435。Leos Ondra提供了一份在线的Wilhelm Tempel传记,以及一幅昴宿五星云的素描,经同意归入到本资料库中。星云向昴宿四延伸的部分在1875年被发现(即NGC 1432),围绕着昴宿六,昴宿一,昴宿增六和昴宿二的星云在1880年被发现。完整的昴星团的复杂性,直到1885年到1888年间,巴黎的Henry兄弟和英国的Isaac Roberts发明了第一架天文照相机之后,才被揭露出来。1890年,EE Barnard发现星云物质有一个非常靠近昴宿五的恒星状聚集中心,它被编入IC星表,编号为IC 349。1912年,Vesto M Slipher分析了昴星团星云的光谱,揭露了它们的反射星云本质,因为它们的光谱与照亮它们的恒星的光谱一模一样。 

  更多信息可以在我们的昴星团主要恒星及其对应星云的编号列表中找到。 

  本质上来说,反射星云很可能是分子云中的尘埃部分,与昴星团无关,只是刚好穿过昴星团而已。它并不是形成星团的星云的残余部分,这可以从以下事实中看出来,星云与星团拥有不同的径向速度,它们正以每秒68英里,即每秒11千米的速度相互穿越。 

  根据来自日内瓦的一个小组发表的最新计算结果(G Meynet, J-C Mermilliod, and A Maeder in Astron Astrophys Suppl Ser 98, 477-504, 1993),昴星团的年龄为1亿年。这与早期发表的“权威”年龄大了许多,以前的年龄通常在6千到8千万年之间(例如,Sky Catalog 2000给出的年龄为7千8百万年)。还有计算表明,昴星团可以以星团的形式继续存在约2亿5千万年(Kenneth Glyn Jones);此后,它们会沿着各自的轨道分散成单颗恒星(或是聚星)。 

  欧洲航天局的天文测量卫星Hipparcos最近直接用视差法测量了昴星团的距离;根据这些测量,昴星团距我们380光年(此前采用的数值是408光年)。新的距离数值需要对昴星团中恒星相对较暗的视星等给出解释。

[编辑本段]深入探究

  昴星团的Trumpler类型被定为II,3,r型(Trumpler,根据Kenneth Glyn Jones的说法)或者I,3,r,n型(Götz和Sky Catalog 2000),意味着这个星团似乎是独立的,向中心高度聚集或是中等聚集,其中恒星亮度的分布范围较大,成员星较多(超过100颗)。 

  昴星团中有些高速自转的恒星,表面的旋转速度为150到300千米/秒,这在光谱型为(A-B)型的主序星中是普遍现象。由于这种旋转,它们一定是(扁圆的)椭球体,而不是球体。这种旋转之所以能够被发现,是因为它会使得光谱吸收线变得更宽,更发散,因为相对于恒星的平均径向速度而言,位于恒星一侧的部分恒星表面正在接近我们,而另一侧却在远离我们。这个星团的快速自转恒星中最突出的例子是昴宿增十二(Pleione),这也是颗变星,亮度介于477和550等之间(Kenneth Glyn Jones)。O Struve曾经预言这样的旋转会导致恒星抛出气体包层,1938年到1952年间,对昴宿增十二的光谱分析观测到了这一现象。 

  Cecilia Payne-Gaposhkin提到昴星团中包含着一些白矮星(WD)。这给恒星演化提出了一个特殊的问题:白矮星是怎么出现在一个如此年轻的星团中的?由于存在着不止一颗白矮星,因此可以相当肯定这些恒星原来都是星团的成员星,并不都是被捕获的场恒星(总之,捕获过程在这样一个相当松散的疏散星团中效率并不高)。[译注:场恒星,field stars,是指独立的,不成团的恒星。] 按照恒星演化理论,白矮星的质量不可能超过大约14倍太阳质量的上限(钱德拉塞卡极限,the Chandrasekhar limit),更大质量的白矮星会因为它们自身的重力而塌缩。但是如此低质量的恒星演化得极慢,需要几十亿年才能演化到最后阶段,昴星团短短1亿年的年龄显然是不够的。 

  唯一可能的解释是,这些白矮星曾经是大质量恒星,因此它们可以快速演化,但是一些原因(比如强烈的恒星风,邻近恒星的质量吸积,或者快速自转)使他们失去了大部分质量。结果,它们可能将大部分质量都抛入太空,形成了行星状星云。总之,最后剩下来的恒星(即原来的恒星核)质量一定低于钱德拉塞卡极限,这样它们才可能演化到稳定的白矮星阶段,从而被我们观测到。 

  1995年以来对昴星团的最新观测发现了几个异常类型恒星的候选者,或者说是类似恒星的天体,即所谓的褐矮星(Brown Dwarfs)。这种迄今为止仍然只是假说的天体被认为质量介于巨行星(比如木星)和小恒星(恒星结构理论指出最小的恒星,即在其生命阶段中可以通过核聚变制造能量的天体,质量最少不得低于太阳质量的百分之6到7,即60到70倍木星质量)之间。因此褐矮星的质量应该拥为木星质量的10到60倍左右。理论上,它们可以在红外光波段被观测到,直径与木星相当或更小(143,000千米),密度是木星的10到100倍,因为强得多的引力会将它们压得更紧。 

  即使用肉眼,在一般的条件下,昴星团也是相当容易找到的,位于明亮的红巨星毕宿五(Aldebaran,金牛座Alpha,87号星,09等,光谱型K5 III)西北方接近10度的位置。明显包围在毕宿五周围的,是另一个同样著名的疏散星团,毕星团(Hyades);现在知道,毕宿五并不是毕星团的成员,只是一颗前景恒星(距离我们68光年,而毕星团的距离为150光年)。 

  在双筒镜或者广角镜中,这个星团是个壮观的天体,在1 1/5度的直径范围内可以显示超过100颗的恒星。对望远镜来说,即使在最低放大率下,这个星团也大到也无法在一个视场中看到全貌。星团中拥有许多双星和聚星。昴宿五星云NGC 1435需要黑暗的天空才能看见,在广角镜中观测效果最佳(Tempel是用一架4英寸望远镜发现它的)。 

  由于昴星团距离黄道较近(只差4度),星团被月亮掩食的现象会经常发生:这是非常吸引人的奇景,尤其对于那些只拥有廉价器材的爱好者来说(事实上,你用肉眼就可以观测它,不过即使最小的双筒镜或者望远镜都会增加观测的乐趣——1972年3月的月掩昴星团是笔者首次业余天文观测经历之一)。这样的现象可以形象地说明月亮与这个星团之间的相对大小:Burnham指出月亮可以被“塞进由”昴宿六,昴宿一,昴宿五和昴宿二“组成的四边形内”(在这种情况下,昴宿四,甚至昴宿三都会被月亮挡住)。同样,行星也会运行到昴星团附近(金星,火星和水星甚至偶尔会从其中穿过),展示出壮丽的景象。

  宇宙中有六百兆颗星球、几千万个银河系,我们地球所在的银河系叫做Milky Way Galaxy,太阳系位于银河系旁边猎户座的旋臂上,地球绕太阳公转,而整个太阳系则绕昴宿星团公转,昴宿星团绕银河中心公转,大约每240000年,太阳系会完成一次公转。

  神话文艺七仙女星团在中国古代,昴宿为二十八宿之一,这些恒星则称昴宿七(Atlas)、昴宿增十二(Pleione)、昴宿四(Maia)、昴宿一(Electra)、昴宿增十六(Celaeno)、昴宿二(Taygeta)、昴宿五(Merope)、昴宿六(Alcyone)和昴宿三(Sterope)。

  七仙女星团是希腊神话里的七位仙女的化身,她们是擎天神阿特拉斯(Atlas)和其妻Pleione的七个美貌的女儿——迈亚(Maia)、伊莱克特拉(Electra)、塞拉伊诺(Celaeno)、泰莱塔(Taygeta)、梅罗佩(Merope)、亚克安娜(Alcyone)和斯泰罗佩(Sterope)。

  古代日本人把昴星团看成美丽的首饰,对此拥有特别的情意结,有日本流行歌曲以此作题材,如歌唱家谷村新司作表作《すばる》(即关正杰的粤语歌曲《星》与罗文的《号角》),日本国立天文台1998年在夏威夷落成启用的一台82米望远镜称作“昴”(Subaru),富士重工业生产的汽车品牌为subaru等等

  相关神话:在古代,确实能看到7颗,就好似七个仙女,身着蓝白色纱衣在云中漫步和舞蹈。后来不知道在哪一年,有一颗星突然暗了下去,不能见到了,人间在诧异的同时,开始流传着这么一个——“七小妹下嫁”的美丽传说,黄梅戏《天仙配》说的就是她们的故事。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3334401.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-14
下一篇2023-08-14

发表评论

登录后才能评论

评论列表(0条)

    保存