如何利用学生生活经验知识经验促进学生图形与几何领域的教学

如何利用学生生活经验知识经验促进学生图形与几何领域的教学,第1张

众所周知,学生学习数学感到困难,很多情况下是因为数学知识比较抽象,与学生以具体形象思维为主并逐步向抽象逻辑思维过渡的思维发展特点产生矛盾,因此,教师需要重视直观教学手段的运用,特别是根据学生的认知规律细化操作活动的设计,以更好地催生学生感性的活动经验,从而发展为理性的数学经验。

小学的“图形与几何”更多的属于直观型,因此学生要获得图形与几何的知识并形成空间观念,更多的是依靠他们的动手操作,通过不断地尝试搭建、选择分类、组合分解等来增加、积累自己的经验,丰富自已的想象。那么,在“图形与几何”领域的教学中,如何有效地促进基本数学活动经验的积累,以提高数学教学的实效?

一、引导学生联系生活,把生活经验转化为数学经验

数学教学要基于学生的生活现实,把这些生活经验进行“数学化”处理,促进学生进行数学思考,以生成新的数学活动经验。生活经验用于帮助经历、体验新知识的形成过程,不仅简单明了,而且生动形象,有利于学生的经验从一个水平上升到更高水平,实现经验的升华。

例如在学习图形的运动部分,在现实的生活中,存在着大量图形变化或变换的现象,对于这些变化或变换的现象,学生自己本身也有丰富的体验体会。如坐电梯、地铁,看到钟面那个指针,自行车的车轮,风车,电扇的扇叶等都在转动,这些生活中的现象、图形的变换也为学生学习图形的运动,提供了丰富多彩的现实背景。让学生以数学的眼光认识和把握这些生活中的平移旋转的现象,发现、研究并确认图形的性质,有助于建立和培养、发展学生的空间观念和几何直观能力。从而把生活经验转化为数学经验

二、引导学生操作与思考,积累有效操作的活动经验

“智慧自动作发端”,动手操作是学生学习数学的重要途径和方法。动手操作能把抽象的知识变成看得见、诽得清的现象,学生动手、动脑、动口参与获取知识的全过程,使操作、思维、语言有机结合,获得的体验才会深刻、牢固,从而积累有效的操作经验。

例如在学生研究“三角形内角和”问题时,引导学生把任意三角形的三个内角撕下来,将角的顶点重合并依次拼在一起,发现正好形成一个平角,从而得出直观视觉印象:三角形的内角和是180度。这个过程,学生费时不多,但是亲自动手试一试的操作活动让他获得了对三角形内角和的直观感受。

三、引导学生自主探究,积累探究性经验

积累探究经验不是通过简单的活动和思考就可以完成,它更强调的是一种真实的情境,对数学思想方法的学习和体验。

如在教学平行四边形面积时,进行如下设计。第一个环节,引导学生大胆地尝试猜想,平行四边形的面积和谁有关,学生猜想的结果,一是认为和平行四边形的底边与邻边有关,即求面积用底边乘以邻边。二是认为平行四边形的面积与底边和高有关,即求面积可以用底边乘以高。第二个环节,让学生借助学具检验猜想,在得到了自己猜想的结果后,让学生利用手中的网格图,去测量一下平行四边形的面积,通过测量学生就发现这个测量结果,和猜想中的底乘以高求出的平行四边形的面积是一样的,从而检验出了自己猜想的结论。第三个环节,就是引导学生自主探究验证结论,将平行四边形沿高剪开,把它转化成学过的长方形,利用长方形的面积公式,推导出平行四边形的面积公式。

在教学中教师精心创设问题情境,组织适度开放的探究性活动,启发学生拓宽思路,多方位、多角度地获取多样化的信息,就会积累学生丰富的探究经验。

四、引导学生总结数学思想,积累策略性、方法性经验。

如教学圆周长的测量,可以用圆片在直尺上滚动,测量它的长度,还可以用线绕圆片一周,把线拉直,然后再测量线的长度,这样学生不但积累了测量的经验,也又一次渗透化曲为直的转化思想。

再如在圆的周长的教学中,也可以向学生介绍割圆术,让学生经历正多边形到圆的一个形成的过程,即引导学生观察随着圆内正多边形的边数越来越多,正多边形也就越来越逼近圆,通过有限去想无限,就能使学生感受到一个极限的思想。

数学思想是伴随着学生知识的积累,思维的发展而逐步被学生所感悟的。引导学生总结数学思想。积累策略性、方法性经验:如转化思想、模型思想、数形结合思想、分类思想等,感悟这些思想不仅是图形与几何学习的重要任务,而且学生所积累的经验对今后的数学学习将发挥很大的重要作用。

“图形与几何”教学中帮助学生有效地积累数学基本活动经验是一个长期的过程,不能指望一两次活动就能完成。因此,应当把活动经验的积累看作是一个长远的目标,持续不断地组织学生参与数学探究的过程,逐步形成数学活动经验。另外帮助学生积累“图形与几何”基本活动经验的过程,也是老师自身教学活动经验积累提升的过程。

(一)图形的认识、测量

量的计量

一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

 二、长度单位:

1千米=1000米1米=10分米

1分米=10厘米1厘米=10毫米

1米=100厘米1米=1000毫米

三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

六、面积单位:(100)

1平方千米=100公顷1公顷=10000平方米

1平方米=100平方分米1平方分米=100平方厘米

七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

八、体积单位:(1000)

1立方米=1000立方分米1立方分米=1000立方厘米

1升=1000毫升

平面图形认识、周长、面积

一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。

三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

按边分,可以分为等边三角形、等腰三角形和任意三角形。

七、三角形的内角和等于180度。

八、在一个三角形中,任意两边之和大于第三边。

九、在一个三角形中,最多只有一个直角或最多只有一个钝角。

十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

十三、围成一个图形的所有边长的总和就是这个图形的周长。

十四、物体的表面或围成的平面图形的大小,叫做它们的面积。

十五、平面图形的面积计算公式推导:

1平行四边形面积公式的推导过程

①把平行四边形通过剪切、平移可以转化成一个长方形。

②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。

③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。

2三角形面积公式的推导过程

①用两个完全一样的三角形可以拼成一个平行四边形。

②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半

③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。 即:S=ah÷2。

3梯形面积公式的推导过程

①用两个完全一样的梯形可以拼成一个平行四边形

②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半

③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。

4画图说明圆面积公式的推导过程

①把圆分成若干等份,剪开后,拼成了一个近似的长方形。

②长方形的长相当于圆周长的一半,宽相当于圆的半径。

③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2

十六、平面图形的周长和面积计算公式:

长方形周长 =(长+宽)× 2

长方形面积 = 长 × 宽

正方形周长 = 边长 × 4

正方形面积 = 边长 × 边长

平行四边形面积 = 底 × 高

三角形面积 = 底 × 高 ÷ 2

立体图形认识、周长、面积

一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。

二、圆柱的特征:一个侧面、两个底面、无数条高。

三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。

四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。

五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。

六、圆柱和圆锥三种关系:

 ①等底等高: 体积1︰3  

 ②等底等体积:高1︰3  

 ③等高等体积:底面积1︰3

七、等底等高的圆柱和圆锥:

①圆锥体积是圆柱的1/3,       

②圆柱体积是圆锥的3倍,

③圆锥体积比圆柱少2/3,       

④圆柱体积比圆锥多2倍。

八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。

九、立体图形公式推导:

1圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)

①圆柱的侧面展开后一般得到一个长方形。    

②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。

④圆柱的侧面展开后还可能得到一个正方形。

正方形的边长=圆柱的底面周长=圆柱的高。

2我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?

①把圆柱分成若干等份,切开后拼成了一个近似的长方体。

②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。

3请画图说明圆锥体积公式的推导过程?

①找来等底等高的空圆锥和空圆柱各一只。

②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。

③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。

十、立体图形的棱长总和、表面积、体积计算公式: 

名称 计算公式

长方体棱长总和长方体棱长总和 = (长+宽+高)× 4

长方体表面积长方体表面积=(长×宽+长×高+宽×高)×2

长方体体积长方体体积=长×宽×高

正方体棱长总和正方体棱长总和=棱长×12

正方体表面积正方体表面积=棱长×棱长×6

正方体体积正方体体积=棱长×棱长×棱长

圆柱体侧面积圆柱体侧面积=底面周长×高

圆柱体表面积圆柱体表面积=侧面积+底面积×2

圆柱体体积圆柱体体积=底面积×高

圆锥体体积圆锥体体积=1/3SH

(二)图形与变换

一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。

二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。

三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。

(三)图形与位置

一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。

二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。

“空间与图形”有着丰富的历史渊源和深厚的文化背景。

让学生感受几何的演绎体系对数学发展和人类文明的价值,以及与人类生活的密切联系

如“计量的发展”介绍的是数学的发展历程,使学生了解数学对社会发展的推动作用;

“圆周率之父——祖冲之”,使学生了解到“空间与图形”的丰富历史渊源,认识我们祖先的智慧,增强民族自豪感;“四面八方”是介绍数学知识与语文知识的联系;

“指南针”沟通了数学知识与天文地理。

通过这些介绍展示不同学科知识之间的相互联系,使学生进一步体会“空间与图形”与人类生活的密切联系,感受其文化内涵和文化价值。

一样。根据查询期刊网得知,数形结合是与图像表征的相互转化,既是重要的数学思想方法,也是数学学科的教学手段与教学策略,图形表征是数形结合中的一种重要方法,使抽象复杂的问题变得形象简单,所以图形表征和数形结合是一样的。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/lianai/10266196.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-02
下一篇2023-11-02

发表评论

登录后才能评论

评论列表(0条)

    保存