一,杠杆原理
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。
但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×L1=F2×L2这样就是一个杠杆。杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
二、内容
杠杆平衡是指杠杆在动力和阻力作用下处于静止状态下或者匀速转动的状态下。杠杆受力有两种情况:
1、杠杆上只有两个力:
动力×支点到动力作用线的距离=阻力×支点到阻力作用线的距离
即动力×动力臂=阻力×阻力臂,即F1×L1=F2×L2
2、杠杆上有多个力:
所有使杠杆顺时针转动的力的大小与其对应力臂的乘积等于使杠杆逆时针转动的力的大小与其对应力臂的乘积。
这也叫作杠杆的顺逆原则,同样适用于只有两个力的情况。
扩展资料
运用:
1、有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (动力臂 > 阻力臂);但是我们要压下较大的距离,受力端只有较小的动作。
2、路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
3、拔钉子用的羊角锤、铡刀,开瓶器,轧刀,动滑轮,手推车 剪铁皮的剪刀及剪钢筋用的剪刀等。
4、钓鱼竿、镊子,筷子,船桨裁缝用的剪刀、理发师用的剪刀等。
-杠杆原理
一根长为4米的一头粗一头细的木棒,在距粗端1米处支住它可以平衡;如果在距粗端2 米处支住,且在另一端挂20N的重物,杠杆仍可平衡,那么这根棒重为多少?
在距粗端1米处支住它可以平衡说明了他的重心在距粗端1米处
如果在距粗端2 米处支住,且在另一端挂20N的重物,杠杆仍可平衡,F1L1=F2L2得:
G1m=20N2m
解得:G=40N
所以,这根棒重为40N。
固定成本的存在而导致息税前利润变动率大于产销量变动率的械杆效应,称为经营杠杆。
计算公式:经营械杆系数=基期边际贡献/基期息税前利润或者是:息税前利润变动率/产销量变动率
可是如果知道的多一些,就可以不是一点点的而是一块块的体会呀
我再唠叨“一块”作为对“杠杆”讨论的回应:
以右手正手击球为例,在击球的过程里实际上有三个旋转圆心在起作用:第一个是以脖子为圆心,肩为直径的圆;第二个是以肩关节为圆心,从肩关节到手腕为半径的圆;第三个是以手腕为圆心,手腕到拍面上的击球点为半径的圆。
第一个圆的技术特征。击球前左肩对准来球,击球后右肩对准出球,击球过程里肩部旋转180度以上。完成动作的动力源为腿部肌肉群和腰腹肌肉群。特别指出,有些人认为肩部旋转应该以腿为圆心,显然忽略了头部在击球过程里的稳定作用:在整个击球过程里头部应该稳定的对准来球和出球的方向。
第二个圆的技术特征。因为肘关节在击球的过程里应该始终保持弯曲的状态,所以旋转半径应该以肩关节到手腕的直线距离为准。其技术特征是,击球前拍柄底部的商标对着来球的方向,击球后拍柄底部的商标对着出球的方向。中间过程可以视为黑箱不予考虑。完成动作的动力源主要是胸肌和上臂肌肉群。
第三个圆的技术特征。在前两年的《网球天地》里有一篇文章说,手腕的击球动作,犹如汽车的风档雨刷的动作,我以为这个表述非常形象和准确。文章在第几期我已经记不住了,急切中也无法立刻找到这篇文章,有兴趣的朋友请自己找找。完成动作的动力源主要是手指和小臂的肌肉群。
显然,三个圆不是在同一个平面上。一般的讲,三个圆的平面夹角越大,球的旋转也越强烈而球速也越慢,反之,三个圆的平面夹角越小,球的平击的成分就越高,球速也越快。
探讨击球过程里三个圆的意义。第一,完善击球的技术动作。要充分认识转肩的重要性,因为第一个圆是其他两个圆的旋转基础。我们常见初学者击球前后都是以身体的正面对着网球,完全没有转建动作。第二,驱动任何一个圆旋转的肌肉群的力量的提高,都有助于球速的提高,这为体能训练的方式提供了一种依据。
杠杆原理加速用的应该是第三个杠杆。
由于杠杆原理很容易引起误解,
所以我想换个角度,说通俗点。
我们说来说去无非就是想要提高击球的功率。功率大,球的旋转和速度就大。
如何提高功率?
P=FV(P:功率,F:力,V:速度)
根据这个公式,增大击球时拍弦对球作用力和拍头的速度就可以提高功率。
如何增大作用力?
我说个简单的实验。你用手掌去推一下你面前的一堵墙。你觉得在什么情况下自己能使出最大的力?是大臂(手肘)贴近身体时还是大臂(手肘)远离身体时?
我想,如果你是正常人的话,都会觉得大臂贴近身体更能使上力的。
所以,击球时大臂(手肘)贴近身体的话作用力将更大。
如何提高速度?
提高速度的关键就在于提高加速度。你的拍子在击球前的加速度越大,击球时的拍头速度自然越大。
那又如何增大加速度呢?
F=ma
从这个公式可以看出,力与加速度是成正比的。
也就是,在你加速球拍的时候,你对拍子(在加速方向)的作用力越大,拍头加速度就会越大,击球瞬间的拍头速度也会越大。
看看,我们又回到作用力的问题上了。如何增大作用力,请看上面。
所以,加速球拍时大臂(手肘)贴近身体的话速度将更大。
所以,且不说难以控制,对普通人来说,张开大臂的挥拍方法根本就不能更好的加速。
盲目学习费德勒的正手只会更糟。(特别是根据学习的话)
我来从理论上分析为何这个公式成立:运用能量守恒定律。杠杆在平衡时才得出你提问的那个平衡公式。而力所做的功(该力产生的能量)等于:力的大小力的方向移动的距离。杠杆左右两端只能做围绕支撑点(可以看作圆心)作圆弧运动,凡是经过支撑点(圆心)的力都不做功,因为支撑点是固定的,力通过该点都不产生位移,能量也为零。所以,运用力的分解原理,杠杆一端所受的力都可以分解成垂直于杠杆的力与平行于杠杆的力,该两个力中,平行于杠杆的力(实际就是沿着杠杆方向的力)因为通过圆心而不做功,而垂直杠杆的力要达到两边平衡(能量守恒):力位移
两边要相等。位移的大小就是圆弧的长度,因为杠杆两端只能作标准圆周运动:由数学得知,圆弧长度只与半径成正比,那就得出了:力半径
要两半相等,而该垂直力的力臂就是半径的长度,由此得出该公式的成立。
你好!回答你的问题如下:
设动力F1、阻力F2、动力臂长度L1、阻力臂长度L2,则
杠杆原理关系式为:F1L1=F2L2
可有以下四种变换式:
F1=F2L2/L1
F2=F1L1/L2
L1=F2L2/F1
L2=F1L1/F2
希望帮助到你,若有疑问,可以追问~~~
祝你学习进步,更上一层楼!(^__^)
1、阿基米德在《论平面图形的平衡》一书中提到。
2、阿基米德在《论平面图形的平衡》一书中也提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。
(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;
(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;
(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下 倾;
(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替
(5)相似图形的重心以相似的方式分布……
3、正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的船只顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
4、战国时代的墨子最早提出杠杆原理,在《墨子 · 经下》中说“衡而必正,说在得”;“衡,加重于其一旁,必捶,权重不相若也,相衡,则本短标长,两加焉,重相若,则标必下,标得权也”。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)