钻石(英文:Diamond),化学和工业中称为金刚石。钻石是碳元素组成的无色晶体,为目前已知存在的第二最硬物质。
金刚石的用途非常广泛,硬度极高且导热性极高,用于沙纸、钻探、研磨工具之上,可以用来切削和刻画其他物质,以及大型集成电路等散热板上。
然而,自从1955年GE通过高温高压获得人造金刚石的技术后,科学家会利用高温高压制成金刚石微粒,而现在的细小颗粒的合成钻石已经较同级天然钻石便宜,所以天然钻石的工业价值已经完全消失;目前天然钻石的主要用途已经仅限于首饰与观赏。
扩展资料:
结构性质——
金刚石结构分为;等轴晶系四面六面体立方体与六方晶系钻石,在钻石晶体中,碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。
由于钻石中的C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以钻石不仅硬度大,熔点极高,而且不导电。在工业上,钻石主要用于制造钻探用的探头和磨削工具,形状完整的还用于制造手饰等高档装饰品,其价格十分昂贵。
钻石的摩氏硬度为10;由于在自然界物质中硬度最高,钻石的切削和加工必须使用钻石粉来进行。钻石的密度为352g/cm3,折射率为2417,色散率为0044。
-钻石
我先说说值得买的原因:天然钻石现在越来越稀缺。如今的开采量也越来越低,像五克拉及以上的钻石,年开采量只有一个篮球大小,这样的稀有性也决定了它的保值能力和收藏价值。近年来,天然钻石的价格持续走高,有数据显示,从2000年以后,每克拉的钻石价格由15000美元左右上涨到了接近31000美元,涨幅超过了100%!而在近几年,天然钻石的价格也在以4%左右的增速稳步上涨,保值能力十分可观。大多数人都知道钻石象征着爱情,但其实钻石还可以表达出很多不同的情感,不仅限于爱情,它还能代表友情、亲情,在重要时刻送出带有情感意义的钻石,是对这一段情感关系的重视与呵护。当然,钻石也可以作为自己对自己的肯定与鼓励,世上没有两颗完全相同的钻石,往往可以代表世界上每一个独一无二的自己。在人生的重要节点,选择钻石作为自己日常生活的记录、见证,让钻石陪伴自己度过生活的方方面面,也是非常有意义的。总之,钻石不仅能够给我们带来感官的美意,也能陪伴着我们更精致更璀璨的生活。
如果你对钻石不感冒,也是有它不值得买的原因:早在19世纪,钻石其实是不值钱的,是科学家们经常拿来做实验。但是在20世纪,一家叫做戴比尔斯的公司出现了,同时伴随着一句“钻石恒久远一颗永流传”广告语,传遍了全世界。这个公司用垄断的方式再加上饥饿营销把钻石炒了起来。如今也越来越多的人认识到了钻石的价值。说实在的,钻石也是一种噱头。
所以,值不值得买其实是完全看你自己的想法了,有些女生就是有一些公主情怀,觉得结婚必须要有一枚钻戒和一个婚礼,这就是仪式感。而有些女生就无所谓这些,觉得爱情,就是踏踏实实,细水长流。
不管怎么样,最重要的,还是她的想法,毕竟身边的人才是最重要的。
钻石是经过琢磨的金刚石,金刚石是一种天然矿物,是钻石的原石。
钻石是指经过琢磨的金刚石,金刚石是一种天然矿物,是钻石的原石。简单地讲,钻石是在地球深部高压、高温条件下形成的一种由碳元素组成的单质晶体。钻石美丽、稀有,是爱情和忠贞的象征,代表永恒不破的爱情。
2017年5月16日,苏富比拍卖行在瑞士日内瓦举行春季珠宝拍卖会,一对彩色梨形钻石耳坠以大约5740万美元、约合395亿元人民币的总价,创下拍卖史上的新纪录。这对梨形耳坠产自南非,除颜色不同,外形几乎一模一样,分别重约16克拉。
形成原理
钻石是金刚石精加工而成的产品,钻石是世界上最坚硬的、成份最简单的宝石,它是由碳元素组成的、具立方结构的天然晶体。其成份与我们常见的煤、铅笔芯及糖的成份基本相同,碳元素在较高的温度、压力下,结晶形成石墨(黑色),而在高温、极高气压及还原环境(通常来说就是一种缺氧的环境)中则结晶为珍贵的钻石(无色)。
自从钻石在印度被发现以来,就有人在河边、河滩上捡到钻石,这是由于位于河流上游某处含有钻石的原岩,被风化、破碎后,钻石随水流被带到下游地带,比重大的钻石被埋在沙砾中。
前人早期研究资料显示,辽宁瓦房店地区钻石晶体普遍受到溶蚀,在晶面上形成有三角形和四边形凹坑,并有三棱台状、三角锥状、短柱状、参差状、波纹状、叠瓦状、鳞片状、圆盘状等的凸起,以及诸如蛀虫状、信封状、毛玻璃状和各种不规则的熔蚀坑、刻蚀沟、熔蚀空洞等。此外,在晶面上还常见有各种形状的晶纹,如蛛网状、塑性变形滑动线、面缝合线、束状晕线、圆饼状残余晶面等(赵秀英,1988;严春杰等,1989;郑建平,1989;宁广蓉,1999)。蚀象在大颗粒金刚石晶面上发育,而在小颗粒金刚石晶面上则不发育(图版Ⅲ),十二面体和立方体金刚石的蚀象较八面体金刚石蚀象要发育得多(赵秀英,1988;池际尚等,1996a;b),造成这种差异的原因池际尚等(1996a,b)虽进行过讨论,但成因未明。
本项目对搜集到的辽宁瓦房店地区292颗钻石样品的表面微形貌特征进行观测及统计。结果显示,钻石晶体普遍遭熔蚀,但熔蚀程度较浅,有相当比例的钻石晶面比较光洁,晶棱及角顶较为清晰尖锐。晶面花纹和蚀像种类按出现的频率由多至少的顺序主要有:溶蚀沟、闭合晕线、塑性变形滑移线、倒三角形凹坑、束状晕线、滴状丘、生长丘、叠瓦状蚀像、毛玻璃化蚀象等。
4211 生长丘
正三角形生长丘是在金刚石的(111)晶面上发育的与该晶面外形取向一致的三角形生长丘。其对称性与晶面的对称性完全一致,是晶体的生长形态 (图415,图416)。
图415 阶梯状、锯齿状生长纹
(6-LW,微分干涉显微镜,50×)
Figure 415 Stepped and jagged growth lines
(sample 6–LW,Differential Interference Contrast Microscope,50×)
图416 峰丛状的三角形生长丘
(样品LN-50-248,微分干涉显微镜,100×)
Figure 416 Peak-like triangular growth hillocks
(sample LN–50–248,Differential Interference Contrast Microscope,100×)
4212 熔蚀沟
钻石在生长熔蚀(解)的过程中,往往在其晶体上形成窄如裂缝的溶蚀沟,常沿解理面或与解理面重合的滑移面发展而成。在多数情况下溶蚀沟形成了复杂的弯弯曲曲的裂缝,不受任何一种确定的平面所限制。有时晶体上所生成的溶蚀沟不大,只“锯开”了顶角、边棱及部分晶面。但有时它们也会形成一系列交叉的深裂缝,把晶体割裂成形状不同的晶块,因此在晶体上便形成了碎块状的缺陷(图417,图418)。
金刚石形成过程中,若局部表面遭受熔蚀,则可能在晶体上发育熔蚀孔道和空洞。这些孔道和空洞如漏斗状或深坑状,在孔道的底部和壁上常见小的三角形和四边形花纹(图419,图420,图版Ⅲ)。
4213 滴状丘
滴状丘是金刚石晶面形成以后遭受熔蚀形成的表面微细形貌特征,多见于曲面晶体的曲晶面上,常见于沿塑性变形滑移线发育,彼此紧密排列成群分布(图421),或者是沿着位错露头溶蚀形成(图422)。
图417 晶体被熔蚀沟分割
( LN-50-006,宝石显微镜,32×)
Figure 417 Crystal segmented by etched trench
(sample LN–50–006,Gem Microscope,32×)
图418 熔蚀沟
(LN-50-019,微分干涉显微镜,200×)
Figure 418 Etched trench
(sample LN–50–019,Differential Interference Contrast Microscope,200×)
图419 熔蚀空洞
(LN-50-015,微分干涉显微镜,200×)
Figure 419 Etched cavity
(sample LN–50–015,Differential Interference Contrast Microscope,200×)
图420 熔蚀空洞形成熔蚀孔道
(LN-50-253,宝石显微镜,50×)
Figure 420 Channel formed by etched cavity
(sample LN–50–253,Differential Interference Contrast Microscope,50×)
图421 滴状丘
(LN-50-253,微分干涉显微镜,100×)
Figure 421 Drop-like hillock
(sample LN–50–253,Differential Interference Contrast Microscope,100×)
图422 滴状丘
(12-LW,微分干涉显微镜,100×)
Figure 422 Drop-like hillock
(sample 12–LW,Differential Interference Contrast Microscope,100×)
4214 晕线
辽宁瓦房店金刚石中多边形闭合晕线是最为常见的晶体表面微细形貌特征之一。图423所示为一组围绕菱形十二面体角顶的闭合晕线,密集交错呈凸起状,晕线中心被一条长长的侵蚀裂隙穿过。图424为一组围绕角顶平行密集排列的闭合晕线。这种线状凸起是由于晶面分层熔解及生成熔解台阶而造成的微细层状蚀像。图425所示为一组较为平滑的束状晕线,具有磨蚀过的痕迹。
图423 闭合晕线
(LW-9,扫描电镜,55×)
Figure 423 Closed growth lines
(sample LW–9,Scanning Electron Microscope,55×)
图424 闭合晕线
(LW-12,扫描电镜,50×)
Figure 424 Closed growth lines
(sample LW–12,Scanning Electron Microscope,50×)
图425 束状晕线
(HN-120,扫描电镜,200×)
Figure 425 Bundle of lines
(sample HN–120,Scanning Electron Microscope,200×)
4215 塑性变形滑移线
塑性变形滑移线(图426,图427)是曲面晶体表面1~4组环绕晶体L5轴顶角的弧形复三方环,或1~4组垂直平行晶体L5轴晶棱的线状凸起(罗声宣等,1999)。它主要出现在金刚石{111}面上,有时为一组平行线,有时为两组相互交叉,有时可见三组交叉,很少在同一晶面上同时出现四组滑移线。滑移线的存在,表明晶体经历了强烈的应力作用,发生了塑性变形。当晶体受到很强烈的熔解时,就会因为受塑性变形带的影响,产生一组弯曲变形的滑动线(奥尔洛夫,1977)。塑性变形滑移线也是辽宁瓦房店金刚石样品中最常见的表面微形貌特征之一。
图426 平行的一组塑性变形滑移线
(LN-50-239,宝石显微镜,25×)
Figure 426 A group of parallel plastic deformation slip lines
(sample LN–50–006,Gem Microscope,25×)
图427 腐蚀后下凹的塑性变形滑移线
(LN-50-248,微分干涉显微镜,100×)
Figure 427 Plastic deformation lines sunk after erosion
(sample LN–50–248,Differential Interference Contrast Microscope,100×)
4216 倒三角形凹坑
倒三角凹坑是辽宁瓦房店金刚石最常见的表面微细形貌特征的一种。它形成于(111)面,与金刚石的晶面反向平行,三角形的角可以发生不同程度的钝化,形成六边形凹坑、四角或五角凹坑。根据倒三角凹坑的底部形态可将其分为两种类型:棱锥底三角凹坑和平底三角凹坑,棱锥底凹坑很浅,呈负三角锥状,它总是在晶格位错的露头处产生,平底三角凹坑与位错露头无关。当棱锥底三角凹坑进一步发育时,三角形蚀像加深并呈现出层状–阶梯状构造。在一些晶面上可以看到大小不等的倒三角凹坑,甚至有时候晶体的(111)晶面可以完全被倒三角凹坑覆盖。当比较小的三角凹坑叠加在比较大的三角凹坑之上时,可以区分出倒三角形蚀像的两个世代(图428,图429)。
图428 平底三角形凹坑群
(LN-50-232,宝石显微镜,40×)
Figure 428 Groups of flat base triangular etched pits
(sample LN–50–232,Gem Microscope,40×)
图429 平底三角形凹坑上布满细小三角形凹坑
(LN-50-232,微分干涉显微镜,200×)
Figure 429 A flat base triangular etched pit bestrewed with little triangular pits
(sample LN–50–232,Differential Interference Contrast Microscope,200×)
4217 叠瓦状蚀像
叠瓦状蚀象通常情况下发育在遭受强烈溶蚀的地方,是三角锥状丘和滴状丘的有规律组合。由于常见三角锥状丘和滴状丘沿滑移线发育,彼此紧密排列成群分布,所以叠瓦状蚀像的形状及分布特点可能取决于塑性变形,在塑性变形作用发生越强烈的地方,这种蚀象出现的可能性就越大,即取决于晶体平行{11l}面的滑移情况(图430)。
4218 四边形凹坑
四边形凹坑主要见于立方体面(100)方向,根据其底部形态可将其分为两种类型:棱锥底四边形凹坑和平地四边形凹坑。前者与位错的露头有关,后者与晶体结构有关(图431)。
4219 盘状蚀像
常见于浑圆晶体的曲晶面上。盘状蚀像是残留的原始平滑晶面部分,在蚀坑底部发育有清晰的沿一个方向排列的晕线。当浑圆晶体的大部分曲晶面都被强烈溶蚀时,只在个别部分残留有原始平滑晶面(图432,图433)。
42110 毛玻璃化蚀象
金刚石晶体的晶面因冲积磨蚀而产生的微细缺口可使其晶面变暗,具有油脂光泽,形成类似毛玻璃效果的表面形貌特征。但值得注意的是,提高放大倍数的时候,可以看见毛玻璃化蚀象实际上是十分微细的熔蚀现象,只是在低倍显微镜下不能进一步观察而已。样品LN-50-237为菱形十二面体金刚石,在低倍显微镜下可以见到其十二面体晶棱的交点处遭受熔蚀,呈现出毛玻璃化的效果,且可以见到楔形丘(图434)。当将毛玻璃化蚀象放大到500倍时,可见熔蚀面为微小的楔形丘,与晶体其他部位的楔形丘相对应(图435)。
与前人研究资料相比,本项目研究的292颗钻石的表面微形貌同样既有与生长过程有关的蚀像(生长丘),又有与熔蚀熔解有关的蚀像(熔蚀沟、倒三角形凹坑、晕线等),也有与塑性变形作用有关的线性结构(塑性变形滑移线),表明辽宁金刚石晶体表面微形貌种类相当丰富。在这些微形貌中,又以熔蚀沟、晕线、塑性变形滑移线、倒三角凹坑为主,表明辽宁金刚石晶体在形成过程中遭受了较强的熔蚀、塑性变形等地质作用。
图430 叠瓦状蚀像
(LN-50-104,微分干涉显微镜,100×)
Figure 430 Imbricated etched figures
(sample LN-50-104,Differential Interference Contrast Microscope,100×)
图431 平底四边形凹坑群
(LN-50-015,微分干涉显微镜,200×)
Figure 431 Groups of flat base quadrilateral etched pits
(sample LN-50-015,Differential Interference Contrast Microscope,200×)
图432 盘状蚀像、熔蚀沟
(LN-50-213,微分干涉显微镜,100×)
Figure 432 Etched disks,etched trench
(sample LN-50-213,Differential Interference Contrast Microscope,100×)
图433 盘状蚀像底部定向排列阶梯状结构
(LN-50-213,微分干涉显微镜,200×)
Figure 433 Bottom of etched disks oriented into a stepped structure
(sample LN-50-213,Differential Interference Contrast Microscope,200×)
图434 毛玻璃蚀象使晶体透明度降低
(LN-50-32,宝石显微镜,25×)
Figure 434 Crystal transparency decreased due to ground glass-like etched figures
(sample LN-50-32,Gem Microscope,25×)
图435 毛玻璃蚀象实为微小的楔形丘
(LN-50-33,微分干涉显微镜,500×)
Figure 435 Glass-like etched figures are in fact little wedge-like hillocks
(sample LN-50-33,Differential Interference Contrast Microscope,500×)
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)