钻石证书最后Clarity Characteristics Feather, Cloud是什么意思

钻石证书最后Clarity Characteristics Feather, Cloud是什么意思,第1张

Clarity Characteristics是表示钻石的净度特征,是对净度级别的一个描述。

Feather:羽裂纹,泛指钻石内的任何破裂纹。

Cloud:云状物,意思是由许多紧聚的针点组成,聚集一起时呈雾白或灰状,或似一团白色粉末。过大且浓的云状物会降低钻石的透明度,进而影响亮光及美感。

内含物称为内部特征,表面瑕疵又称为表面特征,乃因珠宝产业避免使用负面词语,且每一颗钻石都有属于自己独一无二的特征。

扩展资料:

净度优化处理

常见的净度优化处理包含激光钻孔处理及裂缝填充处理。

激光钻孔处理:从钻石表面以激光烧出一个直达内含物的小洞,或者加热局部区域制造裂隙,再加以酸洗内含杂质。

裂缝填充处理:将折射率近似于钻石的物质填充至具有裂缝中,使羽裂纹不易观察。

GIA接受评级经激光钻孔处理的钻石,但不接受评级经裂缝填充处理的钻石,因激光钻孔为不可逆的永久变化,然而加热会破坏填充物质,经常发生于镶嵌时使用焊枪。钻石若经优化处理,贩售方应主动告知买家。

—钻石净度

钻石原石可以看表面金刚石晶面熔蚀现象

金刚石在金伯利岩岩浆的浑圆化作用下,使晶体上布满了各种形态的蚀象,与此同时与金刚石伴生的镁铝榴石、镁橄榄石、铬尖晶石等同样产生了蚀象。浑圆化作用包含了熔蚀作用,尤其是内成稳定阶段金刚石相中的金刚石,晶面蚀象严重,膨胀阶段金刚石相中的金刚石,由于熔蚀作用较短,蚀象一般不明显。复杂的金刚石蚀象,在晶体的分布有一定规律,它反映了晶体构造特征,三方生长层(阶梯状)是生长态,复三方生长层认为是熔蚀态,蚀象按形态分为11种(图28)。

21倒三角凹坑蚀象

在平面-曲面晶体的八面体(111)晶面上,与(111)三角形晶面构成反向平行。由于熔蚀程度不同,三角形大小不等,小的成显微状,大的占据一定晶面,三角形的锐角在不断熔蚀作用下形成四边形、五边形、六边形。凹坑深浅不一,浅的凹坑平缓状,深的为三角锥状,在三角形凹坑中,还可出现阶梯状。三角形凹坑在晶面上分布有的十分密集,也有稀疏状零星散布于晶面上。在三角形凹坑底部,还可出现更小的三角凹坑蚀象分布。三角形凹坑蚀象与晶体均造关系为三边一底与八面体面网平行。

22四角凹坑蚀象

在平面-曲面晶体的六面体(100)晶面上,它与六面体晶面外形差45°,四角凹坑大小不等,小的成显微状,大的占据一定晶面,凹坑深浅不一,有的成四角锥状,在四角凹坑中可出现阶梯状,在同一晶面中可出现几组大小四角凹坑蚀象分布。四角凹坑蚀象与晶体构造关系为四边一底与八面体、六面体面网平行。

23蛀穴状蚀象

在阶梯状发育的似菱形十二面体及平面一曲面晶体中。蛀穴外形成规则的圆形凹坑及不规则港湾状,蛀穴凹坑深度不一,有的似水果被虫咬似的,部分蛀穴深入晶体内部,在边部及底部常有其它蚀象分布。

24麻点状蚀象

在曲面晶体上,由大小一致的麻点状熔蚀凹坑密集分布,凹坑一般不深。

25圆板状蚀象

在曲面晶体上有多层状圆板凸出台面或凹形圆板,在圆板状蚀象上还可出现其它形状的蚀象。

26块状蚀象

在曲面晶体上由不规则的凹形及凸形块段组成。

27束状晕线

一组密集的线状突起分布在曲面晶体上,在面缝合线或六面体晶棱处褶曲。

28滑线

在平面-曲面晶体及曲面晶体中,金刚石处于塑性体时沿八面体面网间距的滑动产生塑性变形,滑线是由于熔蚀作用使塑性变形在晶面上反映。八面体(111)晶面上可见三组方向滑线,平行于八面体晶棱(110)面及(111)面。平面晶体滑线不明显或较细微,曲面晶体则十分明显,外形成一种雕刻线状。滑线常伴有倒三角形凹坑蚀象,倒三角蚀象往往形成链状,滑线可切穿(111)面进入曲面晶体,再进入另一晶面(111)。当滑线在曲面晶体中时,三角锥小丘的一个棱和滑线方向一致,其余两个棱构成杉针状外形。

29叠瓦状蚀象

在曲面晶体、平面-曲面晶体中,由三角锥小丘互相叠加而成,常沿滑线分布。三角锥小丘进一步熔蚀成乳滴状小丘。

210熔蚀沟

在平面-曲面晶体、曲面晶体的破裂纹上,晶面交线、晶棱、解理、双晶面、交叉连生缝合线等金刚石结构薄弱环节上,常出现一种槽形熔蚀沟。

211毛玻璃蚀象

为一种轻度、均匀、密集质点状熔蚀凹坑,晶面呈粗糙云雾状,金刚石成乳白色,透明度降低。

此外,还可以用其它一些物理方法鉴别

(1)晶体(Crystal)晶体是指钻石内所有具有明显的三维几何形态的矿物晶体晶体又可分为无色的或浅色的包裹体及深色的或黑色的包裹体它的种类繁多(据统计有20多种),形态各异,是钻石中最普遍的内含物,在众多的晶体包裹体中,小钻石出现的几率最多,其次可见橄榄石和石榴石它们常被小羽毛状裂隙环绕或单独出现,或成群分布,可大亦可小晶体的出现,意味着钻石的净度等级一般不会高于VS级除非晶体很大,否则也不会对钻石的美观及耐久性造成影响

  (2)点状物(Pinponit)或称针尖,钻石内部极小的天然包裹物有无色和深色之分,单一或成群分布,它对净度级别的影响不大

  (3)云状物(Cloud)钻石中朦胧状或乳状无清晰边界的包裹物,可能是由许多极细小的点状物组成,也可能由结构位错引起云状物常依钻石的对称轴分布(与钻石的成长历史有关),有时在白色的云雾里还可出现一些黑色的大小不等的点状物云雾有时清淡,分布在小的区域内,对净度的影响不大;有时浓重,散布在整个钻石中,不但降低了钻石的净度和透明度,而且也影响了钻石的美观

  (4)羽状纹(Feather)钻石内由于解理或张力所造成的裂隙,形似羽毛状若羽状纹相对较大,则可称之为"裂纹"羽状纹易沿钻石的四组八面体方向裂开,分裂面平坦、光滑若沿任意方向破裂,其破裂面多成阶梯状羽状纹对净度的影响明显,通常易于观察到个别情况下,有些细小的羽状纹单独出现,且破裂面与钻石的小刻画垂直时,观察起来较困难,应特别仔细寻找,以免疏漏而造成结论上的错误

  (5)须状腰(Bearding)存在于腰部的须状微裂纹深入内部的部分,形似老人的胡须它是由于过激的粗磨造成的粗糙腰围与其成因相似,但粗糙腰棱有砂粒感,常伴有很小的缺口

  (6)内部纹理(Internal Graining)钻石内部因原子排列不规则所造成的生长痕迹,如双晶纹、生长纹等纹理可多可少、可粗可细、可平行也可相交纹理看上去多为白色的细线,有时可反光形成彩色条纹,它对净度的影响程度不等若纹理密集地出现在整个钻石内部时,可降低钻石的透明度,使钻石看上去有朦胧感

  (7)双晶中心(Twinning Center)结晶构造发生错动的中心点,常伴生有点状物

  (8)内凹原晶面(Sunken Natural)从表面凹入钻石内部的原始晶面多出现于钻石的腰围,也可出现于其他部位理论上深凹的锯齿状或三角状的天然晶面经重新打磨可以去除,但会造成质量上的损失,因此它会降低钻石的净度等级

  (9)激光痕(Laser Drill mark)用激光束及化学药品去除钻石内部深色包裹物时留下的痕迹管状或漏斗状称为激光孑L常被高折射率玻璃充填

  (10)吉痕(Bruise)钻石表面受外力撞击形成的根部伸入到钻石内部的痕迹击伤痕通常为白色,具一定的几何形态,尺寸可大可小

  (11)破口(Chip)腰部边缘破损的小口,多呈"V¨字形

  (12)坑或洞(Cavity)是钻石中较严重地从外部深入到内部的特征它们可能是由于解理崩落了小块钻石所致,也可能是钻石在抛光时造成表面的包裹体脱落而产生的坑或洞

钻石辨别真假小窍门:

1、滴水法

天然钻石的质地坚硬细腻,在表面上滴一滴水,如果是真钻,水滴会长时间不散,或者朝其表面哈气,真钻表面水汽能很快消失,反之即为假钻。

2、验硬度

天然钻石是自然界中最硬的宝石,用锋利刀具在其表面上刻划,不会造成任何的划痕,而假钻的硬度低,其表面经过刻划容易出现痕迹。

3、看火彩

在灯光的照射下,天然钻石具有闪亮夺目的火彩,其表面能够反射出五颜六色的彩光,而假钻的光彩生硬呆板,看起来不自然。

奶油钻是一种拥有高级别的颜色和高级别的净度的钻石,但价值却是很低。

原因就在于奶油钻的内含物是白色的雾,一眼看上去,感觉很白,但是不透彻,有浑浊的感觉,有些奶油钻严重的,白色的雾会严重影响了钻石的火彩。

这种白色的雾肉眼观察感觉像是有一层白色的烟布满钻石就像一杯清水滴了一滴牛奶但对净度评级没有影响,只是奶油钻的透明度有所降低。

扩展资料

奶油钻的危害

一般情况下,我们认为钻石价格由钻石4C决定,懂钻石知识更多的人,可能会考虑钻石荧光等,但还有一样,钻石的品相,也对钻石价格有很大的影响。奶油钻则使钻石显得朦胧,不通透。

奶油钻的危害在于, 大多数钻石证书上都不会标注是否是咖啡钻或奶油钻,因此给一些人造成可乘之机,尤其是在网上销售的钻石,在你付款购买之前,你不会见到钻石,只见到GIA钻石证书上的净度、颜色、切工等,等一买到后,是奶油钻,那就惨了,因为这两钻石虽然影响钻石品相,但却不影响钻石的颜色及净度评级。

钻石的识别:

钻石的鉴别是根据钻石的特殊的物理化学性质、加工特征和光学效果,同其他相似宝石的差异来鉴别真伪。简单的钻石鉴别方法有肉眼及10×放大镜观察鉴别和其他方法。

肉眼及10×放大镜下:

(1)

光泽:钻石具有典型的金刚光泽,是天然无色宝石中最高的,也是仿制品所不具备的。

(2)

颜色:多数钻石为无色至**,浅褐色,彩色钻石数量少,有**、蓝色、粉红色等。

(3)

色散:钻石具有较强的色散,火彩绚丽柔和,而合成立方氧化锆色散高于钻石,因而火彩强烈、单调而刺眼,水晶、白色蓝宝石等色散则较低,火彩很不明显。

(4)

硬度:钻石具有极高的硬度,使它具有刻面平滑、棱挺直、角顶尖锐的特征,而仿制品的硬度根本无法和其相媲美,刻面上常见有抛光痕和棱线钝化的现象。

(5)

比重:适用于未镶嵌的裸石鉴别,钻石的比重为352,常见到的仿制品(合成立方氧化锆、GGG、YAG)比重通常远远大于钻石,而水晶比重为265,低于钻石。

(6)

放大检查:钻石内部常会出现天然的矿物包裹体以及生长现象,如云雾状包裹体、阶梯状生长纹、腰棱残留的三角形原始蚀坑。

(7)

加工:钻石的切工通常比例标准,棱线交接准确,相同刻面形状大小一致,从而使之有较高的亮度和漂亮的火彩,而仿制品通常切工较差,棱线搭接较差,相同刻面形状大小不一致。

其它方法:

(1)

利用钻石的高热导率,用热导仪进行参考性鉴别,或者对钻石哈气,雾痕会很快消散。

(2)

利用钻石的亲油性进行鉴别;用油性笔在钻石上划线,线条连续、粗细均匀,水滴落在台面上时不会向四周散开,而是聚成一个小液滴。

仿钻:

锆石:硬度低,棱线常有磨损,具有较高的双折率,故放大检查可见后刻面棱双影。

合成立方氧化锆:通常底尖有贝壳状断口,腰围有孤度,有很强的色散,比重远高于钻石。

铅玻璃:棱线磨损严重,放大检查可见气泡。

合成碳硅石:这是和钻石参数最接近的品种,由于高双折射率,亭部可见重影,放大检查可见丝状包裹体。

钻石的矿物名称为金刚石,英文名称为Diamond,源自希腊语“adamant”,意思是“坚不可摧”。

钻石与红宝石、蓝宝石和祖母绿一起并称为四大珍贵宝石。目前钻石已成为结婚的信物,并被誉为四月的生辰石,象征坚韧、永恒和纯洁无瑕。

一、钻石的化学成分和分类

1化学成分

钻石是具有立方结构的碳。主要成分是C,其质量分数可达9995%,次要成分有N、B、H等。其他微量元素还有Si、Al、Ca、Mg、Mn、Ti、Cr等。

2分类

钻石的分类最早由Robertson、Fox和Martin等三人根据钻石在红外区吸收带和对紫外光透射的差异提出,他们认为Ⅰ型钻石能透过400~300nm的紫外光并在红外区显示与氮有关的吸收带,而Ⅱ型钻石可透过低至220nm的紫外光并在红外区无明显的吸收带。

1959年美国的Kaiser和Bond发现Ⅰ型和Ⅱ型钻石的差异与杂质氮有关,后来人们又发现在含氮的钻石中氮的最常见的存在形式不只一种,氮以单个氮原子分散在钻石中,称为C心、以原子对集合体出现,称为A心、3个氮形成的原子团称为N3中心,而多于4个原子的原子团则称为B集合体(B心),也可为一些较大的有几个原子厚的扁平层偏片晶氮存在,称为D心。钻石的分类是按照是否含氮和硼及氮的聚型类型划分如下(表14-1-1)。

表14-1-1 钻石的分类

天然钻石中Ⅰa型钻石约占98%以上,Ⅱa型占1%左右,Ⅰb型和Ⅱb型很少,人工合成钻石中以Ⅰb型为主,少量为Ⅰb和Ⅰa型混合型。

二、钻石的结构与形态

1晶体结构

钻石属等轴晶系, ;a0=035595nm;Z=8,具立方面心格子,C原子位于立方体角顶和面的中心,将立方体平分为8个小立方体,在其中4个相间排列的小立方体的中心还存在C原子,呈四次配位。每个C原子以SP3外层电子构型与相邻的4个C原子形成共价键(如图14-1-1)。C—C间距为01542nm,C-C-C键角109°28′16″。

图14-1-1 钻石的晶体结构

2形态

钻石属六八面体晶类,Oh-m3m(3L44L36L29PC),常见单形:八面体o{111},菱形十二面体d{110}、立方体a{100}及其聚形(图14-1-2a和图14-1-2b)。

图14-1-2a 钻石的常见晶形

钻石晶体通常呈歪晶,由于溶蚀作用使晶面棱弯曲,晶面常发育阶梯状生长纹、生长锥或蚀象,且不同单形晶面上的蚀象不同,八面体晶面上可见倒三角形凹坑,立方体晶面上可见四边形凹坑,十二面体晶面上可见线理和显微圆盘状花纹。

钻石的双晶依(111)最普遍,可成接触双晶、星状穿插双晶或轮式双晶。其中三角薄片(macle)接触双晶具有典型的扁平三角形外观,在双晶两个平面结合处环绕钻石有明显的青鱼骨刺纹,在钻石贸易中称为结节。

三、钻石的光学性质

1颜色

钻石的颜色分两个系列:即无色—浅**系列和彩色系列。无色—浅**系列钻石的颜色为:无色至浅黄、浅褐;彩色系列钻石的颜色一般为深黄、褐、灰及浅至深的蓝、绿、橙黄、粉红、红、紫红色,偶见黑色。

图14-1-2b 钻石晶体不同聚形示意图

大多数彩钻颜色发暗,强至中等饱和度、颜色艳丽的彩钻极为罕见。彩钻是由于少量杂质 N、B和H原子进入钻石的晶体结构之中,形成各种色心而产生的颜色。另一种原因是晶体塑性变形而产生位错、缺陷,对某些光能的吸收而使钻石呈现颜色。

(1)黄至棕**钻石的颜色是由于N原子代替C原子而产生的。理想的钻石晶体是禁带很宽的半导体,宽的禁带避免了可见光范围内的一切可能吸收,因此理想的钻石是无色的。当N原子代替部分C原子时,由于氮外层有5个电子,代替碳原子后多余一个电子,这电子在禁带中形成一个新的能级,相当于减少了禁带宽度,从而使得晶体能吸收可见光范围内的光能而呈现颜色。N原子代替C原子有不同的形式,一种情况是孤立的N原子代替C原子,它对能量高于22eV(波长小于560nm)的入射光有明显的吸收,使钻石呈现一系列**、褐色、棕色,其颜色很鲜艳浓郁,Ⅰb型钻石的颜色往往由该种色心引起;另一种情况是金刚石内N原子可移动聚合在一起形成多个N原子集合体,这种集合体对400~425nm光有明显的吸收作用,同时对4772nm有弱吸收,由于人们对4772nm吸收反应灵敏,4772nm蓝光被吸收后,钻石呈现**。

(2)蓝色钻石:从晶体完美程度来讲,蓝色钻石是最好的,也是极罕见的。它不含N却含有微量B(wB<1%),属Ⅱb型钻石。正是这些B使钻石呈现美丽的蓝色。少数含H杂质的钻石也呈蓝色。

(3)粉红色钻石和褐色钻石:这两种彩钻都是由于钻石在高温和各向异性压力的作用下发生晶格变形而产生的颜色,相比之下粉红色钻石罕见得多,因而极其昂贵。这种晶体缺陷在极端情况下可形成紫红色钻石。

(4)绿色钻石:绿色和蓝绿色钻石通常是由于长期天然辐射作用而形成的。当辐射线的能量高于晶体的阈值时,碳原子被打入间隙位置,形成一系列空位-间隙原子对,使钻石的电子结构发生变化,从而产生一系列新的吸收,使钻石着色。若辐照时间足够长或辐照剂量足够大,可使钻石变成深绿色甚至黑色。辐射造成的晶格损伤有时还可形成蓝色钻石和黄褐色钻石。

2光泽

钻石具有特征的金刚光泽,金刚光泽是自然界透明矿物最强的光泽。但钻石的光泽有时会因表面不平而显得暗淡。

3透明度

钻石的透明度为透明-不透明。纯净的钻石应该是无色透明的,但由于地质条件的复杂性,常有杂质元素进入钻石的晶格或以包裹体的形式存在于钻石中,使钻石的透明度受到一定的影响。

4光性

钻石属等轴晶系,为均质体,在正交偏光下全消光,但有些钻石由于内部应变或内部含有包裹体,偶见异常消光。

5折射率

钻石为单折射宝石,在钠光(5893nm)中折射率为2417,超过了常规折射仪的测试范围,是透明矿物中折射率最大的。

6色散

钻石的色散强,色散值为0044,比天然无色透明宝石的色散都高,所以我们在切割标准的钻石表面能看到漂亮的“火彩”。

7发光性

(1)紫外荧光:钻石在紫外灯下的荧光可有不同的反应,有些钻石发光很强,有些则不发光。钻石在长短波紫外光下可呈现从无至强的蓝色、**、橙**、粉色等荧光,通常长波较短波的荧光强。

(2)X射线荧光:钻石在X射线下一般呈现蓝白色的荧光,且稳定性好,在钻石开采中可根据钻石X射线下的荧光特性,将其他砾石分选出去。

(3)阴极发光:阴极发光可揭示钻石的内部生长结构,钻石在阴极发光仪的电子束照射下,绝大多数钻石会发出阴极荧光,主要呈现蓝色、橙红色和黄绿色,天然钻石和合成钻石的生长条件不同,表现出的生长结构也不同,目前阴极发光技术已成为鉴别钻石是天然的还是合成的主要手段之一。

8吸收光谱

无色—浅**的钻石,在紫色区4155nm处有一吸收谱带;其他颜色的钻石的吸收线位于453nm,466nm和478nm处;褐—绿色钻石,在绿区504nm处有一条吸收窄带,有的钻石可能同时具有415nm和504nm处的两条吸收带。辐照改色的**钻石可能在498nm,504nm和592nm处有吸收带。

四、钻石的力学性质

1解理

钻石有四组八面体{111}方向的中等解理,{110}、{221}的不完全解理。图14-1-3为钻石{111}方向解理示意图。

图14-1-3 钻石{111}方向解理示意图

2硬度

钻石的摩氏硬度为10,是自然界最硬的矿物,钻石的硬度具有各向异性的特征,不同方向硬度不同,其八面体晶面的硬度大于立方体晶面的硬度,因此在钻石加工中可用钻石研磨钻石。

钻石具有很强的抗磨性能,摩擦系数小,其抗磨能力是刚玉的90倍。这种特性使钻石能高度抛光,并使每个小面边棱锐利、挺直。但值得注意的是,钻石虽硬,但常显脆性,在外力冲击作用下很容易破碎。

3密度

钻石的密度为352(±001)g/cm3,因钻石成分单一,并且纯度较高,所以钻石的密度相对很稳定。

五、钻石的内含物

钻石的内含物主要有浅色至深色矿物包体、云状物、点状包体、羽状纹和生长纹。矿物包裹体主要是钻石、橄榄石、辉石、石榴子石、锆石、刚玉、黑色石墨、暗色的赤铁矿、钛铁矿、铬铁矿、硫化物等。云状物由云雾状白色或灰色包体组成,羽状体则包括开放式裂隙和隐蔽式裂隙两种裂隙类型。此外,钻石中还可见生长纹和解理等特征。

六、钻石的电学性质和热学性质

1电学性质

Ⅰ型和Ⅱa型钻石是绝缘体,室温下电阻率为1014~1015Ω·cm。通常情况下,Ⅱb型钻石因含硼而电阻率降低,为25~108Ω·cm,为P型半导体,钻石半导体的电阻值随温度变化特别灵敏,甚至连很微小的变化(00024℃±)都能在瞬间被记录下来,这一特点被广泛应用于真空仪器和精密测温的仪器中。

2热学性质

(1)导热性:钻石具有很高的导热率,且导热率与含氮量有关。若300°K下其导热率为铜的3倍,则其含氮量<300×10-6。Ⅰa型钻石的含氮量多高于此值,故不宜作散热元件。Ⅰb和Ⅱ型钻石含氮量低,均具有很高的导热率,适于作散热元件。其中Ⅱa型钻石的导热率最好,约比铜高6倍,在190℃则升至30倍左右。

根据钻石的高导热率,宝石鉴定中可用钻石笔(热导仪)鉴定钻石和其仿制品;若简单地对着样品哈气,如果是钻石,则表面上的那层雾气比仿制品要消失得快,这是因为钻石传热快,钻石提供的热量让水膜迅速蒸发的缘故。

(2)热膨胀性:钻石的热膨胀性非常低,温度的突然变化对钻石的影响很小,但若钻石中有裂隙或含有热膨胀性大于钻石的包裹体时,温度的突变可能使钻石发生破裂。

(3)可燃性:高温下钻石可燃,燃点在空气中为850~1000℃,钻石在氧中加热到650℃时,即缓慢燃烧而变为气体二氧化碳。燃点和钻石与空气的接触面及增温率有关,一般小颗粒钻石比大颗粒钻石易燃。激光打孔就是利用该原理在很小区域内提供集中的热量,使空气中的氧将钻石中的暗色物质烧掉。在绝氧并加压的真空条件下,钻石加热到1800℃,可转变成石墨。

3其他性质

(1)表面性质:钻石表面具有亲油性和疏水性。由于钻石由非极性的碳原子组成,对水的H+和(OH)-不产生吸附作用,即水对钻石不产生极化作用,故钻石具有疏水性。

(2)化学稳定性:钻石对任何酸都是稳定的,甚至在高温下,酸对钻石也不显示任何作用,但在含氧盐类和金属熔体中,钻石很容易受侵蚀。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/982686.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-12
下一篇2023-07-12

发表评论

登录后才能评论

评论列表(0条)

    保存