骨是人体内最坚固的结构。骨和关节、肌肉连接起来,可以使人体做各种活动。此外,骨髓还有造血机能。骨是由有机物和无机物构成的。有机物使骨具有弹性,无机物使骨坚固。骨的组织包括骨膜、骨质和骨髓。
以钙质为例,成人体内99%的钙以矿物质的形式储存于骨组织和牙齿中,仅1%的钙质存在于细胞外液和各种软组织中。当人体血液中钙含量较低时,骨组织就会释放存储的钙,增加血液中钙的含量,来维持钙的平衡。
骨是骨骼系统的主要器官,骨骼构成了人体的支架,并赋予人体基本形态,起着保护、支持、运动的作用。在运动中,骨头起着杠杆的作用,骨关节是运动的枢纽,骨骼肌则是运动的助力器官。
由于骨髓中有丰富的红骨髓,参与体内的造血。在儿童少年时期,骨的生长发育主要是靠骺软骨的不断增生骨化,使骨的长度不断增加;骨膜内的造骨细胞在骨质外层不断沉淀钙盐,从而骨质得以加厚,使骨更加粗壮、坚固。
人体在长期坚持体育锻炼时,新陈代谢加强了,使骨的血液供给得到改善。血液通过骨膜内的血管传递给骨膜内的造骨细胞,于是造骨细胞的功能更加活跃,从而促进骨细胞的分裂、分化活动,使之更好地参加骨质的形成,完善骨的形态。
受压力大的地方比受压力小的地方发育得快,因此在体育锻炼时,可通过各种运动和练习,使骨受到不同程度的适当的力,借以加强骨的正常发育。
健身使身体的血液循环更快更好,这样可以让血液给骨骼输送更多的养份,促使骨骼生长更好,即使成年后,这种生长看似停止,但骨骼的功能,韧带,软皮却没有停止过。
在青少年时期是骨骼生长的黄金时期,这个时期,如果有科学的健身,一定的营养,充足的睡眠,对骨骼的生长起着很大的作用,也会终身受益。
目前认为,骨骼肌收缩的机制是肌丝滑动原理(sliding filament mechanism)。其过程大致如下:
①运动神经末梢将神经冲动传递给肌膜;
②肌膜的兴奋经横小管迅速传向终池;
③肌浆网膜上的钙泵活动,将大量Ca2+转运到肌浆内;
④肌原蛋白TnC与Ca2+结合后,发生构型改变,进而使原肌球蛋白位置也随之变化;
⑤原来被掩盖的肌动蛋白位点暴露,迅即与肌球蛋白头接触;
⑥肌球蛋白头ATP酶被激活,分解了ATP并释放能量;
⑦肌球蛋白的头及杆发生屈曲转动,将肌动蛋白拉向M线;
⑧细肌丝向A带内滑入,I带变窄,A带长度不变,但H带因细肌丝的插入可消失,由于细肌丝在粗肌丝之间向M线滑动,肌节缩短,肌纤维收缩;
⑨收缩完毕,肌浆内Ca2+被泵入肌浆网内,肌浆内Ca2+浓度降低,肌原蛋白恢复原来构型,原肌球蛋白恢复原位又掩盖肌动蛋白位点,肌球蛋白头与肌动蛋白脱离接触,肌则处于松弛状态。
肌肉的运动原理是肌肉收缩牵引骨骼而产生关节的运动,其作用犹如杠杆装置。主要的三种运动方式如下:
平衡杠杆运动:支点在重点和力点之间,如寰枕关节进行的仰头和低头运动。
省力杠杆运动:其重点位于支点和力点之间,如起步抬足跟时踝关节的运动。
速度杠杆运动:其力点位于重点和支点之间,如举起重物时肘关节的运动。
扩展资料:
肌肉收缩的基本过程:
肌细胞产生动作电位,引起肌浆中血清钙(Ca2+)浓度升高,血清钙(Ca2+)与肌钙蛋白C结合,肌钙蛋白发生构象变化,使肌钙蛋白Ⅰ与肌动蛋白的结合减弱,原肌球蛋白发生构象改变,使肌动蛋白上的结合位点暴露,横桥与肌动蛋白结合,横桥发生扭动,将细肌丝往粗肌丝中央方向拖动。
经过横桥与肌动蛋白的结合、扭动、解离和再结合、再扭动所构成的横桥循环过程,细肌丝不断滑行,肌小节缩短。
——肌肉收缩
——肌肉
动物的运动系统由骨、关节和骨骼肌组成.骨骼肌有受刺激而收缩的特性,当骨骼肌受神经传来的刺激收缩时,就会牵动着它所附着的骨,绕着关节活动,于是躯体就产生了运动.在运动中,神经系统起调节作用,骨骼肌起动力作用,骨起杠杆作用,关节起支点作用.因此运动是以骨为杠杆、关节为支点、骨骼肌收缩为动力而形成的.运动要消耗能量,能量来自于肌细胞的有机物氧化分解.
故答案为:关节;骨骼肌;骨;关节.
肌肉收缩的三种形式
肌肉对单个 发生的机械反应称为单收缩根据肌肉收缩时肌长度和肌张力的变化,
可将肌肉收缩分为三种形式
1、缩短收缩(向心收缩)
特点:张力大于外加阻力,肌长度缩短
作用:是肌肉运动的主要形式,是实现动力性运动的基础(如挥臂、高抬腿等)
(1)等张收缩
外加阻力恒定,当张力发展到足以克服外加阻力后,张力不再发生变化但在不同的关节角度时,肌肉收缩产生的张力则有所不同在关节运动的整个范围内,肌肉用力最大的一点称为“顶点”在此关节角度下,骨杠杆效率最差
如:推举杠铃, 关节角度在120°时肱二头肌收缩张力最大,关节角度在30°时肱二头肌收缩张力最小
最大等长收缩时,只有在“顶点”即骨杠杆效率最差的关节角度下,肌肉才有可能达到最大收缩而在其他关节角度下,肌肉收缩均小于自身最大力量
在整个关节活动的范围内,肌肉做等张收缩时所产生的张力往往不是肌肉的最大张力
(2)等动收缩
在整个关节活动范围内,肌肉以恒定速度进行的最大用力收缩但器械阻力不恒定
等动练习器:
在离心制动器上连一条尼龙绳,由于离心制动作用,扯动绳子越快,器械产生的阻力就越大
特点:器械产生的阻力与肌肉用力的大小相适应
等动收缩的优点:
外加阻力能随关节活动的变化而精确地进行调整,使肌肉在整个关节活动范围内都能产生最大的肌张力
2、拉长收缩(离心收缩)
特点:张力小于外加阻力,肌长度拉长
作用:缓冲、制动、减速、克服重力
如:蹲起运动、下坡跑、下楼梯、从高处跳落等动作,相关肌群做离心收缩可避免运动损伤
3、等长收缩
特点:张力等于外加阻力,肌长度不变
作用:支持、固定、维持某种身体姿势其固定功能还可为其他关节的运动创造适宜条件
如:站立、悬垂、支撑等动作
4、三种收缩形式的比较
(1)力量:收缩速度相同情况下,离心收缩产生的张力最大(比向心收缩大50%,比等长收缩大25%)
(2)代谢:输出功率时,离心收缩能量消耗低,耗氧量少
(3)肌肉酸痛:离心收缩疼痛最显著,等长收缩次之,向心收缩最轻
肌收缩
肌肉对 所产生的收缩反应现象狭义来说,是指脊椎动物骨骼肌靠传播性活动电位而发生的收缩单一的活动电位产生单收缩,反复活动电位产生强直收缩不通过活动电位的肌肉收缩多数情况是由于非传布性的去极化而产生的,去极化如只限于局部肌肉,且为短暂性的,称为局部收缩去极化如在肌肉全部而且是持续性的,则称为拘性收缩在平滑肌等所见到的持续性收缩一般称为痉挛,但很多仍然是伴随着反复活动电位或是持续性去极化可是在双壳贝的闭壳肌等所看到的持续性收缩并没有电位的变化,这种收缩是出于闸式结构肌肉收缩的记录大致可有两种情况:一种是在重量负荷下记录肌肉缩短时的长度变化――等张收缩另一种是记录肌肉长度保持一定时的张力变化的等长收缩
一、骨骼肌细胞的微细结构
粗肌丝 :肌球蛋白
1肌原纤维: 肌动蛋白
细肌丝 原肌球蛋白
肌钙蛋白
2肌管系统 横管系统(T管)
纵管系统 (L管)
二、肌肉的特性
1、肌肉的物理特性
① 伸展性:肌肉在外力作用下可被拉长,为肌肉的伸展性
② 弹性:当外力消失时,肌肉又恢复到原来形状,为肌肉的弹性
③ 粘滞性:肌肉活动时由于肌肉内部各蛋白分子相互摩擦产生的内部阻力为肌肉的粘滞性肌肉的物理特性受温度的影响当肌肉温度升高时,肌肉的粘滞性下降,伸展性和弹性增加
2、肌肉的生理特性
①兴奋性:肌 有对 发生反应兴奋的能力
②收缩性
三、细胞的生物电现象
1 细胞的兴奋性;兴奋
2 单一细胞的跨膜静息电位和动作电位
①静息电位:(1)概念:(内负外正)
(2)极化、超极化、去极化(除极化)及复极化的概念
②动作电位:(1)概念:(跨膜出现短暂可逆的电位变化)
(2)产生时的电变化;(3)波形的特点(锋电位、负后电位、正后电位);(4)产生的意义;(5)特点
3生物电现象的产生机制
① K+平衡电位:产生的条件和产生机制
② 锋电位和Na+平衡电位: 产生的条件和产生机制
③ Na+通道的失活和膜电位的复极
(1)绝对不应期和相对不应期
(2)Na+泵的作用
4 动作电位的引起和它在同一细胞上的传导
(一)阈电位和锋电位的引起
1阈电位的概念2阈电位现象的原因
3阈强度、阈 、阈下
(二)局部兴奋及其特性
(三)兴奋在同一细胞上的传导机制
1局部电流学说 2有髓神经纤维的跳跃式传导
四、 肌细胞的收缩功能
1、 神经-骨骼肌接头处的兴奋传递
神经-骨骼肌接头结构;兴奋传递过程;终板电位的特点;兴奋传递的特点
2、 运动单位的组成
3、 运动单位的动员
(4)骨骼肌收缩的分子机制
1. 滑行学说及其主要内容
2. 收缩过程的分子机制
①粗肌丝的结构及横桥的特性
②肌丝滑行的机制
③细肌丝的结构
五、肌肉的收缩形式与力学特征
1缩短收缩、拉长收缩和等长收缩
缩短收缩:缩短收缩是指肌肉收缩所产生的张力大于外加的阻力时,肌肉缩短,并牵引骨杠杆做相向运动的一种收缩形式依据整个关节运动范围肌肉张力与负荷的关系,缩短收缩又可分非等动收缩和等动收缩两种
拉长收缩:当肌肉收缩所产生的张力小于外力时,肌肉积极收缩但被拉长,这种收缩形式称拉长收缩,又称离心收缩
等长收缩:当肌肉收缩产生的张力等于外力时,肌肉积极收缩但长度不变,这种收缩形式称等长收缩
2肌肉收缩的力学特征
(一)后负荷对肌肉收缩的影响——张力与速度关系
后负荷:后负荷是肌肉收缩开始之后所遇到的负荷
力-速度曲线:固定前负荷不变,让肌肉在不同的后负荷条件下进行等张收缩把肌肉所产生的张力和缩短初速度绘成坐标曲线
(二)前负荷对肌肉收缩的影响—张力与长度关系:见课本图2-15
前负荷:是肌肉收缩开始前加上的负荷
六、肌纤维类型与运动能力
1人类肌纤维类型的类型
依据收缩机能将骨骼肌纤维分为“慢肌”和“快肌”两种类型的观点这一分类方法通常只适用于区别动物骨骼肌纤维类型,而不完全适合于区别人类的骨骼肌纤维类型
(1)根据组织化学染色法
依据具有不同酶活性的肌原纤维ATP酶在各种不同pH环境中预孵育时染色程度的差异,可将骨骼肌纤维划分为Ⅰ型Ⅱ型,以及Ⅰc、 Ⅱa、Ⅱb、Ⅱc、Ⅱac和Ⅱab六种亚型其中,Ⅱc型纤维被认为是一种未分化的较原始的肌纤维
(2)根据肌纤维代谢特征
把骨骼肌纤维分为慢缩强氧化型、快缩强氧化酵解型和快缩强酵解型三种类型
2两类肌纤维的形态、代谢和生理特征
形态特征
形态特征包括以下三个方面: ①结构特征; ②神经支配;③肌纤维面积
代谢特征:① 代谢底物;② 代谢酶活性
3、生理特征
①收缩速度:肌肉中快肌纤维百分比较高者,其收缩速度也较快
②收缩力量:肌肉收缩力大小取决于肌肉的横断面积并受肌纤维类型等因素影响,多数研究认为动物快肌收缩力量明显大于慢肌
③ 抗疲劳性:动物和人体实验均证明,慢肌纤维的抗疲劳能力较快肌强,故快肌纤维较慢肌纤维更易疲劳
3不同类型肌纤维的分布
(1)肌纤维类型的百分组成
(2)骨骼肌纤维功能上的分布现象
(3)骨骼肌纤维类型的性别差异
(4)骨骼肌纤维类型组成的年龄变化
(5)遗传因素对骨骼肌纤维类型分布的影响
4肌肉中感受器的结构和功能
(1)肌梭的结构与功能;脊髓前角的描述;感受装置结构和功能的描述;γ运动纤维的作用;反馈信息的传递
(2)腱梭的结构与功能;感受装置结构;反馈信息的传递
七、肌肉的结缔组织
1、肌肉结缔组织的组成:胶原是结缔组织最主要成分,以胶原纤维形式存在
2.运动对肌肉结缔组织的影响
3.解释:快速下蹲比缓慢下蹲起跳和“挺胸带臂”比“停胸带臂”用力效果好的原因
4 运动对肌肉结缔组织的影响
①长期运动可提高肌腱的抗张力量和抗断裂力量
②长期运动可使肌中结缔组织肥大
八、肌电图的应用
1、肌电的引导
表面电极所引导的是整块肌肉的综合电活动,它具有操作简便,无损伤和无痛苦等优点,被广泛应用于体育科学研究,缺点是不能记录深层肌肉电活动
2、正常肌电图
正常肌肉在完全松弛情况下不出现电活动,引导电极插入肌肉后,在记录仪上仅描记出一条平稳的基线运动单位电位的波幅代表放电的强度,其大小取决于兴奋的运动单位大小或活动肌纤维数目
3、肌电图的应用
①利用肌电图分析技术动作,了解完成该项动作的主要肌群,及其用力程度和顺序,为体育教学与训练提供依据
②利用肌电图解决体育基础学科(如运动生理学、运动解剖学、运动生物力学和运动医学)中某些理论与实践问题
③利用肌电图了解训练对神经肌肉的影响,为评定运动员训练水平提供依据
首先是神经肌肉接头处神经递质从突触前膜传递到肌膜上,引起突触后膜(即肌细胞膜)N型胆碱能受体Na离子通道开放,大量Na离子内流,导致骨骼肌细胞膜局部去极化,这种去极化到达一定程度可引起骨骼肌细胞膜的动作电位,即骨骼肌兴奋,通过兴奋-收缩偶联,肌浆内Ca离子浓度升高,与骨骼肌纤维上的肌钙蛋白结合,暴露细肌丝上与粗肌丝横桥结合位点,粗肌丝横桥与细肌丝结合,消耗ATP,横桥摆动,肌肉收缩;继而肌浆内Ca离子浓度下降,横桥与细肌丝解离,Ca离子与肌钙蛋白解离,肌肉舒张。
肌肉是由圆柱状的肌纤维组成的,而肌纤维中包含有许多纵向排列的肌原纤维,它是肌肉收缩的装置。肌肉是由圆柱状的肌纤维组成的,而肌纤维中包含有许多纵向排列的肌原纤维,它是肌肉收缩的装置。肌原纤维由肌小节组成。在每个肌小节中,由肌球蛋白组成的粗丝和由肌动蛋白组成的细丝—F-肌动蛋白相互穿插排列,并且依靠粗丝头端的横桥使二者紧密接触在一起。肌肉的收缩是粗丝和细丝发生相对运动的结果,这个过程受Ca的调节,并需要水解ATP来提供能量。当肌肉处于静止(舒张)状态时,胞液Ca浓度较低(<10moL/L),钙离子结合亚单位(TnC)不与Ca结合,则TnC与TnI、TnT的结合较松散。此时,TnT与原肌球蛋白紧密结合,使原肌球蛋白遮盖了肌动蛋白与肌球蛋白结合部位,阻止了肌动蛋白与肌球蛋白的结合;同时,TnI与肌动蛋白紧密结合,也阻止了肌动蛋白与肌球蛋白的相互作用,并抑制肌球蛋白的ATP酶活性,故肌肉处于舒张状态。当胞液内Ca浓度增加到10moL/L -10 moL/L时,Ca便与TnC结合,之后,TnC构象变化,从而增强了TnC与TnI、TnT之间的结合力,使三者紧密结合,削弱了TnI与肌动蛋白的结合力,使肌动蛋白与TnI脱离,变成启动状态。同时,TnT使原肌球蛋白移动到肌动蛋白螺旋沟的深处,而排除了肌动蛋白与肌球蛋白相结合的障碍,于是,肌动蛋白便与肌球蛋白的头部相结合,产生有横桥的肌动球蛋白,在此蛋白中,肌动蛋白使肌球蛋白的ATP酶活性大大提高,故肌球蛋白催化ATP水解反应。产生的能量使横桥改变角度,而水解产物的释放又使横桥的位置恢复,再与另一个ATP结合,如此循环,细丝便沿粗丝滑行,肌肉发生收缩。
骨骼肌 又称横纹肌,肌肉中的一种。
肌细胞呈纤维状,不分支,有明显横纹,核很多,且都位于细胞膜下方。肌细胞内有许多沿细胞长轴平行排列的细丝状肌原纤维。每一肌原纤维都有相间排列的明带(Ⅰ带)及暗带(A带)。明带染色较浅,而暗带染色较深。暗带中间有一条较明亮的线称H线。H线的中部有一M线。明带中间,有一条较暗的线称为Z线。两个z线之间的区段,叫做一个肌节,长约1.5~2.5微米。
相邻的各肌原纤维,明带均在一个平面上,暗带也在一个平面上,因而使肌纤维显出明暗相间的横纹。骨骼肌细胞构成骨胳肌组织,每块骨骼肌主要由骨骼肌组织构成,外包结缔组织膜、内有神经血管分布。骨骼肌收缩受意识支配,故又称“随意肌”。收缩的特点是快而有力,但不持久。
运动系统的肌肉muscle属于横纹肌,由于绝大部分附着于骨,故又名骨骼肌。每块肌肉都是具有一定形态、结构和功能的器官,有丰富的血管、淋巴分布,在躯体神经支配下收缩或舒张,进行随意运动。肌肉具有一定的弹性,被拉长后,当拉力解除时可自动恢复到原来的程度。肌肉的弹性可以减缓外力对人体的冲击。肌肉内还有感受本身体位和状态的感受器,不断将冲动传向中枢,反射性地保持肌肉的紧张度,以维持体姿和保障运动时的协调。
1.肌的构造和形态
人体肌肉众多,但基本结构相似。一块典型的肌肉,可分为中间部的肌腹和两端的肌腱。肌腹venter是肌的主体部分,由横纹肌纤维组成的肌束聚集构成,色红,柔软有收缩能力。肌腱tendo呈索条或扁带状,由平行的胶原纤维束构成,色白,有光泽,但无收缩能力,腱附着于骨处与骨膜牢固地编织在一起。阔肌的肌腹和肌腱都呈膜状,其肌腱叫做腱膜aponeurosis。肌腹的表面包以结缔组织性外膜,向两端则与肌腱组织融合在一起。
肌的形态各异,有长肌、短肌、阔肌、轮匝肌等基本类型。长肌多见于四肢,主要为梭形或扁带状,肌束的排列与肌的长轴相一致,收缩的幅度大,可产生大幅度的运动,但由于其横截面肌束的数目相对较少,故收缩力也较小;另有一些肌有长的腱,肌束斜行排列于腱的两侧,酷似羽毛名为羽状肌(如股直肌),或斜行排列于腱的一侧,叫半羽状肌(如半膜肌、拇长屈肌),这些肌肉其生理横断面肌束的数量大大超过梭形或带形肌,故收缩力较大,但由于肌束短,所以运动的幅度小。短肌多见于手、足和椎间。阔肌多位于躯干,组成体腔的壁。轮匝肌则围绕于眼、口等开口部位。
2.肌肉的命名原则
肌肉可根据共形状、大小、位置、起止点、纤维方向和作用等命名。依形态命名的如斜方肌、菱形肌、三角肌、梨状肌等;依位置命名的如肩胛下肌、冈上肌、冈下肌、肱肌等;依位置和大小综合命名的有胸大肌、胸小肌、臀大肌等;依起止点命名的如胸锁乳突肌、肩胛舌骨肌等;依纤维方向和部位综合命名的有腹外斜肌、肋间外肌等;依作用命名的如旋后肌、咬肌等;依作用结合其它因素综合命名的如旋前圆肌、内收长肌、指浅屈肌等。了解肌的命名原则有助于对肌的理解和记忆。
3.肌的配布规律和运动时的相互关系
人体肌肉中,除部分止于皮肤的皮肌和止于关节囊的关节肌外,绝大部分肌肉均起于一骨,止于另一骨,中间跨过一个或几个关节。它们的排列规律是,以所跨越关节的运动轴为准,形成与该轴线相交叉的两群互相对抗的肌肉。如纵行跨越水平冠状轴前方的屈肌群和后方的伸肌群;分别从内侧和外侧与水平矢状轴交叉的内收肌群和具有外展功能的肌群;横行或斜行跨越垂直轴,从前方跨越的旋内(旋前)肌群和从后方跨越的旋外(旋后)肌群。一般讲几轴性关节就具有与几个运动轴相对应的对抗肌群,但也有个别关节,有的运动轴没有相应肌肉配布,如手的掌指关节,从关节面的形态看属于球窝关节,却只生有屈伸和收展两组对抗的肌肉,而没有与垂直轴交叉的回旋肌,所以该关节不能做主动的回旋运动,当然它有一定的被动的回旋能力。上述围绕某一个运动轴作用相反的两组肌肉叫做对抗肌,但在进行某一运动时,一组肌肉收缩的同时,与其对抗的肌群则适度放松并维持一定的紧张度,二者对立统一,相反相成。另外,在完成一个运动时,除了主要的运动肌(原动肌)收缩外,尚需其它肌肉配合共同完成,这些配合原动肌的肌肉叫协力肌。当然,肌肉彼此间的关系,往往由于运动轴的不同,它们之间的关系也是互相转化的,在沿此一轴线运动时的两个对抗肌,到沿彼一轴线运动时则转化为协力肌。如尺侧伸腕肌和尺侧屈腕肌,在桡腕关节冠状轴屈伸运动中,二者是对抗肌,而在进行矢状轴的收展运动时,它们都从矢状轴的内侧跨过而共同起内收的作用,此时二者转化为协力肌。此外,还有一些运动,在原动肌收缩时,必须另一些肌肉固定附近的关节,如握紧拳的动作,需要伸腕肌将腕关节固定在伸的位置上,屈指肌才能使手指充分屈曲将拳握紧,这种不直接参与该动作而为该动作提供先决条件的肌肉叫做共济肌。
4.肌的辅助装置
(一)筋膜
筋膜fascia可分为浅、深两层。浅筋膜superficial fascia为分布于全身皮下层深部的纤维层,有人将皮下组织全层均列属于浅筋膜,它由疏松结缔组织构成。内含浅动、静脉、浅淋巴结和淋巴管、皮神经等,有些部位如面部、颈部生有皮肌,胸部的乳腺也在此层内。
深筋膜profundal fascia又叫固有筋膜,由致密结缔组织构成,遍布全身,包裹肌肉、血管神经束和内脏器官。深筋膜除包被于肌肉的表面外,当肌肉分层时,固有筋膜也分层。在四肢,由于运动较剧烈,固有筋膜特别发达、厚而坚韧,并向内伸入直抵骨膜,形成筋膜鞘将作用不同的肌群分隔开,叫做肌间隔。在体腔肌肉的内面,也衬以固有筋膜,如胸内、腹内和盆内筋膜等,甚而包在一些器官的周围,构成脏器筋膜。一些大的血管和神经干在肌肉间穿行时,深筋膜也包绕它们,形成血管鞘。筋膜的发育与肌肉的发达程度相伴行,肌肉越发达,筋膜的发育也愈好,如大腿部股四头肌表面的阔筋膜,厚而坚韧。筋膜除对肌肉和其它器官具有保护作用外,还对肌肉起约束作用,保证肌群或单块肌的独立活动。在手腕及足踝部,固有筋膜增厚形成韧带并伸入深部分隔成若干隧道,以约束深面通过的肌腱。在筋膜分层的部位,筋膜之间的间隙充以疏松结缔组织,叫做筋膜间隙,正常情况下这种疏松的联系保证肌肉的运动,炎症时,筋膜间隙往往成为脓液的蓄积处,一方面限制了炎症的扩散,一方面浓液可顺筋膜间隙的通向蔓延。
(二)腱鞘和滑液囊
一些运动剧烈的部位如手和足部,长肌腱通过骨面时,其表面的深筋膜增厚,并伸向深部与骨膜连接,形成筒状的纤维鞘,其内含由滑膜构成的双层圆筒状套管,套管的内层紧包在肌腱的表面,外层则与纤维鞘相贴。两层之间含有少量滑液。因此肌腱既被固定在一定位置上,又可滑动并减少与骨面的摩擦。在发生中滑膜鞘的两层在骨面与肌腱间互相移行,叫做腱系膜,发育过程中腱系膜大部分消失,仅在一定部位上保留,以引导营养肌腱的血管通过。
(三)滑液囊
在一些肌肉抵止腱和骨面之间,生有结缔组织小囊,壁薄,内含滑液,叫做滑液囊synovial bursa,其功能是减缓肌腱与骨面的摩擦。滑液囊有的是独立封闭的,有的与邻近的关节腔相通,可视为关节囊滑膜层的突出物。
骨骼肌骨骼肌细胞纵切面呈长条状; 核多,椭圆形,位于肌膜下方; 肌浆内肌原纤维沿细胞长轴平行排列,有明显横纹,染色较深的为暗带,较浅而发亮的为明带(HE染色)。肌纤维横切面呈不规则块状,肌原纤维断面呈细点状,核位于边缘(HE染色)。在特殊染色切片中,骨骼肌横纹尤其明显(PTAH染色 ,)。每条肌原纤维都有色浅的明带(I带)和色深的暗带(A带)交替排列,明带中央有一条色深的线为Z线、 暗带中部有色浅的H带,H带中央有一条色深的线为M线。相邻两个Z线之间的一段肌原纤维称为肌节,包括1/2 I带 + A带 + 1/2 I带,是骨骼肌收缩的基本结构单位。
骨骼肌因大部分附着在躯干骨和四肢骨上而得名,它的肌纤维象个长圆柱子,如果把它切断,放在显微镜下观察,可见到许多横敛。因此又叫横敛肌。横敛肌受人的意志支配,也叫随意肌。
骨骼肌
大多数骨骼肌(skeletal muscle)借肌健附着在骨骼上。分布于躯干和四肢的每块肌肉均由许多平行排列的骨骼肌纤维组成,它们的周围包裹着结缔组织。包在整块肌外面的结缔组织为肌外膜(epimysium),它是一层致密结缔组织膜,含有血管和神经。肌外膜的结缔组织以及血管和神经的分支伸入肌内,分隔和包围大小不等的肌束,形成肌束膜(perimysium)。分布在每条肌纤维周围的少量结缔组织为肌内膜(endomysium),肌内膜含有丰富的毛细血管。各层结缔组织膜除有支持、连接、营养和保护肌组织的作用外,对单条肌纤维的活动、乃至对肌束和整块肌肉的肌纤维群体活动也起着调整作用。
(一)骨骼肌纤维的光镜结构
骨骼肌纤维为长柱形的多核细胞,长1~40mm,直径10~100μm。肌膜的外面有基膜紧密贴附。一条肌纤维内含有几十个甚至几百个细胞核,位于肌浆的周边即肌膜下方。核呈扁椭圆形,异染色质较少,染色较浅。肌浆内含许多与细胞长轴平行排列的肌原纤维,在骨骼肌纤维的横切面上,肌原纤维呈点状,聚集为许多小区,称孔海姆区(Cohnheim field)。肌原纤维之间含有大量线粒体、糖原以及少量脂滴,肌浆内还含有肌红蛋白。在骨骼肌纤维与基膜之间有一种扁平有突起的细胞,称肌卫星细胞(muscle satellite cell),排列在肌纤维的表面,当肌纤维受损伤后,此种细胞可分化形成肌纤维。
肌原纤维(myofibril)呈细丝状,直径1~2μm,沿肌纤维长轴平行排列,每条肌原纤维上都有明暗相间、重复排列的横纹(cross striation)。由于各条肌原纤维的明暗横纹都相应地排列在同一平面上,因此肌纤维呈现出规则的明暗交替的横纹。横纹由明带和暗带组成。在偏光显微镜下,明带(light band)呈单折光,为各向同性(isotropic),又称I带;暗带(dark band)呈双折光,为各向异性(anisotropic),又称A带。在电镜下,暗带中央有一条浅色窄带称H带,H带中央还有一条深M线。明带中央则有一条深色的细线称Z线。两条相邻Z线之间的一段肌原纤维称为肌节(sarcomere)。每个肌节都由1/2I带+A带+1/2I带所组成。肌节长约2~25μm,它是骨骼肌收缩的基本结构单位。因此,肌原纤维就是由许多肌节连续排列构成的。
(二)骨骼肌纤维的超微结构
1.肌原纤维 肌原纤维是由上千条粗、细两种肌丝有规律地平行排列组成的,明、暗带就是这两种肌丝排布的结果。粗肌丝(thick filament)长约15μm,直径约15nm,位于肌节的A带。粗肌丝中央借M线固定,两端游离。细肌丝(thin filathent)长约1μm,直径约5nm,它的一端固定在Z线上,另一端插入粗肌丝之间,止于H带外侧。因此,I带内只有细肌丝,A带中央的H带内只有粗肌丝,而H带两侧的A带内既有粗肌丝又有细肌丝;所以在此处的横切面上可见一条粗肌丝周围有6条细肌丝;而一条细肌丝周围有3条粗肌丝。两种肌丝肌在肌节内的这种规则排列以及它们的分子结构,是肌纤维收缩功能的主要基础。
粗肌丝的分子结构:粗肌丝是由许多肌球蛋白分子有序排列组成的。肌球蛋白(myosin)形如豆芽,分为头和杆两部分,头部如同两个豆瓣,杆部如同豆茎。在头和杆的连接点及杆上有两处类似关节,可以屈动。M线两侧的肌球蛋白对称排列,杆部均朝向粗肌丝的中段,头部则朝向粗肌丝的两端的两端并露出表面,称为横桥(cross bridge)。M线两侧的粗肌丝只有肌球蛋白杆部而没有头部,所以表面光滑。肌球蛋白头部是一种ATP酶,能与ATP结合。只有当肌球蛋白分子头部与肌动蛋白接触时,ATP酶才被激活,于是分解ATP放出能量,使横桥发生屈伸运动。
细肌丝的分子结构:细肌丝由三种蛋白质分子组成,即肌动蛋白、原肌球蛋白和肌原蛋白。后二种属于调节蛋白,在肌收缩中起调节作用。肌动蛋白(actin)分子单体为球形,许多单体相互接连成串珠状的纤维形,肌动蛋白就是由两条纤维形肌动蛋白缠绕形成的双股螺旋链。每个球形肌动蛋白单体上都有一个可以与肌球蛋白头部相结合的位点。原肌球蛋白(tropomyosin)是由较短的双股螺旋多肽链组成,首尾相连,嵌于肌动蛋白双股螺旋链的浅沟内。肌原蛋白(troponin)由3个球形亚单位组成,分别简称为TnT、 TnI和 TnC 。肌原蛋白借TnT而附于原肌球蛋白分子上, TnI是抑制肌动蛋白和肌球蛋白相互作用的亚单位, TnC 则是能与Ca2+相结合的亚单位。
2.横小管 它是肌膜向肌浆内凹陷形成的小管网,由于它的走行方向与肌纤维长轴垂直,故称横小管(transverse tubule,或称T小管)。人与哺乳动物的横小管位于A带与I带交界处,同一水平的横小管在细胞内分支吻合环绕在每条肌原纤维周围。横小管可将肌膜的兴奋迅速传到每个肌节。
3.肌浆网 肌浆网(sarcoplasmic reticulum)是肌纤维内特化的滑面内质网,位于横小管之间,纵行包绕在每条肌原纤维周围,故又称纵小管。位于横小管两侧的肌浆网呈环行的扁囊,称终池(terminal cisternae),终池之间则是相互吻合的纵行小管网。每条横小管与其两侧的终池共同组成骨骼肌三联体(triad)。在横小管的肌膜和终池的肌浆网膜之间形成三联体连接,可将兴奋从肌膜传到肌浆网膜。肌浆网的膜上有丰富的钙泵(一种ATP酶),有调节肌浆中Ca2+浓度的作用。
(三)骨骼肌纤维的收缩原理
目前认为,骨骼肌收缩的机制是肌丝滑动原理(sliding filament mechanism)。其过程大致如下:①运动神经末梢将神经冲动传递给肌膜;②肌膜的兴奋经横小管迅速传向终池;③肌浆网膜上的钙泵活动,将大量Ca2+转运到肌浆内;④肌原蛋白TnC与Ca2+结合后,发生构型改变,进而使原肌球蛋白位置也随之变化;⑤原来被掩盖的肌动蛋白位点暴露,迅即与肌球蛋白头接触;⑥肌球蛋白头ATP酶被激活,分解了ATP并释放能量;⑦肌球蛋白的头及杆发生屈曲转动,将肌动蛋白拉向M线;⑧细肌丝向A带内滑入,I带变窄,A带长度不变,但H带因细肌丝的插入可消失,由于细肌丝在粗肌丝之间向M线滑动,肌节缩短,肌纤维收缩;⑨收缩完毕,肌浆内Ca2+被泵入肌浆网内,肌浆内Ca2+浓度降低,肌原蛋白恢复原来构型,原肌球蛋白恢复原位又掩盖肌动蛋白位点,肌球蛋白头与肌动蛋白脱离接触,肌则处于松弛状态。
骨骼肌是体内最多的组织,约占体重的40%。在骨和关节的配合下,通过骨骼肌的收缩和舒张,完成人和高等动物的各种躯体运动。骨骼肌由大量成束的肌纤维组成,每条肌纤维就是一个肌细胞。成人肌纤维呈细长圆柱形,直径约60 μm,长可达数毫米乃至数十厘米。在大多数肌肉中,肌束和肌纤维都呈平行排列,它们两端都和由结缔组织构成的腱相融合,后者附着在骨上,通常四肢的骨骼肌在附着点之间至少要跨过一个关节,通过肌肉的收缩和舒张,就可能引起肢体的屈曲和伸直。我们的生产劳动、各种体力活动等,都是许多骨骼肌相互配合的活动的结果。每个骨骼肌纤维都是一个独立的功能和结构单位,它们至少接受一个运动神经末梢的支配,并且在体骨骼肌纤维只有在支配它们的神经纤维有神经冲动传来时,才能进行收缩。因此,人体所有的骨骼肌活动,是在中枢神经系统的控制下完成的。
一、神经-骨骼肌接头处的兴奋传递
运动神经纤维在到达神经末梢处时先失去髓鞘,以裸露的轴突末梢嵌入到肌细胞膜上称作终板的膜凹陷中,但轴突末梢的膜和终板膜并不直接接触,而是被充满了细胞外液的接头间隙隔开,其中尚含有成分不明的基质;有时神经末梢下方的终板膜还有规则地再向细胞内凹入,形成许多皱褶,其意义可能在于增加接头后膜的面积,使它可以容纳较多数目的蛋白质分子,它们最初被称为N-型乙酰胆碱受体,现已证明它们是一些化学门控通道,具有能与ACh特异性结合的亚单位。在轴突末梢的轴浆中,除了有许多线粒体外还含有大量直径约50nm的无特殊构造的囊泡(图2-19)。用组织化学的方法可以证明,囊泡内含有ACh;此ACh首先在轴浆中合成,然后贮存在囊泡内。据测定,每个囊泡中贮存的ACh量通常是相当恒定的,且当它们被释放时,也是通过出胞作用,以囊泡为单位“倾囊”释放,被称为量子式释放。在神经末梢处于安静状态时,一般只有少数囊泡随机地进行释放,不能对肌细胞产生显著影响。但当神经末梢处有神经冲动传来时,在动作电位造成的局部膜去极化的影响下,大量囊泡向轴突膜的内侧面靠近,通过囊泡膜与轴突膜的融合,并在融合处出现裂口,使囊泡中的ACh全部进入接头间隙。据推算,一次动作电位的到达,能使大约200~300个囊泡的内容排放,使近107个ACh分子被释放。轴突末梢处的电位变化引起囊泡排放的过程十分复杂,但首先是轴突末梢膜的去极化,引起了该处特有的电压门控式Ca2+通道开放,引起细胞间隙液中的Ca2+进入轴突末梢,触发了囊泡移动以至排放的过程。Ca2+的进入量似乎决定着囊泡释放的数目;细胞外液中低Ca2+或(和)高Mg2+,都可阻碍ACh的释放而影响神经-肌接头的正常功能。已故冯德培院士在30年代对神经-肌接头的化学性质传递进行过重要的研究。
大多数骨骼肌(skeletal muscle)借肌健附着在骨骼上。分布于躯干和四肢的每块肌肉均由许多平行排列的骨骼肌纤维组成,它们的周围包裹着结缔组织。包在整块肌外面的结缔组织为肌外膜(epimysium),它是一层致密结缔组织膜,含有血管和神经。肌外膜的结缔组织以及血管和神经的分支伸入肌内,分隔和包围大小不等的肌束,形成肌束膜(perimysium)。分布在每条肌纤维周围的少量结缔组织为肌内膜(endomysium),肌内膜含有丰富的毛细血管(图6-1)。各层结缔组织膜除有支持、连接、营养和保护肌组织的作用外,对单条肌纤维的活动、乃至对肌束和整块肌肉的肌纤维群体活动也起着调整作用。
(1)一块骨骼肌模式图,示肌外膜、肌束膜和肌内膜
(2)骨骼肌纤维纵横切面
(一)骨骼肌纤维的光镜结构
骨骼肌纤维为长柱形的多核细胞(图6-1),长1~40mm,直径10~100μm。肌膜的外面有基膜紧密贴附。一条肌纤维内含有几十个甚至几百个细胞核,位于肌浆的周边即肌膜下方。核呈扁椭圆形,异染色质较少,染色较浅。肌浆内含许多与细胞长轴平行排列的肌原纤维,在骨骼肌纤维的横切面上,肌原纤维呈点状,聚集为许多小区,称孔海姆区(cohnheim field)。肌原纤维之间含有大量线粒体、糖原以及少量脂滴,肌浆内还含有肌红蛋白。在骨骼肌纤维与基膜之间有一种扁平有突起的细胞,称肌卫星细胞(muscle satellite cell),排列在肌纤维的表面,当肌纤维受损伤后,此种细胞可分化形成肌纤维。
肌原纤维(myofibril)呈细丝状,直径1~2μm,沿肌纤维长轴平行排列,每条肌原纤维上都有明暗相间、重复排列的横纹(cross striation)。由于各条肌原纤维的明暗横纹都相应地排列在同一平面上,因此肌纤维呈现出规则的明暗交替的横纹。横纹由明带和暗带组成(图6-2)。在偏光显微镜下,明带(light band)呈单折光,为各向同性(isotropic),又称i带;暗带(dark band)呈双折光,为各向异性(anisotropic),又称a带。在电镜下,暗带中央有一条浅色窄带称h带,h带中央还有一条深 m线。明带中央则有一条深色的细线称z线。两条相邻z线之间的一段肌原纤维称为肌节(sarcomere)。每个肌节都由1/2i带+a带+1/2i带所组成(图6-3,6-4)。肌节长约2~25μm,它是骨骼肌收缩的基本结构单位。因此,肌原纤维就是由许多肌节连续排列构成的。
(二)骨骼肌纤维的超微结构
1.肌原纤维 肌原纤维是由上千条粗、细两种肌丝有规律地平行排列组成的,明、暗带就是这两种肌丝排布的结果(图6-4)。粗肌丝(thick filament)长约15μm,直径约15nm,位于肌节的a带。粗肌丝中央借m线固定,两端游离。细肌丝(thin filathent)长约1μm,直径约5nm,它的一端固定在z线上,另一端插入粗肌丝之间,止于h带外侧。因此,i带内只有细肌丝,a带中央的h带内只有粗肌丝,而h带两侧的a带内既有粗肌丝又有细肌丝(图6-4);所以在此处的横切面上可见一条粗肌丝周围有6条细肌丝;而一条细肌丝周围有3条粗肌丝(图6-4)。两种肌丝肌在肌节内的这种规则排列以及它们的分子结构,是肌纤维收缩功能的主要基础。
粗肌丝的分子结构:粗肌丝是由许多肌球蛋白分子有序排列组成的。肌球蛋白(myosin)形如豆芽,分为头和杆两部分,头部如同两个豆瓣,杆部如同豆茎。在头和杆的连接点及杆上有两处类似关节,可以屈动。m线两侧的肌球蛋白对称排列,杆部均朝向粗肌丝的中段,头部则朝向粗肌丝的两端的两端并露出表面,称为横桥(cross bridge)(图6-4)。m线两侧的粗肌丝只有肌球蛋白杆部而没有头部,所以表面光滑。肌球蛋白头部是一种atp酶,能与atp结合。只有当肌球蛋白分子头部与肌动蛋白接触时,atp酶才被激活,于是分解atp放出能量,使横桥发生屈伸运动。
细肌丝的分子结构:细肌丝由三种蛋白质分子组成,即肌动蛋白、原肌球蛋白和肌原蛋白。后二种属于调节蛋白,在肌收缩中起调节作用。肌动蛋白(actin)分子单体为球形,许多单体相互接连成串珠状的纤维形,肌动蛋白就是由两条纤维形肌动蛋白缠绕形成的双股螺旋链。每个球形肌动蛋白单体上都有一个可以与肌球蛋白头部相结合的位点。原肌球蛋白(tropomyosin)是由较短的双股螺旋多肽链组成,首尾相连,嵌于肌动蛋白双股螺旋链的浅沟内。肌原蛋白(troponin)由3个球形亚单位组成,分别简称为tnt、 tni和 tnc 。肌原蛋白借tnt而附于原肌球蛋白分子上, tni是抑制肌动蛋白和肌球蛋白相互作用的亚单位, tnc 则是能与ca2+相结合的亚单位
骨骼肌肌原纤维超微结构及两种肌丝分子结构模式图(1)肌节不同部位的横切面 ,示粗肌丝与细肌丝的分布(2)一个肌节的纵切面,示两种肌丝的排列(3)粗肌丝与细肌丝的分子结构tnt肌原蛋白t,tnc肌原蛋白c,tni肌原蛋白i
2.横小管 它是肌膜向肌浆内凹陷形成的小管网,由于它的走行方向与肌纤维长轴垂直,故称横小管(transverse tubule,或称t小管)。人与哺乳动物的横小管位于a带与i带交界处,同一水平的横小管在细胞内分支吻合环绕在每条肌原纤维周围(图6-5)。横小管可将肌膜的兴奋迅速传到每个肌节。
3.肌浆网 肌浆网(sarcoplasmic reticulum)是肌纤维内特化的滑面内质网,位于横小管之间,纵行包绕在每条肌原纤维周围,故又称纵小管(图6-5)。位于横小管两侧的肌浆网呈环行的扁囊,称终池(terminal cisternae),终池之间则是相互吻合的纵行小管网。每条横小管与其两侧的终池共同组成骨骼肌三联体(triad)(图6-5)。在横小管的肌膜和终池的肌浆网膜之间形成三联体连接,可将兴奋从肌膜传到肌浆网膜。肌浆网的膜上有丰富的钙泵(一种atp酶),有调节肌浆中ca2+浓度的作用。
(三)骨骼肌纤维的收缩原理
目前认为,骨骼肌收缩的机制是肌丝滑动原理(sliding filament mechanism)。其过程大致如下:①运动神经末梢将神经冲动传递给肌膜;②肌膜的兴奋经横小管迅速传向终池;③肌浆网膜上的钙泵活动,将大量ca2+转运到肌浆内;④肌原蛋白tnc与ca2+结合后,发生构型改变,进而使原肌球蛋白位置也随之变化;⑤原来被掩盖的肌动蛋白位点暴露,迅即与肌球蛋白头接触;⑥肌球蛋白头atp酶被激活,分解了atp并释放能量;⑦肌球蛋白的头及杆发生屈曲转动,将肌动蛋白拉向m线(图6-6);⑧细肌丝向a带内滑入,i带变窄,a带长度不变,但h带因细肌丝的插入可消失(图6-7),由于细肌丝在粗肌丝之间向m线滑动,肌节缩短,肌纤维收缩;⑨收缩完毕,肌浆内ca2+被泵入肌浆网内,肌浆内ca2+浓度降低,肌原蛋白恢复原来构型,原肌球蛋白恢复原位又掩盖肌动蛋白位点,肌球蛋白头与肌动蛋白脱离接触,肌则处于松弛状态。
(1)肌纤维未收缩时,肌球蛋白分子头部未与肌动蛋白接触
(2)肌纤维收缩时,肌球蛋白头部与肌动蛋白位点接触,atp分解发,释放能量
(3)肌球蛋白头部向m线方向转动,使肌动蛋白丝部向a带滑入
(4)新的接触重新开始
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)