虚位移原理

虚位移原理,第1张

位移原理

分析静力学的重要原理,又称虚位移原理引,是J-L拉格朗日于1764年建立的。其内容为:一个原为静止的质点系,如果约束是理想双面定常约束,则系统继续保持静止的条件是所有作用于该系统的主动力对作用点的虚位移所作的功的和为零。

折叠编辑本段虚位移

虚位移指的是弹性体(或结构系)的附加的满足约束条件及连续条件的无限小可能位移。所谓虚位移的"虚"字表示它可以与真实的受力结构的变形而产生的真实位移无关,而可能由于其它原因(如温度变化,或其它外力系,或是其它干扰)造成的满足位移约束、连续条件的几何可能位移。对于虚位移要求是微小位移,即要求在产生虚位移过程中不改变原受力平衡体的力的作用方向与大小,亦即受力平衡体平衡状态不因产生虚位移而改变。真实力在虚位移上做的功称为虚功

如果用虚位移表达的几何可能位移、和真实应力作为静力可能应力代入功能关系表达式,注意到真实应力和位移是满足功能关系的,因此可以得到用虚位移dui 和虚应变deij 表达的虚功方程

上式中应力分量为实际应力。注意到在位移边界Su上,虚位移是恒等于零的,所以在上述面积分中仅需要在面力边界Ss上完成。

折叠编辑本段原理

虚功原理阐明,对于一个静态平衡的系统,所有外力的作用,经过虚位移,所作的虚功,总和等于零。考虑一个由一群粒子组成,呈静态平衡的系统。作用于任何一个粒子 Pi 的净力 等于零:

。 作用于任何一个粒子 Pi 的净力,经过虚位移 ,所作的虚功为零。因此,所有虚功的总和也是零:

。 分析到这里,请特别注意,对于任意位移,虚功总和方程式都是正确的。因此,原本的向量方程式,仍旧可以从虚功总和方程式求得。让我们继续分析。将净力细分为外力 与约束力 :

。 如果,一切约束力,因为虚位移,所作的虚功总合是零。则约束力项目可以从方程式中移去。

。 特别注意,现在, 很可能不等于零。实际上,我们应该认为它不等于零。

符合约束力虚功总和是零的实例:

刚体的约束是 。这里,粒子 与粒子 的位置分别为 与 , 是常数。所以,两个粒子虚位移()的关系为 。

虚功原理是分析静力学的重要原理,又称虚位移原理引,是J-L拉格朗日于1764年建立的。其内容为:一个原为静止的质点系,如果约束是理想双面定常约束,则系统继续保持静止的条件是所有作用于该系统的主动力对作用点的虚位移所作的功的和为零。

虚位移指的是弹性体(或结构系)的附加的满足约束条件及连续条件的无限小可能位移。所谓虚位移的"虚"字表示它可以与真实的受力结构的变形而产生的真实位移无关,而可能由于其它原因(如温度变化,或其它外力系,或是其它干扰)造成的满足位移约束、连续条件的几何可能位移。

对于虚位移要求是微小位移,即要求在产生虚位移过程中不改变原受力平衡体的力的作用方向与大小,亦即受力平衡体平衡状态不因产生虚位移而改变。真实力在虚位移上做的功称为虚功。

扩展资料:

虚功原理是弹性力学中各种能量原理 (如弹性力学最小势能原理和弹性力学最小余能原理)和能量方法(如单位载荷法和布勃诺夫-伽辽金法)的核心。由这一原理还可导出下列两个重要原理:

1、虚位移原理

若有一组内、外力,它们和各种可能位移及其对应的应变都使上式成立,则这组内、外力必定是平衡的。

2、虚内力(应力)原理

若有一组位移和应变,它们和各种可能的内力(应力)都使上式成立,则这组位移和应变必定是连续的。

参考资料:

虚功原理

虚功原理分析静力学的重要原理,又称虚位移原理引,是J-L拉格朗日于1764年建立的。其内容为:一个原为静止的质点系,如果约束是理想双面定常约束,则系统继续保持静止的条件是所有作用于该系统的主动力对作用点的虚位移所作的功的和为零。虚位移指的是弹性体(或结构系)的附加的满足约束条件及连续条件的无限小可能位移。所谓虚位移的"虚"字表示它可以与真实的受力结构的变形而产生的真实位移无关,而可能由于其它原因(如温度变化,或其它外力系,或是其它干扰)造成的满足位移约束、连续条件的几何可能位移。对于虚位移要求是微小位移,即要求在产生虚位移过程中不改变原受力平衡体的力的作用方向与大小,亦即受力平衡体平衡状态不因产生虚位移而改变。真实力在虚位移上做的功称为虚功。如果用虚位移表达的几何可能位移、和真实应力作为静力可能应力代入功能关系表达式,注意到真实应力和位移是满足功能关系的,因此可以得到用虚位移dui 和虚应变deij 表达的虚功方程上式中应力分量为实际应力。注意到在位移边界Su上,虚位移是恒等于零的,所以在上述面积分中仅需要在面力边界Ss上完成。虚功原理阐明,对于一个静态平衡的系统,所有外力的作用,经过虚位移,所作的虚功,总和等于零。考虑一个由一群粒子组成,呈静态平衡的系统。作用于任何一个粒子 Pi 的净力 等于零。 作用于任何一个粒子 Pi 的净力,经过虚位移 ,所作的虚功为零。因此,所有虚功的总和也是零。分析到这里,请特别注意,对于任意位移,虚功总和方程式都是正确的。因此,原本的向量方程式,仍旧可以从虚功总和方程式求得。让我们继续分析。将净力细分为外力 与约束力。如果,一切约束力,因为虚位移,所作的虚功总合是零。则约束力项目可以从方程式中移去。 特别注意,现在,很可能不等于零。实际上,我们应该认为它不等于零。

虚位移指的是弹性体(或结构系)的附加的满足约束条件及连续条件的无限小可能位移。所谓虚位移的虚字表示它可以与真实的受力结构的变形而产生的真实位移无关,而可能由于其它原因(如温度变化,或其它外力系,或是其它干扰)造成的满足位移约束、连续条件的几何可能位移。对于虚位移要求是微小位移,即要求在产生虚位移过程中不改变原受力平衡体的力的作用方向与大小,亦即受力平衡体平衡状态不因产生虚位移而改变。真实力在虚位移上做的功称为虚功。

如果用虚位移表达的几何可能位移、和真实应力作为静力可能应力代入功能关系表达式,注意到真实应力和位移是满足功能关系的,因此可以得到用虚位移dui 和虚应变deij 表达的虚功方程

上式中应力分量为实际应力。注意到在位移边界Su上,虚位移是恒等于零的,所以在上述面积分中仅需要在面力边界Ss上完成。

物理概念,在分析静力学中为重要的原理性概念,虚功原理又称虚位移原理。

虚位移上做的功称为虚功。下面在继续介绍什么被称为虚位移:

虚位移指的是弹性体(或结构系)的附加的满足约束条件及连续条件的无限小可能位移。所谓虚位移的"虚"字表示它可以与真实的受力结构的变形而产生的真实位移无关,而可能由于其它原因(如温度变化,或其它外力系,或是其它干扰)造成的满足位移约束、连续条件的几何可能位移。对于虚位移要求是微小位移,即要求在产生虚位移过程中不改变原受力平衡体的力的作用方向与大小,亦即受力平衡体平衡状态不因产生虚位移而改变。

对应的实功(物理中并不明确指出这个概念),就是合力对应实际位移。

简单说,虚功是分析力学概念,实际上没有位移。实功对应有位移情况。

若还有不清楚的,就需要举例说明了。追问吧。举个简单的例子,还是很好懂的。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10572806.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-09
下一篇2023-11-09

发表评论

登录后才能评论

评论列表(0条)

    保存