什么是资金杠杆?

什么是资金杠杆?,第1张

你好,资金杠杆(Leverage或Gearing),这都是当时的企业过度举债投资于高风险的事业或活动,遇到投资获利不如预期时,杠杆作用的乘数效果,加速企业的亏损以及资金的缺口,到影响整体的经济环境。资金杠杆俗称"负债比",负债比越高,杠杆效果就越大。然而资金杠杆的乘数效果是双向的,当公司运用借贷的资金获利等于或高于预期时,对股东的报酬将是加成;相反的,当获利低于预期,甚至发生亏损时,就有如屋漏偏逢连夜雨,严重者就是营运中断,走上清算或破产一途,使得股东投资化成泡沫。

首先保证卧推的姿势要正确,由于胸部和肩部相对受力较小,而大部分的力量都集中在三头上,所以要找一个胳膊尽量舒服的位置躺下。杠铃的运动轨迹要比宽握推胸的轨迹更偏下,也就是下降时,杠杆要放在乳头的位置以下,双臂要贴近身体两侧,肘部不要外拐。上升时,尽量将肘部伸直,但是不要锁死肘关节,不然容易受伤,到达最高点是,杠杆与胸的下沿平齐

不同的方式是有不同的目的的,但一个正规的卧推动作是需要贴到胸再推上去的。不贴胸会损失一段行程,更长的行程就代表更长时间的肌肉压力,也就代表更多的破坏。不贴胸呢,过程中肯定是停在半空中也就是说肌肉一直在保持收缩,也会有更长时间的肌肉张力,更多的负荷,可由于行程短就没有达到充分的肌肉收缩。对于完整的胸肌和胸部力量的建立没那么大优势。但是悬在胸上方两公分左右可以作为变式来训练。我记得有一个人在这种动作模式下也取得了不错的力量举卧推成绩。所以没有死套路要灵活运用。这个问题是健身和体能训练当中比较常见的。首先你要理解平板卧推主要的训练肌肉,胸大肌、肱三头肌和三角肌前束。特别以胸大肌为主。当你杠铃贴胸的时候胸大肌起止点相对拉伸较长(不会过度),推其难度较大但是对胸大肌刺激较好。如果你以前习惯半程卧推要改姿势建议一定要降重量适应一段时间。还有在专业运动员和健身高手中你会发现基本都是贴胸卧推。个人建议贴胸卧推选择较好。杠铃杠处于你两脚中间的位置。两脚打开,保持与臀部同宽的距离。弯曲臀部,两手保持与肩同宽的距离紧握杠铃。当你的手脚就位后,放低臀部,直到你的胫骨接触到杠铃。头部向上看。背部拱起,脚跟处发力将杠铃向上起。当杠铃杆超过膝盖后,将杠铃杆拉回,肩胛骨拉紧,臀部前推接近杠铃。弯曲臀部放低杠铃,将杠铃放回地面。

在中国古代有丰富的力学知识。

简单机械

杠杆、滑轮和斜面,物理学上称作简单机械。

原始社会时期的工具:1石铲;2骨耜,3石镰;4石锄;5石斧。

杠杆的使用或许可以追溯到原始人时期。当原始人拾起一根棍棒和野兽搏斗,或用它撬动一块巨石,他们实际上就是在使用杠杆。石器时代人们所用的石刃、石斧,都用天然绳索把它们和木柄捆束在一起;或者在石器上凿孔,装上木柄(如图左)。这表明他们在实践中懂得了杠杆的经验法则:延长力臂可以增大力量。

杠杆在中国的典型发展是秤的发明和它的广泛应用。在一根杠杆上安装吊绳作为支点,一端挂上重物,另一端挂上砝码或秤锤,就可以称量物体的重量。古代人称它“权衡”或“衡器”。“权”就是砝码或秤锤,“衡”是指秤杆。迄今为止,考古发掘的最早的秤是在长沙附近左家公山上战国时期楚墓中的天平。它是公元前四到三世纪的制品,是个等臂秤。不等臂秤可能早在春秋时期就已经使用了。古代中国人还发明了有两个支点的秤,俗称铢秤。使用这种秤,变动支点而不需要换秤杆就可以称量比较重的物体。这是中国人在衡器上的重大发明之一,也表明中国人在实践中完全掌握了阿基米德杠杆原理。

《墨经》一书最早记述了秤的杠杆原理。《墨经》是战国时期以鲁国人墨翟(约前468—前376)为首的墨家著作。墨翟和他的弟子们以刻苦耐劳、参加生产、勇敢善战著称。因此,他们的著作中留下了许多自然科学知识。

《墨经》把秤的支点到重物一端的距离称作“本”(今天通常称“重臂”),把支点到权一端的距离称作“标”(今天称“力臂”)。《墨经·经下》中说:第一,当重物和权相等而衡器平衡时,如果加重物在衡器的一端,重物端必定下垂,第二,如果因为加上重物而衡器平衡,那是本短标长的缘故:第三,如果在本短标长的衡器两端加上重量相等的物体,那么标端必下垂。(“衡,加重于其一旁,必垂。权、重相若也相衡,则本短标长,两加焉,重相若,则标必下。”)墨家在这里把杠杆平衡的各种情形都讨论了。他们既考虑了“本”和“标”相等的平衡,也考虑了“本”和“标”不相等的平衡;既注意到杠杆两端的力,也注意到力和作用点之间的距离大小。虽然他们没有给我们留下定量的数字关系,但这些文字记述肯定是墨家亲身实验的结果,它比阿基米德发现杠杆原理要早约二百年。

桔槔也是杠杆的一种。它是古代的取水工具。作为取水工具,一般用它改变力的方向。为其他目的使用时,也可以改变力的大小,只要把桔槔的长臂端当作人施加力的一端就行。春秋战国时期,桔槔已成为农田灌溉的普通工具。

滑轮,古代人称它“滑车”。应用一个定滑轮,可改变力的方向;应用一组适当配合的滑轮,可以省力。至少从战国时期开始,滑轮在作战器械、井中。提水等生产劳动中被广泛应用。传说公元前四世纪,巧匠公输般为季康子葬母下棺,创制了转动机关(见《礼记正义》卷十),可能就是指的滑轮。汉代画像砖和陶井模型都有滑轮装置。

滑轮的另一种形式是辘轳。把一根短圆木固定于井旁木架上,圆木上缠绕绳索,索的一端固定在圆木上,另一端悬吊水桶,转动圆木就可提水。只要绳子缠绕得当,绳索两端都可悬吊木桶,一桶提水上升,另一桶往下降落,这就可以使辘轳总是在作功。辘轳大概起源于商末周初(公元前十一世纪)。据宋代曾公亮(998—1073)著《武经总要前集》卷十一《水攻·济水府》,周武王时有人以辘轳架索桥穿越沟堑的记载。唐代刘禹锡(772—842)描写了他亲自所见的一种叫“机汲”的提水机械,它是把辘轳和架空索道联合并用,以便把山下流水一桶桶地提上山顶,既浇出地又省力(《刘梦得文集》卷二十七《机汲记》)。

最早讨论滑轮力学的还是《墨经》。《墨经·经下》把向上提举重物的力称作“挈”(qí),把自由往下降落称作“收”,把整个滑轮机械称作“绳制”。《墨经》中说:以“绳制”举重,“挈”的力和“收”的力方向相反,但同时作用在一个共同点上。提挚重物要用力,“收”不费力。若用“绳制”提举重物,人们就可省力而轻松。(“挈与收反。”“挈,有力也;引,无力也。不必所挚之止于施也,绳制之也。”)又说:在“绳制”一边,绳比较长,物比较重,物体就越来越往下降:在另一边,绳比较短,物比较轻,物体就越来越被提举向上。(“挈,长重者下,短轻者上。”)又说:如果绳子垂直,绳两端的重物相等,“绳制”就平衡不动。(“绳下直,权重相若则正矣。”)如果这时“绳制”不平衡,那么所提举的物体一定是在斜面上,而不是自由悬吊在空中。我们对于墨家的丰富的力学知识就不能不赞佩!

尖劈能以小力发大力。早在原始社会时期,人们所打磨的各种石器,如石斧、石刀、骨针、镞等等,都不自觉地利用了尖劈的原理。墨家在讨论滑轮的功用说到它省力时,就把它比喻作“锥刺”。汉代王充说:“针锥所穿,无不畅达:使针锥未方,穿物无一分之深矣。”(《论衡·状留篇》)墨家和王充等人清楚地知道尖劈原理的经验法则。

在日常生活中常应用的尖劈之一是楔子,木楔或金属楔。人们常用它加固各种器具。唐代李肇讲过这样的故事:

在苏州建造重元寺时,工匠疏忽,一柱未垫而使寺阁略有倾斜。若是请木工再把寺阁扶正,费工费事又费钱。寺主为此十分烦恼。一天,一外地僧人对寺主说:不需费大劳力,请一木匠为我作几十个木楔,可以使寺阁正直。寺主听他的话,一面请木工砍木楔,一面摆洒盛宴外地僧人。饭毕,僧人怀揣楔子,手持斧头,攀梯上阁顶。只见他东一楔西一楔,几根柱子楔完之后,就告别而去。十几天后,寺阁果然正直了。(李肇:《唐国史补》卷中)

小小几个尖劈,作用却这样巨大!

斜面的力学原理和尖劈相同。人们在推车行平地和上坡时发现用力不同。成书于春秋战国之际的《考工记·辀(zhōu)人》中说:“登阤者,倍任者也。”这就是说,推车上坡,要加倍费力气。用双手举重物到一定高度和用斜面把同样的重物升到同一高度,自然后者容易得多。《荀子·宥坐》中说:“三尺之岸而虚车不能登也,百切之山任负车登焉。何则?陵迟故也。”人们不能把空车举上三尺高的垂直堤岸,却能把满载的车推上百切高山。这是为什么?因为高山的路面坡度斜缓(“陵迟”)。这正是斜面物理动用的最好总结。

重心和平衡

要使物体平稳地置于桌面上,就要考虑它的重心和平衡的问题。从物理学观点看,通过物体的重心和桌面垂直的线(或面)要维持在这一物体的支持面里:否则,这一物体就很容易倒下。在日常生活中涉及重心和平衡的例子随手可拾。商代的酒器斝(jiǎ)有三足,它的重心总是落在三足点形成的等边三角形里。西汉中山靖王刘胜墓出上的朱雀铜灯,体现了工匠关于重心的巧妙构思。东汉铜奔马,三足腾空,一足落地。但是它的重心刚好落在支撑足上,因此,即使支撑面很小,看来好像容易倾倒,其实是稳定平衡的。在杂技表演中走绳的演员手握长杠或持雨具;单臂撑的演员,他的两腿总要弯过自己的头顶。这些道具或造形,不仅在于美和险的结合,让人惊心动魄,更重要的是演员必需采取的安全措施:保持自己的重心和平衡。

孔子作欹器注水实验。(采自《孔子家语图》)。

大概在西周时期,聪明的工匠制造了一件盛水的“欹器”。“欹”(qī)的意思是倾斜。它可以随盛水的多少而发生倾斜变化。不装水时,它成倾斜状态:装上一半水时,就中正直立;装满水时,它就自动翻倒,把所盛水倒出。《荀子·宥坐》把它描写作“虚则欹,中则正,满财覆。”所以会出现这种现象,是由于敬器的重心随盛水的多少而发生变化的缘故。有一天,孔子(前551—前479)在鲁庙中见到这种欹器,立即让他的弟子们注水实验。然后,他感慨地说:“吁!恶有满而不覆者哉!”意思是告诫弟子,要谦虚,切戒自满。汉代以后。不断地有人制造各种欹器,充分体现中国人掌握了有关的力学知识。

隋唐时期,或许由于饮酒之风盛行,人们制作了一种劝人喝酒的玩具,经匠心雕刻的木头人,称作“酒胡子”。把它置于瓷盘中,“臲(niè)�(wù)不定”、“府仰旋转”、“缓急由人”。(见王定保著:《唐摭言》卷十二《海敍不遇》)也有用纸制作的,“糊纸作醉汉状,虚其中而实其底,虽按捺而旋转不倒也。”(见赵翼(1727—1814)著:《陔余丛考》卷三十三)现在把这些玩具叫不倒翁。另一种劝酒器,虽叫不倒翁,但转动摇摆后最终会倒下。宋代张邦基说:“木刻为人,而锐其下,置之盘中,左右欹侧,僛(qī)僛然如舞之状,久之力尽乃倒。”(张邦基:《墨庄漫录》卷八)这种玩具指向某人或倒向某人,某人当饮酒。

从这些历史文献记载中可以看出,前一种不倒翁的重心略低于木头人下半圆的中心,后一种略高于下半圆的中心,由于它们重心位置不同,造成它们左右摇摆后的不同后果。而古代人把它们制成半圆形下身,并且“虚其中而实其底”,正说明他们有意识地利用重心位置和平衡的关系。

西汉初年(公元前二世纪)成书的《淮南子·说山训》曾就本末倒置而造成不平衡的现象总结说:“下轻上重,其覆必易。”

东汉王充对平衡问题作了极好的论述:“圆物投之于地,东西南北无之不可,策杖叩动,才微辄停。方物集地,一投而止,及其移徒,须人动举。”(《论衡·状留篇》)“策杖”是赶马用的木棍。圆球投落地面,东西南北随遇滚动,只有用棍子制止它,它才会静止一会儿。方形物体投落地面,立即就静止在那儿。如果要它移动,就需要施加外力。这些现象正是力学中随遇平衡和稳定平衡的典型例子。

力是物理学中很重要、很基本的概念,它的形成在物理学史上经过了漫长的时间,直到十七、十八世纪,物理学家才对它作出准确的定义。

在甲骨文中,“力”字像一把尖状起土农具来。用耒翻土,需要体力。这大概是当初造字的本意。

《墨经·经上》最早对力作出有物理意义的定义:“力,刑之所以奋也。”“刑”通“形”,表示一切有生命的物体。“奋”的原意是鸟张开翅膀从田野里飞起,墨家用它描述物质的运动或精神的状态改变,如同今日常用词“奋飞”、“奋发”“振奋”等含义一样。由此可见,墨家定义力是指有形体的状态改变;如果保守某种状态就谈不上奋,也就无需用力了。《墨经》还举了一个例子,从地面上举起重物,就要发“奋”,需要用力。(力,重之谓。下,与,重奋也。”“与”是“举”的省文。)墨家定义力,虽然没有明确把它和加速度联系在一起,但是他们从状态改变中寻找力的原因,实际上包含了加速度概念,它的意义是极其深刻的。

在浩瀚的中国历史典籍中记述了各种各样的力,其中人们对惯性力和重力的认识是值得称道的。

战国初期成书的《考工记·辀人》最早记述了惯性现象。它描述赶马车的经验,说道“:劝登马力,马力既竭,辀犹能一取焉。”“劝登马力”就是赶马车,劝马用力。辀指小车。这句话的意思是,在驾驶马车过程中,即使马不再用力拉车了,车还能继续住前一小段路。

对重力现象最早作出描写的是《墨经·经下》。它指出,凡是重物,上不提挚,下无支撑,旁无力牵引,就必定垂直下落。(“凡重,上弗挈,下弗收,旁弗劫,则下直。”)这就是说,当物体不受到任何人为作用时,它作垂直下落运动。这正是重力对物体作用的结果。

在力学中有一条法则:一个系统的内力没有作用效果。饶有趣味的是,中国人发现和这有关的现象惊人地早。《韩非子·观行篇》中最早提出了力不能自举的思想:“有乌获之劲,而不得人肋,不能自举。”乌获,据说是秦武王宠爱的大力士,能举千钧之重。但他却不能把自己举离地面。

东汉王充也说:“古之多力者,身能负荷千钧,手能决角伸钩,使之自举,不能离地。”(《论衡·效力篇》)似乎很可悲,一个身能负千钧重载、手能折断牛角、拉直铁钩的大力士,却不能把自己举离地面。然而,这正是真理所在。再大力气的人,也不能违背上述那条力学法则。因为当自身成为一个系统时,他对自己的作用力属于内力。系统本身的内力对本系统的作用效果等于零。否则,今天就不会有这样的口头禅来嘲讽一个人的能耐是有限的:“你有本事,你也不能揪着自己的头发使自己离地三寸。”

刻舟求剑

船、河岸和水三者之间谁在运动?天和地、月和云谁在运动?这是古代人最关心的运动学问题。这里既涉及参考坐标的重要性,也和相对运动问题有关。

船、河岸和水三者谁在运动的问题,曾经几乎同时困扰了古代东西方的哲人。古希腊亚里士多德(前384—前322)曾经提出,停泊在河中的船实际上处于运动之中,因为不断有新水流和这船接触。“不能同时踏进同一条河”的命题就是由此而来的。古代中国人以自己的思考方式回答这些问题。

晋代天文学家束皙(xī)解释“仰游云以观月,月常动而云不移”的现象说:“乘船以涉水,水去而船不徒矣。”(见《隋书·天文志上》)这个立论方式恰和亚里士多德相反。束皙认为,运动着的船实际上是不运动的,如果过江时一直保持船和河岸垂直指向对岸,船和河床的相对位置就不改变。把参考坐标取在过江线或河床上这时就得出“水去而船不徙”的结论。另一种看法是,让船和水同速漂流,把参考坐标取在整个水流上,船对于水也不发生位置移动。

从物理学看,决定空间位置或物体运动与否必需有一个参考系。否则,就会“东家谓之西家,西家谓之东家,虽皋陶(yáo)为之理,不能定其处。”(《淮南子·齐俗训》)连古圣皋陶都不能断定是非。不清楚参考坐标的人,就像“刻舟求剑”一样胡涂。

刻舟求剑的故事出于战国末期吕不韦(?—前235)主持编纂的《吕氏春秋》。它所包含的物理意义是极其深刻的。这个故事说:有一个楚国人乘船过江,他身上的佩剑不小心掉落江中。他立即在船舱板上作记号,对他的船友说:“这是我的剑掉落的地方。”到了河岸,船停了,他就在画记号的地方下水找剑。“舟已行矣,而剑不行。求剑若此,不亦惑乎?”(《吕氏春秋·慎大览·察今篇》)这样找自己的剑,不是犯胡涂吗?从故事编纂者的口气看,他是知道怎样找到掉落江中的剑的。从物理角度看,找到这把剑有几种办法:第一,记下掉落位置离岸上某标志的方向和距离。这就是说,以河岸作为参考坐标。第二,在船不改变方向和速度的情况下,记下剑掉落时刻、船速和航行时间,据此求出靠岸的船和剑掉落地点的距离。这就是说,以船作为参考坐标。

参考坐标选取适当与否,对解决运动学和动力学中的问题是很重要的。在相对运动中,选取不同的坐标就有不同的运动结论。

前面提到过的束皙曾说:“仰游云以观月,月常动而云不移。”(《隋书·天文志上》)晋代葛洪(283—363)说:“见游云西行,而谓月之东驰。”(《抱朴子内篇·塞难》)南朝梁元帝萧绎(508—554)的诗《早发龙巢》提到在行船舱板上人们的感觉说:“不疑行舫动,唯看远树来。”(见丁福保编:《全汉三国晋南北朝诗》下册《全梁诗》卷下,中华书局1959年版,第957页)敦煌曲子词中有句:“看山恰似走来迎”(见王重民辑《敦煌曲子词集》(修订本),商务印书馆1956年版,第31页)。由于参考坐标的关系,原来不动的物体都成为运动的了。这是并不奇怪的。令人惊奇的是,这些极其典型的相对运动的事例,很早就成为中国文人笔下的力作佳句。

然而,古代人在判断“天”和“地”的相对运动时,并不像上述事例那么简单明了。在古代人看来,“天左旋,地右动。”(《春秋纬·元命苞》)也就是说,以天上星体的东升西落(左旋)来证明地的右旋运动。汉代王充在《论衡·说日篇》中提出了另一种看法:日月是体实际上是附着在天上作右旋运动的,只是因为天的左旋运动比起日月星体的右旋运动来要快,这才把日月星体当成左旋。这种情形就像蚂蚁行走在转动着的磨上,人们见不到蚂蚁右行,而只看见磨左转,因此以为蚂蚁也是左行的。(“当日月出时,当进而东旋,何还始西转?系于天,随天四时转行也。其喻若蚁行于硙上,日月行迟天行疾,天转日月转,故日月实东行,而反西旋也。”)《晋书·天文志》中也说:“天旁转如推磨而左行,日月右行,随地左转,故日月实东行,而天牵之也西没,譬如于蚁行磨石之上,磨左旋而蚁右去,磨疾而蚁迟,故不得不随磨以左回焉。”我们暂且不管“天”是什么,是否在运动,仅从物理学看,王充等人的思想是高明的,他们不仅看到了相对运动,而且还企图以相对速度的概念来确定运动的“真实”情况。

在历史上,许多人参加了这场左右旋的争论。到了宋代,由于理学大师朱熹的名气,他所坚持的“左旋说”又占了上风。这场争论,长达二千多年。直到明代,伟大的科学家朱载墒作出物理判决之后,还争论未了。朱载堉说:“左右二说,孰是耶?曰,此千载不诀之疑也。人在舟中,蚁行磨上,缓速二船,良驽二马之喻,各主一理,似则皆似矣。苟非凌空御气,飞到日月之旁,亲睹其实,孰能辨其左右哉?”(《律历融通》卷四《黄钟历议·五纬》,载《乐律全书》)天和地、人和舟、蚁和磨、快慢二船、良驽二马,如果没有第三者作参考坐标,就很难辨明它们各自的运动状态。从物理学看,两个彼此作相对运动的物体A和B,既可以看作A动B不动,也可以看作B动A不动。这两种看法都有效。若要争论它们的运动方向或推动谁静,那真是“千载不决之疑”。朱载堉的回答完全符合运动相对性的物理意义。然而,朱载堉不明白,即使飞到日月旁,也不能“辨其左右”,而只能回答“似则皆似矣”。

以相对运动的观点来解释天地的运动,在古代的东西方都是一致的。但像朱载堉那样对相对运动作出物理判决的人,在西方只有比朱载靖稍后的伽利略算是最早的。

要解决地静还是地动的问题,关键是要提出令人信服的证据证明地动的不可觉察性。这样,才能牢固地确立地动的观念。完成这任务,在近代物理学史上是伽利略的功劳。然而,古代中国人却从经验事实中总结出这一伟大的发现。

早在汉代成书的《尚书纬·考灵耀》中说道:“地恒动不止,而人不知。譬如人在大舟中,闭牖(yǒu)而坐,舟行而人不觉也。”关闭的船舱,在物理学著作中被看成是最普通、最易被理解的近似的惯性系统。在一个封闭的惯性系统里,无论什么样的力学实验都不能判断这一系统是处在静止状态还是在作匀速直线运动。这个原理又称“伽利略相对性原理”。可是,在伽利略之前大约一千五百年,中国人就提出了这个原理的最古老的说法。这是中国科学史上最伟大的理论成就之一。

浮力

沉浸在液体中的物体都受到液体的浮举作用。在中国关于浮力原理的最早记述见于《墨经·经下》,大意说:形体大的物体,在水中沉下的部分很浅,这是平衡的缘故。这一物体侵入水中的部分,即使浸人很浅,也是和这一物体平衡的。这种情况就像市上的商品交易,一件甲种商品可以换取五件乙种商品一样。(“荆(形)之大,其沈(沉)浅也,说在具(衡)。”“沈(沉)、荆(形)之具(衡)也,则沈(沉)浅,非荆(形)浅也。若易五之一。”)

《墨经》的这段文字,对浮力原理表达不确切。它没有看到浮体沉浸水中的部分正是这一物体所排开的液体,所排开的液体重量恰好等于浮力;是浮力和浮体平衡,而不是沉浸水中的部分和整个浮体平衡。但是,纵观整段文字,表明墨家已懂得这种关系。他们是阿基米德之前约二百年表达这一原理的。

浮力原理在我国古代得到广泛应用,史书上也留下了许多生动的故事。

曹冲称象

三国时期有个早卒的神童叫曹冲(196—208),他是曹操的儿子。他曾经提出“以舟称象”。没有现代的衡器而要称量几吨重的大象是令人为难的。曹冲说:把大象赶到船上,记下船在河中下沉的位置。然后,把大象拉上岸,把石头陆续装人船中,直到装载石头的船下沉到刚才那个记号为止。再分别称出船中石头的重量,石头的总重就是大象的重。(《三国志》卷二十《魏书·邓哀王冲传》)

曹冲称象的方法,正是浮力原理的具体运用。在中国历史上,据记载,有比曹冲更早的类似故事。东周燕昭王(?—前279)有一大猪,他命司衡宫用杆秤称它的重量。结果,折断十把杆秤,猪的重量还没有称出来。他又命水官用浮舟量,才知道猪的重量。(见《玉函山房辑佚书》卷七十一《苻子》)

除了用舟称物之外,用舟起重也是中国人的发明。据史籍记载,蒲津大桥是一座浮桥。它用舟做桥墩,舟和舟之间架板成桥。唐玄宗开元十二年(公元724年)在修理这桥时,为加固舟墩,在两岸维系巨缆,特增设铁牛八只作为岸上缆柱。每头铁牛重几万斤。三百多年后,到宋仁宗庆历年间(公元1041年到1048年),因河水暴涨,桥被毁坏,几万斤的铁牛也被冲人河中。这桥毁后二十多年,真定县僧人怀丙提出打捞铁牛、重修蒲津桥的主张。他打捞铁牛的方法是:在水浅时节,把两只大船装满土石,两船间架横梁巨木,巨木中系铁链铁钩,用这铁钩链捆束铁牛。待水涨时节,立即把舟中土石卸入河中。本来就水涨船高,卸去土石后船涨得更高,于是铁牛被拉出水面。(见《宋史·僧怀丙传》)另一记载和这方法稍有不同:在一只船上架桔槔,桔槔短臂端用铁链系牛,长臂端系在另一巨船上。待水涨时,在另一船上装满土石。这样,铁牛被桔槔从河底拉起并稍露水面。(见吴曾著《能改斋漫录》卷三《河中府浮桥》)

可能怀丙打捞铁牛用了这两种方法。怀丙是中世纪伟大的工程力学家。他创造的浮力起重法,曾在十六世纪由意大利数学家卡尔达诺(1501—1576)用来打捞沉船。

液体的表面张力现象

表面张力是发生在液体面上的各部分互相作用的力,它是液体所具有的性质之一。表面薄膜、肥皂泡、球形液滴等都是由于表面张力而形成的。

宋代张世南在《游宦纪闻》卷二中曾记载了一种检验桐油好坏的方法。他说:“验真桐油之法,以细蔑一头作圈状,入油蘸。若真者,则如鼓面就(mán)圈子上。渗有假,则不着圈上矣。”这种用竹蔑圈试桐油好坏的方法,虽然见于宋代的书籍,在这以前人们一定早已在应用了。

我们现在知道,液体能不能附着在这样的竹蔑圈上,和它的表面张力大小有关。而表面张力也和液体里含的杂质有关。液体含杂质,会使液体表面张力大大减小。因此,如果桐油里含的杂质比较多,它的表面张力比较小,就不能在竹篾圈上形成一层鼓面状薄膜。我国古代测试桐油好坏的方法,表明人们在实践中掌握了关于表面张力的科学道理。今天学校里给学生演示表面张力现象的常用仪器,也就是一个圆圈,只是一般不用竹蔑而用铁丝做成的罢了。

据载,明熹宗朱由校(1605—1627)玩过肥皂泡。当时人称它“水圈戏”。方以智(1611—1671)说:“浓碱水入秋香末,蘸小蔑圈挥之,大小成球飞去。刘若愚言,熹宗能戏,以水抛空中成圈。”(《物理小识》卷十二《水圈戏》)

水的表面张力虽然不算大,但是如果把像绣花针那样的比较轻的物体小心地投放水面(特别是布满气泡的水面),针也能由于水的表面张力而不下沉。我国古代的妇女们就利用这种现象于每年七月七日(农历)进行“丢针”的娱乐活动。明代刘侗(约594—约1637)、于奕正合写的《帝京景物略》一书卷二《春场》中在记述“丢针”时写到,由于“水膜生面,绣针投之则浮。”这些话表明当时的人们已经提出了表面张力的物理效应的问题。

虹吸管和大气压力

虹吸管,在古代叫“注子”、“偏提”、“渴乌”或“过山龙”。东汉末年出现了灌溉用的渴乌。北魏道士李兰做称漏,也用了渴乌。西南地区的少数民族用一根去节弯曲的长竹管饮酒,也是应用了虹吸的物理现象。宋代曾公亮在《武经总要前集》卷六《寻水泉法》中,有用竹筒制作虹吸管把被峻山阻隔的泉水引下山的记载。

在生产和生活的实践中,我国古代还应用了卿筒。卿筒作为战争中一种守城必备的灭火器,在军事书中经常讲到。宋代苏轼(1037—1101)的《东坡志林》卷四中,曾经记载四川盐井中用卿筒来把盐水吸到地面,它说,以竹为筒,“无底而窍其上,悬熟皮数寸,出入水中,气自呼吸而启闭之,一筒致水数斗。”明代俞贞木的《种树书》中也讲到用唧筒激水来浇灌树苗的方法。

我们知道,虹吸管一类的虹吸现象是由于大气压力的作用而产生的。唧筒也是这样。正是由于广泛使用了虹吸管和卿筒一类器具,有关它们吸水的道理也就引起了古代人的探讨。

南北朝时期成书的《关尹子·九药篇》中说:“瓶存二窍,以水实之,倒泻,闭一则水不下,盖(气)不升则不降。”这里讲的有两个小孔的瓶子能倒出水,闭住一个小孔就倒不出水,这个现象完全是真实的。因为两个小孔一个出水,一个可以同时进空气,如果闭住一个小孔,另一个小孔外面的空气压力就会比瓶里水的压力大,水就出不来了。《关尹子》中说的“不升则不降”,虽然没有明确提出像现代科学上说的大气压力的作用,但是道理是一致的。

唐代的王冰在《黄帝内经·素问》卷十九《六微旨大论六十八》的注中,有关大气压力的物理现象就讲得更清楚了,他说:“虚管溉满,捻上悬之,水固不泄,为无升气而不能降也;空瓶小口,顿

要想给人强壮魁梧的感觉,就必须拥有发达的大肌群。

大肌群才有大块头。才能展现出强壮的身体于魁梧的身材。

具体来说,以下几组大肌群部位肌肉发达,就可以展现出强壮魁梧的感觉。

1,背部肌群。

我们说一个人强壮,常说“肩宽背厚”这句话。

从背部看,发达到背部肌肉可以展现出魁梧的感觉,让人觉得这个人非常强壮。

2,胸大肌。

胸部肌肉发达,给人的感觉是充满了力量的感觉。

因此,发达的胸大肌是让人觉得强壮魁梧的重要因素之一。

3,肩部三角肌。

俗话说的“肩宽背厚”中宽宽的肩膀,就是发达的三角肌支撑起来的。

因此,发达的肩部肌肉会给人强壮魁梧到感觉。

4,腹肌。

大腹便便,肯定不会让人觉得强壮魁梧。

发达的腹肌,充满力量感,也能塑造完美体型,让人感觉更加强壮魁梧。

5,腿部肌肉。

细胳膊细腿,肯定既不强壮又不魁梧。

健壮的腿部肌肉,可以让人显得非常强壮,也能让人显得更加魁梧。

以上几部分肌肉的发达程度,决定了一个人的体型如何,也是展现这个人身材是否健壮,是否魁梧的根本因素。

而且只有这些部位的肌肉群都非常发达,才能真正给人以强壮和魁梧的感觉。

如果只是某一部分肌肉发达,而其他部位肌肉弱小,那就不会有强壮魁梧的感觉了,只能让人觉得身体羸弱了……

上面的答案不完全正确,物理专业的人应该很容易看出破绽,我再总结一下:

1、跷跷板的列子是对的。从提问的问题我猜测楼主应该年纪不大,至少是没正经学过杠杆。首先,杠杆的支点并不总是在两个受力点之间,比如撬棒撬起石块。其次,决定杠杆转动与否的直接因素是力矩是否平衡,而不是力是否平衡。只有力矩的大小相等方向相反时杠杆才会静止(或匀速转动),单纯只考虑力的大小和方向不能说明杠杆能否转动。研究杠杆是属于“刚体力学”的范畴,不同于质点力学。你还可以回忆一下杆秤是怎么工作的,用同一个称砣,通过改变它在秤杆上的位置,就能称出不同重量的物品。同时,这也是个“动力和阻力的方向相同”的例子。

2、先说力矩。力矩就是力和力臂的乘积,力臂是支点到力的作用线的距离。注意是距离(几何学上的点都直线的距离),不是连线。这种乘积在几何上其实是个“面积”,所以你也可以想像力矩的物理意义就是,力通过力臂扫过的面积。其实,“矩”在物理学中专门表示矢量与其法向距离臂的乘积,除了力矩,还有速度矩(通常称为角动量)、偶极矩等等。

举个例子给你说明一下“矩”是“面积”的含义。想像一下在地球绕日运行的椭圆形轨道上,有一条连接太阳和地球的连线,随着地球每天的运行,这条连线每天都会在地日之间扫出一个小扇型,这个扇形的大小就是这个“矩”的大小,这里的“矩”是速度矩(速度×距离)。地球的公转速率并不是始终相同的。在近日点速率最大,远日点最小。但无论何处,单位时间内扫过的面积都是一样的(即速度矩不变),这就是“角动量守恒定律”,它在刚体力学中重要性相当于质点力学中的动量守恒定律。

再说不倒翁。不倒翁的底盘一般都是球形,并且重心很低。如果把底盘延展成以个完整的球,并找出球心,会发现重心一定在球心的下方。只有这样,才能使不倒翁在直立时重心最低,歪倒时则重心会升高。从能量最小化的角度看,重心越低重力势能越低,体系具有的能越低则体系越稳定。所以,当不倒翁歪倒时能量是升高的,为了达到稳定,只有回复到第能量的状态。

那么能不能用杠杆原理解释呢?可以。支点为与地面接触的点。以这点为界将歪倒的不倒翁竖直分成两份,每份可以找到各自的重心,可以得出各自部分的重力大小;根据重力到支点的距离有可得到各自力臂大小,进而得到动力矩和阻力矩。这两个力矩一定是不等大的(否则一直保持歪倒状态了),一定是底部那个部分的力矩大,所以才会恢复到直立。直立后,两部分重心以及支点处在同一条竖直线上,此时力臂为0,从而力矩也为0——动力矩于阻力矩“等大反向”,达到稳定状态。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10613067.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-10
下一篇2023-11-10

发表评论

登录后才能评论

评论列表(0条)

    保存