什么是椭圆中心和焦点

什么是椭圆中心和焦点,第1张

椭圆的中心就是它的对称中心,就是最中间那个点。至于椭圆焦点要从椭圆的定义说起,焦点是椭圆长轴上关于中心对称的两点(椭圆长轴可以想象不,就是最长的那一条轴),椭圆上的任意一点都满足一个条件就是到两个焦点的距离之和等于长轴的长度。

设该点坐标为(x,y),则其到左焦点距离为a+ex,到右焦点距离为a-ex。

a是椭圆长轴的一半,  c是焦距的 一半,是两个焦点间的距离的一半!

e=c/a

相关公式

面积公式    

(其中  分别是椭圆的长半轴、短半轴的长),或

 

(其中  分别是椭圆的长轴,短轴的长)。

证:

 的面积,由于图形的对称性可知,只要求出第一象限的面积乘以4即可。

在第一象限

 , 令

周长

椭圆周长计算公式:L=T(r+R)

T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。

椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。

在数学中,椭圆是平面上到两个固定点的距离之和是常数的轨迹。这两个固定点叫做焦点。

经由这个定义,这样画出一个椭圆:先准备一条线,将这条线的两端各绑在一点上(这两个点就当作是椭圆的两个焦点);取一支笔,将线绷紧,这时候两个点和笔就形成了一个三角形;然后拉着线开始作图,持续的使线绷紧,最后就可以完成一个椭圆的图形了。

扩展资料:

一、根据两个焦点定义圆锥

椭圆可以定义为到两个给定焦点的距离之和为常数的点的轨迹。

圆是椭圆的特殊情况,其中两个焦点彼此重合。 因此,可以更简单地将圆定义为每个距离单个给定焦点的固定距离的点的轨迹。 也可以将圆定义为阿波罗尼奥斯圆,就两个不同的焦点而言,作为具有与两个焦点的距离的固定比例的点集合。

抛物线是椭圆的极限情况,其中的一个焦点是无限远的点。

双曲线可以定义为到两个给定焦点的距离之间的差的绝对值为常数的点的轨迹。

二、椭圆的几何性质

1、范围:焦点在x轴上-a≤x ≤a,-b≤y≤b;焦点在y轴上-b≤x ≤b,-a≤y≤a。

2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

3、顶点:(a,0)(-a,0)(0,b)(0,-b)。

4、离心率范围:0<e<1。

5、离心率越小越接近于圆,越大则椭圆就越扁。

6、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)。

-焦点

-椭圆

椭圆的焦点公式:根据a^2-b^2=c^2,其中a为长轴长,b为短轴长,c为焦距,如果长轴长在x轴上的话,焦点为(C,0),(-C,0),如果长轴长在y轴上的话,焦点为(0,C),(0,-C)。

椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。

计算公式为:a^2-b^2=c^2

如果长轴长在x轴上的话,焦距为(C,0),(-C,0),如果长轴长在y轴上的话,焦距为(0,C),(0,-C)。

其中:长轴长为:2a;短轴长为:2b;焦距为:2c。

扩展资料:

椭圆性质:

(1)范围:由方程可得|x|≤a,|y|≤b,因此椭圆位于直线x=±a,y=±b所围成的矩形里。  

(2)对称性:椭圆既是轴对称图形,也是中心对称图形,它有两根对称轴,一个对称中心,一般地对于曲线f(x,y)=0,若以-y代y方程不变,则曲线关于x轴对称。

若以-x代x方程不变,则曲线关于y轴对称;若同时以-x代x,以-y代y方程不变,那么曲线关于原点对称,应结合点P(x,y)分别关于x轴、y轴、原点的对称点的坐标来理解和记忆。

-椭圆的标准方程

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/11328210.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-28
下一篇2023-11-28

发表评论

登录后才能评论

评论列表(0条)

    保存