第一:加注高质量的汽油。要注意高标号并不等于高质量,标号只代表油的辛烷值,并不能代表品质和清洁程度。在汽油里添加优质汽油清洁剂可有效地防止在金属表面形成积碳结层,并能逐渐活化原有的积碳颗粒慢慢去除,从而保护发动机免受伤害。
第二:不要长时间怠速行驶。在凉车热车时,怠速时间过长,发动机达到正常温度的时间也就变长,汽油被喷到气门背面后蒸发的速度就慢,积碳也由此而生。一般电喷车凉车热车2分钟左右就可以上路行驶。同时经常怠速行驶,进入发动机的空气流量较小,这样对积碳的冲刷作用变得也很弱,会促进积碳的沉积。
第三:多跑高速,尽量提高手挡车的换挡转速。多跑高速的目的就是要利用气流对进气道的冲刷作用来预防产生积碳。另外,提高换挡的转速也与多跑高速有着异曲同工之妙,把原来在转速2000时换挡变成2500转换,不但可以有效预防积碳生成,还可以提高汽车的动力性,也避免了换挡转速过低带来的爆振,保护发动机。
第四:由于吸入的空气中含有细幸尘,在空滤处无法完全滤除,伴随油气一起冲刷气门背部,经长时间冲刷造成细微划痕。细小颗粒与来自曲轴箱的润滑油储存在划痕中,在高温下形成漆状物,经长时间积累,并混合燃油中的蜡等成分形成积炭。
产生积炭后通常采用免拆卸清洗的方法,严重的则要采用揭缸盖清洁气门的方法。
是进气道
喷气式飞机进气道是一个系统的总称,它包括进气口、辅助进气口、放气口和进气通道,因此它是保证喷气发动机正常工作的重要部件之一,它直接影响到飞机发动机的工作效率,它对发动机是否正常工作,推力大小等有着到关重要的作用,因此它对飞机性能尤其是战斗机有很大的影响。其作用是:第一,供给发动机一定流量的空气。螺旋桨飞机靠螺旋桨工作拉动空气向后运动带动飞机做相对运动前飞,螺旋桨发动机燃烧也需要空气,但它的用量无法与喷气发动机相比,而且在高空空气稀薄,含氧量代,发动机效率会急剧下降,喷气发动机所需的空气量惊人,动辄每秒以上百千克计,如“海鹞”的发动机空气流量为196千克/秒,中国飞豹的则是2×92千克/秒,美国F-15的是2×121千克/秒;第二、保证进气流场能满足压气机和燃烧室正常工作的要求,喷气发动机压气机进口流速约为当地音速的03-06M,而且对流场的不均匀性有严格限制。在飞行中,进气道要实现对高速气流的减速增压,将气流的动能转化为压力能。随着飞行速度的增加,进气道的增压作用越来越大,在超音速飞行时的增压作用可大大超过压气机。
进气道分为不可调进气道和可调进气道。不可调进气道,也就是进气道形状参数不可调节,只能在某种设计状态下才可高效工作的进气道,它只在设计状态下能与发动机协调工作,这时进气道处于最佳临界状态。在非设计状态下,譬如改变飞行速度,进气道与发动机的工作可能不协调。当发动机需要空气量超裹进气道通过能力时,进气道处于低效率的超临界状态。当发动机需要空气量低于进气道通过能力时,进气道将处于亚临界溢流状态。严格上讲,超音速进气道和亚音速进气道都会使阻力增加,不排除某些亚音速进气道或许出现前缘吸力大于阻力的情况,但过分的亚临界状态使阻力增加,并引起进气道喘振。为了使进气道在非设计状态下也能与发动机协调工作,提高效能,广泛应用可调进气道,常用的方法是调节喉部面积和斜板角度(最好专门对这些术语进行解释、配图。),使在任何状态下进气道的通过能力与发动机的要求一致。另外,在亚音速扩散通道处设有放气门,将多余的空气放掉,防止进气道处于亚临界状态,同时,在起飞时,发动机全加力工作,气流量需求很大;而且因为速度低,要保持同样气流量的需求,需要的捕获面积增大。因此为了解决起飞状态进气口面积过小的问题,还设置有在低速能被吸开的辅助进气口。
飞机进气道设计中几个重要的设计指标是总压恢复、流场畸变水平和阻力大小。在进气道设计中,必须参照这几个重要的技术指标,它也是反映飞机整体性能的关键参数。
总压是气流静压和动压之和,表征了气流的机械能,总压恢复是指发动机进口处的气流总压与进气道远前方来流的总压之比,是进气道设计中一个非常重要的参数,表示气流机械能的损失,对于超音速进气道,总压恢复主要与斜板级数和角度所决定的激波的级数和波后流动参数有关。
流场畸变水平表征了进气道提供给发动机的气流的均匀程度,一般用进气道流场中的最高总压与最低总压值之间的差值表示,它影响着发动机的喘振裕度,间接关系着飞机的安全。
进气道设计时一般考虑的阻力是外罩阻力和附加阻力,其中附加阻力又叫溢流阻力,是指在进入进气道的气流量大于发动机所需流量时,由于部分气流从进气道口溢出而导致的阻力。
进气道的形状选择和位置的布置应该满足发动机有较高工作效率的要求,或应保证飞行器具有最佳性能要求或应保证飞行器能达到最佳飞行性能的要求。进气道的设计在科技的带动下有了很大的发展,使得喷气战斗机的飞行速度越来越快,性能越来越高,可以说它的重要性越来越明显,并且已成为飞机机体设计中成为一个独立的组成部分,进气道设计成为飞机性能提高的重要因素之一。
飞机进气道发展到现在主要分为亚音速进气道和超音速进气道。
一、亚音速进气道
亚音速进气道结构较为简单,其进气口前缘较为钝圆,以避免低速起飞时进口处气流分离。其内部的进气通道多为扩散形,在最大速度或巡航状态下,进入气流的减速增压过程大部分在进气口外面完成,进气通道内的流体损失不大,因而有较高的效率。喷气发动机出现的初期,它仅作为发动机工作介质的一个通道,保证发动机有足够的进气量即可,所以早期这种进气道结构十分简单。当飞机的速度和性能不断提高,其结构也日趋复杂,其进气通道里增加了附面层抽气系统,防止低能的附面层流进入发动机,造成发动机的喘振甚至失速。对于两侧或腹部进气的进气道,其进气口有一个附面层隔板,或者进气道与机身相隔一小段间隙,其功能是把附面层流引向另处,尽管如此,和后来的超音速进气道相比,亚音速进气道结构仍然比较简单。亚音速进气道不仅用在亚音速战斗机上,也用在早期的超音速战斗机上,亚音速进气道在超音速状态下工作时,进气口前会产生脱体正激波,超音速气流经过正激波减为亚音速,这时能量损失增大(激波损失)。激波前速度越大,损失也越大。
喷气式飞机诞生之初,发动机发展还不完善,其性能还不高,它所提供的推力太小,推重比也低(尽管如此,其速度也比螺旋桨飞机快多了),为了减少进气过程的能量损失,飞机进气道多为短粗形式,其进气通道很短。
因为早期喷气飞机都是亚音速,所以其进气道被称为亚音速进气道,其形状各异,但它们在本质上是相同的,不同的形状有一些性能上或达到飞机某些性能有不尽相同的功能。2001年笔者朋友曾经向陈一坚(“飞豹”总设计师)请教“飞豹”的进气道,他说采用圆形的话,罗罗公司畸变指数DC60最小,但是从工艺性和阻力考虑,“飞豹”选择了类方的形状,所以说只是一些细节问题导致了这些区别。
亚音速进气道总体上分成头部进气和两侧进气。头部分圆形皮托管式进气道、扁圆形进气道、半圆形颌下进气道;两侧进气道分圆形、方形或类方形、半圆形或近似半圆形。
1、机头及两侧圆形 早期亚音速进气道的进气口多为圆形,它的主要优点是结构简单,进气均匀,能损失小,为了把能量损失减少到最小,飞机布局一般考虑到发动机的工作效率,故此,这一时期飞机发动机布置一般为翼吊式和机身式,翼吊式顾名思义发动机以吊舱式安置在机翼下面,这样的布置方式,可以保持飞机的流线型布局,适合安装电子设备,它的缺点是偏航力矩大,转动惯量也大,不利于战斗机的滚转,另一方面它对战斗机对结构强度要求高,战斗机在做大过载机动时,尤其是流转时机体受力大,所以它并不适合战斗机,世界范围来看这种布局也并不多见,如世界上第一种实用型喷气战斗机ME-262,还有苏联的苏-9(仿制ME-262,苏霍伊设计局重新编号前的苏-9)、伊尔-28。机身式发动机布局就是把发动机安装在机身内,由于考虑到进气效率,所以发动机多布置在这些飞机的头部,发动机喷口在飞机中腹部,飞行员座舱在飞机中后部,视野较差,飞机看起来头重脚轻,这样形成一个明显的阶梯状,故此这种飞机布局被称为阶梯状布局(STEPPED),如苏联的米格-9、雅克-15、拉-150,瑞典的萨伯-29“飞行酒桶”,这些早期的喷气式战斗机除瑞典的萨伯-29外,都是过渡机型,服役时间很短。在发动机的快速发展下,其推力越来越大,进气通道长短不再是主要考虑因素,此时飞机的发动机多布置在尾部,留下空间安排前起落架和座舱,这使得飞机外形更加流线化,但它们的进气口仍然在头部,且圆形居多,如苏联的米格-15、米格-17、苏-7,美国的F-84、F-86(早期型号),英国的“蚊”式、法国的“神秘”IVA。还有一些飞机并非采用机头进气,但进气口依然为圆形,如英国两侧进气的“标枪”战斗机、“掠夺者”战斗轰炸机,采用机翼与发动机一体化布局的“堪培拉”,即美国也生产使用的RB-57,其发动机在机翼的中间。苏联的图-16轰炸机和苏-25攻击机同样为两侧进气的近似圆形进气道。
2、扁圆形 扁圆形进气道代表是F-100战斗机和法国“超神秘”战斗机,这两款战斗外形十分相似。
3、颌下进气半圆形 早期有一些战斗机采用的半圆形颌下进气布局,这种布置方式是一种折衷方式,即保证了进气效率,也便于安装雷达等电子设备,代表性的有美国的F-86D、F-8“十字军战士”,意大利G-91R,
4、方形或类方形 为了在机头安装雷达,一些早期战斗机采用了两侧进气方式,如英国的“蚊蚋”、“褐雨燕”等,后来的战斗机,如美国的F-5“虎”,英法合作的“美洲虎”,意大利与巴西合作的AMX攻击机,中国“飞豹”和A-5等也采用这种进气道。
5、半圆形形近似半圆形 英国的“鹞”式垂直起落战斗机采用的是两侧半圆形进气道。
6、其它形状 采用两侧进气三角形进气道的 是英国“猎人”战斗机(它属于翼根进气),不论用什么形状的进气道,它都是与飞机其它结构和设备综合配置的一个妥协方案。
需要说明的是第一代超音速战斗机仍然采用的是亚音速进气道,如美国的F-100、F-105、苏联米格-19、中国的A-5强击机,法国的“超神秘”战斗机等。后来的一些军用飞机因性能上要求不同也采用亚音速进气道,如中国的“飞豹”战斗轰炸机。美国F-16虽为第三代战斗机,但它强调的是跨音速的机动性能,所以它采用的是经改进过的亚音速进气道,称为单一正激波压缩进气道,F-16的动力很强劲,但飞到20M非常困难,这个最大速度是最理想状态下的数据,其他的超音速飞机用亚音速进气道也是这种单一正激波进气道。美国B-1A由于早期强调超音速空防能力,其进气道为超音速进气道,作战任务改变后,其进气道也改成了亚音速进气道,同样美国F-5、AMX等都使用的是亚音速进气道。
亚音速进气道的主要特点是进气通道短,进气效率高,结构简单,维修方便,因为来流速度较低,空气可直接引用,不需要进行预压缩,进气口面积也不需要调节,飞机速度在14M以下的飞机通常使用这种进气道,飞行速度在16-17M的,飞机在做高机动性,如大迎角、大侧滑角飞行时会破坏气流的对称性(各种进气道都有此弊端,而简单的皮托管式进气道恰恰对此不敏感),使进气效率降低,因此,不需要高机动性的战斗轰炸机、攻击机、轰炸机等多选用这种进气道。
二、超音速进气道
超音速进气道在结构上更复杂,它通过多个较弱的斜激波实现超音速气流的减速。超音速进气道分为外压式、内压式和混合式三种。外压式进气道:在进口前装有中心锥或斜板,以形成斜激波减速,降低进口正激波的强度,从而提高进气减速的效率。外压式进气道的超音速减速全部在进气口外完成,进气口内通道基本上是亚音速扩散段。内压式进气道:为收缩扩散形管道,超音速气流的减速增压全在进口以内实现。设计状态下,气流在收缩段内不断减速到喉部恰为音速,在扩散段内继续减到低亚音速。内压式进气道效率高、阻力小,但非设计状态性能不好,起动困难,在飞机上未见采用。混合式进气道:是内外压式的折衷。
对于超音速飞机而言,本身其飞行马赫数变化范围较宽,对于进气道就要求在较宽的范围内高效的减速增压;而且,由于超音速飞行,进口前气流不能自动地适应发动机所需而引入适当的流量,容易发生溢流。所以随着速度提高,飞机进气道也发生了很大的变化,结构上朝着更加复杂化发展,这也是性能和速度提高后确保发动机工作稳定的先决条件。飞机进气口大小是不变的,而高速和低速飞行时发动机对空气量的需求却不一样,尤其超音速飞行时,进入进气道的空气量超过了发动机的实际需求,如果不将其排除则会导致额外的阻力,所以,超音速进气道都设有旁路系统,空气超过发动机需求时,则开启旁路系统,将多余的空气排放出去。圆形或半圆形的进气道有个中心锥,它一是用来调节进气量,还有一个重要的作用是调节激波的位置,超音速进气道与亚音速进气道在外形上的的主要区别就是是否有中心锥和压缩斜板,中心锥可以看到,而压缩板有的在进气道内部。
它主要经历了四个阶段:
(一)三维轴对称进气道 这种进气道通常指的是圆形、半圆形、四分之一圆形进气道,它与亚音速类似,但是它有一个中心锥面的预压缩面,中心锥的位置是可以调节的,以适应不同速度下的进气量要求,提高进气效率,使发动机始终在最佳状态下工作,满足飞机的飞行需要。由于安装了中心锥,在低速,尤其是起飞阶段进气量不足,所以采用这种进气道的飞机一般在进气口后方开有一个或多个辅助进气口,这种进气道一般用在速度22M以下的飞机。
世界上第一种安装超音速进气道的飞机是美国F-104“星”战斗机,苏联第一种使用超音速进气道的飞机是米格-21,法国第一种使用超音速进气道的飞机是幻影-Ⅲ,英国第一种使用超音速进气道的飞机是“闪电”截击机,以上这些战斗机分别采用了圆形进气道和半圆形进气道,圆形进气道一般安装在机头位置,半圆形进气道一般用在两侧,美国“黑鸟”也采用这种三维轴对称进气道,但安装在机翼上。
1、圆形 这种形状的进气道多用于机头进气,苏联早期2倍音速飞机用此进气道较多,如苏-9、苏-17及其系列、米格-21等,中国的歼-7、歼-8/-8Ⅰ,英国“闪电”,美国“黑鸟”等,这种进气道缺点是:第一、限制了飞机安装大型雷达;第二、进气通道过长,浪费了空间,对机内部设备安装带来困难,过长的通道也使得进气效率降低。“黑鸟”发动机的位置特别,不存在这些情况。
2、半圆形 该形状进气道只安装于飞机两侧,因此便于飞机电子设备安装,五六十年代电子设备发展很快,飞机上的电子设备越来越多,两侧进气的优点无疑十分突出,西方多采用这种布局,如幻影-2000、幻影-Ⅲ/Ⅳ/Ⅴ,美国F-104,印度HF-24“风神”战斗机,苏联拉-250(未服役)截击机。
3、近似半圆形和四分之一圆形 不同形状的进气道选择是根据作战飞机总体气动布局和作战要求来设计的,最终目标是使用飞机达到完成战术任务要求的最佳化。进气道为四分之一圆形的有美国F-111,近似半圆形的有法国“阵风”,美国的F-18D以前型号等,这些进气道有的没有中心锥,但在进气道与机身处有一个附面层隔板,它可以防止低能的附面层流进入进气道,这个附面层隔板伸出比较长而且有斜角,本身就是固定压缩斜板,内部则没有压缩斜板,外压式进气道的超音速减速过程在进口外实现,附面层隔板还可以提高总压恢复。
随着战斗机性能不断提高,其对进气要求也越来越严格,三维轴对称进气道在某方面存在着一些不足,无法满足现代飞机高机动性的飞行要求,第一、它速度调节范围小。由于三维轴对称进气道是利用中心锥在轴上前后移动来调节进气的,因此,调节范围小,若改变中心锥截面积的调节方法,则构造复杂,黑鸟的解决方式是混压式进气道;第二、它抗进气畸变的能力弱。正常飞行时,进气均匀,畸变小,但作高机动飞行时,迎角和侧滑角动作都会破坏气流的对称性,使进气道效率降低;第三、如果进气口安置在头部,则不利于电子设备的这安装,其进气通道也太长,能量损失较多,空间浪费严重,机头进气方式基本上已不再使用。
(二)二维矩形进气道 为了克服三维轴对称进气道的缺点,六十年代又出现了二维矩形进气道,其进气口形状为矩形或近似矩形。最早采用二维矩形进气道的是美国F-4“鬼怪”战斗机,苏联也于六十年代在米格-23上采用了这种进气道,该进气道表现出了三维轴对称进气道无法比拟的优点,在以后的飞机中大行其道,其发展过程中,又出现了楔形进气道,最早采用这种楔形进气道的是苏联米格-25。所谓的楔形实际上是水平压缩斜板进气道的情况,矩形则是垂直压缩斜板进气道,没有本质不同,外观的斜切不同只在于侧壁切去多少,垂直压缩斜板进气道一般把喉道外侧壁全切掉,但SU-15是个例外,压缩斜板并不是垂直或水平移动,而是一端铰接,可以转动成需要的斜角的。二维进气道通过固定的或者可调的斜板来调节激波,激波的参数随斜板的角度改变,所以调节也就是调节斜板的角度。所谓的楔形的进气道,上唇口水平压缩斜板产生的斜激波要求搭在下唇口上,当上下唇口间有完整的侧壁的时候,就是这样斜切的形状,注意是斜激波。当把这部分侧壁完全切去,使下唇口通过两侧垂直唇口的侧壁连接进气道上壁喉道位置,而压缩斜板完全在管道外的时候,就成为矩形的进气道,但是早期出现的矩形进气道不是水平压缩斜板,而是放在内侧的垂直压缩斜板,相当于水平压缩斜板转动90度的情况。它们在本质上是一样的,但是由于与进气道-机身的组合体的进气道安装位置,斜板位置的不同而在某些条件下表现不同。
1、矩形 矩形进气道一般有一个压缩斜板并兼起附面层隔板的作用,它不仅可以防止低能附面层流进入进气道,还可产生一道斜激波对进气流进行预压缩,提高进气道的总压恢复,它也可以调节进气,适应飞机较宽范围的飞行速度变化,代表性的飞机有美国F-4,苏联米格-23,中国歼-8Ⅱ等。
2、楔形 这种进气道好似矩形被斜切一刀,形成一个尖锐的楔形,高速飞行时,从楔形尖部的压缩斜板顶端产生一道斜激波,空气通过这个斜激波进行预压缩后,超音速来流的一部分动能转弯为压力能,其作用是使空气减速,提高进气效率,这种形式的进气口面积可以根据飞行状态的需要调节,就是通过压缩斜板的转动来调节进气口面积,其功能与矩形进气道的压缩斜板一样,代表性战斗机有苏联的米格-25、米格-29、苏-27,美国的F-14/F-15、欧洲“狂风”、“台风”,中国的新歼等等。
二维进气道的优点是利用铰接的压缩斜板移动调节进气的,因此,其速度调节范围大,通过附面层隔板和楔形进气口的转动,可使进气道在机动飞行时的适应范围得到改善,抗进气畸变能力增加,大迎角飞行特性好等。下面两种进气道应该也属于二维超音速进气道,但较为特殊,因此单列较好。
(三)CARET进气道 一般而言,超音速进气道就是以上常见的两类,但是近些年来,随着人们对隐身性能的要求和新一代作战飞机的研制,CARET进气道得到了越来越多的重视,并已经在F-18E/F和F-22两种飞机上得到了应用,(另外X-36验证机也是CARET进气道,但鉴于它的情况较为特殊,为圆弧唇口,在分类中不作重点考虑),因此此处对这种新型进气道也作一介绍。
CARET进气道的设计理念源于50年代末提出的乘波飞行的理论,为了便于解释CARET进气道的工作原理,先对乘波飞行的理论作一简介。对于一个尖楔体,以高速飞机上常见的尖劈翼型为例,当它超音速飞行时,必然在机翼下方产生一道从前缘开始的斜激波,气流在经过斜激波后会形成一个压力均匀的高压区,且此翼下高压区不受翼上低压区的影响(而常规机翼由于绕翼型环流的存在翼上下搞低压区相沟通),因此将会产生很高的升力,整个飞行器好像乘在激波上,乘波飞行由此得名。在此基础上,沿波面进行进气道进口的设计,以利用波后的减速增压均匀流,对于F-18E/F和F-22两种飞机而言,给予其他的一些考虑,如隐身要求,他们的近气道内外壁不能做到与翼面垂直,但就进气道而言,就可看作是由上壁和内壁各产生一道激波,对气流进行压缩。这就是典型的CARET进气道,它具有更高的总压恢复、较低的流动畸变、简单的构造,更重要的,它容易实现进气道的隐身设计,故而在新一代飞机的设计中受到了较高的重视。
(四)DSI进气道 近的来又出现一种新式的进气道,它就是美国F-35使用的DSI进气道,它也是二维进气道,但它却没有附面层隔板,其进气口处只有一个鼓包,这个鼓包须跟前掠式唇口共同作用才能起到现有的进气道的作用,它的作用是:一、起到附面层隔板的作用。前掠唇口改变了进气口附近的压力分布,进气口中央压力高,两侧附近压力低,而与机身连接部位的压力最氏。当附面层流流经前面这个鼓包时,其流向开始向外偏转,当接近进气口时,其流向大幅度偏转,被高压气流挤出进气口;二、对流入空气进行预压缩,起到其它超音速进气道里压缩斜板作用,但它具有更高的总压恢复,能满足所有性能和畸变要求。这种创新设计的鼓包结构简单,没有超械装置,工作部件少,更加稳定可靠;它还可以减少迎风面阻力,适合于与机身一体化设计,隐身效果好;由于结构简单,其维护费用也很低。在亚音速巡航飞机时,其作用与普通超音速进气道一样,但它在15M以上的速度时所起的作用还不太明朗,有待进一步研究,尤其它对于两侧布局的飞机来说,大迎角和大侧滑角飞行时造成气流不对称,会引起发动机喘振,影响发动机工作效率。
三、进气口的位置
自从喷气飞机诞生以来,其进气道的位置各异,它的位置选择是综合飞机的性能要求而定,也跟航空科技发展有密切的关系,进气道按其在飞机上的位置不同大体上分为正面进气和非正面进气。进气口是进气道系统中最直观的部分,国内外经常把它们混为一谈,我们也习惯了统称为进气道,只是在详细区分这个系统中的不同部位时才使用不同术语。
①正面进气:进气口位于机身或发动机短舱头部,进气口前流场不受干扰,其优点是构造简单,它的缺点也很明显,在机头进气,飞机无法安装大型雷达天线,同时进气通道也太长,不利飞机内部设备安装。早期的战斗机进气口多数在头部,如苏联的米格-19、米格-21、苏-17,美国的F-100,中国的歼-7、歼-8等,采用发动机短舱式的进气道飞机有苏联的伊尔-28、雅克-25,美国的RB-57、B-52、B-58、S-3“北欧海盗”反潜飞机等。
②非正面进气:它包括两侧进气、翼根进气、腹部进气、翼下进气、肋下及背部进气等。这些进气口位置布置克服了正面进气的缺点,尤其是腹部和翼下进气的优点明显,它充分利用了机身工机翼的有利遮蔽作用,能减小进气口处的流速和迎角,从而改善进气道的工作条件;在战术机动性能上,飞机在大迎角机动时发动机工作状态平稳。两侧进气的有美国的F-102、F-104、F-4、F-15等,苏联的米格-23、米格-25、苏-24,中国的歼-8Ⅱ、强-5等;翼根进气的有美国的F-105、瑞典的萨伯-32,英国的“勇士”、“火神”、“胜利者”轰炸机等;腹部进气的有美国F-16、欧洲的EF-2000、以色列“狮”式战斗机等;翼下进气的有美国的B-1B、苏联的图-160,米格-29、苏-27等;背部进气道的有美国B-2、F-107(未服役)、A-10等。
四、选择进气道的原则:
进气道由亚音速进气道发展到超音速进气道,功能不断增加,进气对整个飞机来说重要性不可或缺,但选择进气道形状并不是根据它的先进性,而是根据实际的需要,如F-16选择亚音速进气道,它作为F-15配对的低档机型,造价上和功能的不同,选择改进的亚音速进气道更好;SR-71作为侦察机,并不需要高机动性,所以三维轴对对称进气道最合适。楔形进气道在某些方面比二维矩形进气道优点要多,但也不是后来的飞机都使用这种进气道,如法国的“阵风”采用的是近似半圆形进气道,对其整个飞机布局来说是最好的选择,同样,欧洲的“台风”采用的是近似矩形,在保证进气质量的情况下,服从于飞机的布局。一般并没有确定的结论说斜切式的对圆/半圆形的有明显优势,通常三维进气道的结构重量比较轻。
也有另外一种情况,某些飞机在改型后,其进气道也出现质的变化,F-18E/F采用的是有别于先前型号的双斜切的乘波进气道;法国的“神秘”改进成“超神秘”后,其圆形进气道也改成了扁圆形。
进气道未来发展,应该具有较高的效能,最佳的调节与控制,在整个飞行包线上都安全可靠,大迎角和侧滑角的相容性包线大,进气道与发动机匹配性好,抗畸变能力更强,隐身效果也更好,不排除出现新的技术,使得进气道结构更加简单,功能更加全面,满足所有飞行的要求。
什么是进气道喷射?缸内直喷之前发动机的燃油是先喷到进气管内,然后在进气管内与空气混合成为燃油混合气,最后再进入气缸内参与燃烧。
什么是缸内直喷?就是将喷油器由进气管道里移到了发动机缸内,直接在缸内与空气混合再参与燃烧,说白了就是空气与燃油分两路进入发动机气缸。直喷技术最大的好处就是能让压缩比提高,从而提升发动机的燃烧热效率。
什么是混合喷射技术?采用缸内直喷技术后,燃油经济性和动力性得到提升,但排放处理难度更大,起动和低温下的碳氢化合物,颗粒,中小负荷下的氮氧化物的处理增加了技术难度和成本。为了解决排放问题,就将进气管喷射和缸内直喷结合起来组成了混合喷射。其结构如下。
混合喷射系统的结构示意图
二、缸内直喷详解
要 理解为什么采用混合喷油模式,就得了解进气口喷射模式和缸内喷射模式的优缺点开始。在国家排放和油耗法规的要求下,传统的进气道喷射存在燃烧效率低,经济 性差等特点,Cartech8就不详细介绍进气道喷射发动机了,大家对这应该比较熟悉。我们重点介绍缸内直喷的工作控制过程,从中找出缸内直喷的优点,以 及缺点。然后分析两者为什么要结合到一起。下图是缸内直喷的结构及工作原理图。
缸 内直喷就是将燃油喷嘴安装于气缸内,直接将燃油喷入气缸内与进气混合。喷射压力也进一步提高,使燃油雾化更加细致,同时喷嘴位置、喷油时刻、喷雾形状、进 气气流控制,以及活塞顶形状等特别的设计,真正实现了精准地按比例控制喷油并与进气混合,使得燃烧效率更高。另外,喷入缸内的燃油吸收缸内热量,降低发动 机发生爆燃敲缸的倾向,可以进一步增加发动机压缩比。通常缸内直喷发动机配备涡轮增压,这些措施解决了进气道喷射发动机系统的主要缺点,即发动机在部分负 荷运行中的泵气损失大(发动机大部分在城市道路中工作于部分负荷工况),燃油经济性差。通常缸内直喷发动机工作于三种工作模式:分层充气模式、均质充气模 式、均质稀薄充气模式。三者的工作区域如下图。
缸内直喷三种模式的工作区域
分层充气模式:
中 小负载、中小转速区域内,发动机一直运行在分层充气模式中。空气由进气管进入汽缸撞在活塞顶部,由于活塞顶部制作成特殊的形状从而在火花塞附近形成期望中 的涡流。当压缩过程接近尾声时,少量的燃油由喷射器喷出,形成可燃气体。这种分层注油方式可充分提高发动机的经济性,因为在转速较低、负荷较小时除了火花 塞周围需要形成浓度较高的油气混合物外,燃烧室的其它地方只需空气含量较高的混合气即可。现在一些发动机为了改善燃烧,降低NOx的生成采用的两次甚至多 次喷射,见下图:
在 分层充气模式中为了尽可能地降低节气门损耗,节气门将尽可能地开大。节气门不能完全开启,因为碳罐和废气再循环系统需要一定的真空度。喷油过程发生在压缩 冲程的大约最后三分之一时。在此模式中,发动机产生的扭矩仅由被喷入的燃油量确定,进气空气质量和点火提前角产生的影响很小。通过燃烧室中的混合分层,发 动机过量空气系数(lambda)约16 至3 的范围内运行。
进入该模式条件:如果满足这些条件,发动机就能切换至分层充气模式。
- 发动机在相应的负载和转速区域中,
- 系统中没有与废气排放相关的故障
- 冷却液温度高于一定值。
- 氮氧化物传感器准备就绪, 氮氧化物存储式催化转换器的温度在 250 °C 至500 °C 之间。
均质充气模式
如 上图,发动机工作于高转速区域,或者低转速大负荷区域,其工作模式和原来的进气道模式基本上一样,主要差别是,汽油直接喷射发动机中的燃油是被直接喷入气 缸的。该模式,节气门的开度取决于油门踏板的位置(如何控制可参考Cartech8的另外一篇文章《动力性匹配之几张表搞定一辆车的动力性》)。发动机的 扭矩是由点火点(短期)和进气控制质量(长期)决定的。喷入的燃油量与进气量相匹配,从而使得空燃比Lambda=1左右。在均质充气模式中,点火点是影 响发动机的扭矩,燃油消耗和排放行为的主要因素。
喷油周期在进气冲程中,燃油在上止点前约300 度时被直接喷入气缸中。燃油蒸发需要的能量被从燃烧室内部的空气中吸收,从而使得空气得到冷却。结果,与带进气歧管喷射发动机的压缩率相比,压缩率得到更大的提高。
均质稀薄充气模式
这 种模式是在分层充气模式和均质充气模式之间的过渡区域。在这种模式中,短期的扭矩需求是通过点火角来实现的,长期需求则通过空气质量实现的。这些稀薄的混 合物被均质地(均匀地)分布在燃烧室中。空气/燃油混合比约为Lambda 155左右。喷油周期,在进气冲程中,燃油在上止点前约300 度时被直接喷入气缸。由于喷油点提前,就给预点火混合物的形成留出了更多的时间,从而导致燃烧室中均质混合物的分布。
三种工作模式中节气门的开度
缸内直喷的优势:
1节气门开度较进气道喷射发动机开度增加,泵气损失减少。发动机自身损失减少。
2发动机稀薄燃烧提高燃油经济性。
3压缩比增加,发动机热效率提高。与同排量的一般发动机相比功率与扭矩都提高了10%以上。
4喷射压力也进一步提高,使燃油雾化更加细致,真正实现了精准地按比例控制喷油并与进气混合。
5 进气口喷射发动机,20%喷嘴装在气缸盖上进气门的背面,80%安装在进气歧管上靠近气缸盖位置,在发动机起动时,会在进气门附近形成瞬时的液态油膜,这 些燃油会在每次进气过程逐渐蒸发进入气缸燃烧。冷机起动时由于燃油蒸发困难,使得实际供油量远大于需求空燃比的供油量,这样会导致冷起动时发动机有4 个~10个循环的不稳定燃烧,显著加大发动机未燃HC排放。而缸内直喷可以克服这个问题。
6缸内直喷发动机加减速时不需要补偿油膜。之所以需要加减速修正,主要原因是进气道喷射存在燃油油膜,当负荷快速变化,油膜平衡改变,需要在短时间内通过喷射量来进行修正;次要原因是为了弥补传感器对变工况的延迟。
缸内直喷的不足:
1 增加压缩比,提高燃烧效率,前面已经提到,由于汽油直接喷油燃烧室内,汽油蒸发吸收大量热,发动机总体燃烧爆震的趋向降低,因此可以增加发动机压缩比以提 高效率。提高压缩比后,在低转速大负荷区,仍旧采用的是传统燃烧模式(均质燃烧),在这个区域本身就是一个易发生爆震的区域,而加大压缩比后更容易出现爆 震,有时甚至会出现超级爆震,也就是用传统的方法无法消除。
2测试证明,起动过程和起动后阶段所排放的有害物质能够达到排放物总量的90%(法规循环工况)。采用“分层燃烧起动”和“两次喷射加热”相结合的方法去改善。
3在低负荷、过渡工况和冷起动的情况下,缸内直喷发动机的微粒排放比进气道喷射发动机有明显增加。
4中小负荷下未燃碳氢(UBHC)的排放较多,其主要原因有采用分层混合气时引起火焰从浓区向稀区的熄灭,稀空燃比工作条件造成缸内温度偏低,也不利于未燃碳氢随后的继续氧化。
5因为空燃比不在理论空燃比附近,目前成熟的三元催化技术不能得到有效利用,因而NOx排放较高。另外,GDI发动机较高的压缩比和较快的反应放热率也会引起NOx升高。
6气缸内的燃烧沉积物较多造成火花塞污染。
7 发动机积碳,相比排气门背部,进气门背部的积碳相对要严重些。曲轴箱通风系统是一大诱因,机油蒸汽会被引入到进气歧管从而通过进气门进入气缸燃烧,附着在 进气道以及进气门背部的机油在高温的作用下形成了积碳,在缺少“自清洁”能力的条件下(喷嘴在缸内无法冲涮),积碳就会更为严重。反观排气门部位,受到高 温和排气气流作用,其形成积碳的压力本身就比进气门要小。
三、混合喷射方式:缸内直喷 进气道喷射
由于存在上面的不足,工程师们就想出了采用了缸内直喷加进气道喷射的主意,新结构如下图,其结构特点就是将进气道喷射和缸内直喷组合在一起,其主要目的还是解决排放问题。这样结合即带来好处也出现弊端。
混合喷射结构图
直 喷发动机跟进气道喷射发动机比PM(颗粒物)排放高。主要原因是直喷燃油喷在缸内,混合时间短,油膜直接附着在气缸内壁和活塞顶部,燃烧时不易充分燃烧, 形成PM。而进气道喷射燃油喷射在进气歧管内,油膜附着在歧管管壁,吸入汽缸的是充分混合的可燃气体,燃烧会比较充分。PM和NOx两者在数学模型上是一 对耦合参数,成反比关系,PM升高NOx就会降低。实际应用中,找PM-NOx曲线上最优点是所谓的Calibration/标定中的一项重要工作,最终 目的是要使这个点对应的PM和NOx都相对较低。学术领域常用全局优化,解耦之类复杂的数学方法找这个最优点,虽然仿真中都能达到比较满意的效果,但实际 实验中效果还是比较差的。直喷 进气道喷射并不是一个完美的技术,并没有克服直喷的固有缺点,相比直喷降低排放的同时也降低性能表现。也减少了直喷发动机 中小负荷稀燃的空间。
加上进气道喷嘴就是为了要在一些输出响应慢的工况下减少排放, 因为油气混合不好的结果并非只有PM。直喷喷嘴是为了满足快速混合的喷射策略要求(其实就是多次喷射)而优化设计的,发动机整体的性能表现主要来自于这个 优化过的直喷喷嘴。而进气道喷嘴只是起些辅助作用,比如改善冷启动性能,减少HC等,当然帮助减少PM。以上不对的地方请大家到汽车工程师之家提出宝贵的 意见。
1在冷机时,中小负荷采用进气道喷射,以减少HC和颗粒物的生成。
2热机时,小负荷区域采用进气道喷射,中小负荷采用进气道喷射加直喷模式。以降低NOx和颗粒物的生成。
回答于 2022-12-20
汽油发动机在环境不低于-5℃,柴油发动机在环境不低于5℃时,允许启动三次(包含三次),每次启动不能超过5秒钟,必须启动成功。在正常工作温度下,发动机应能在5秒内一次启动成功。冷启动后,发动机暖机过程转速应符合原设计规定。
二、冷启动故障实例分析:
1、故障现象:冷车时打马达启动3次以上后,发动机才能勉强着车。发动机冷启动后,暖车时过程转速低于700转/分,或者冷怠速抖动严重,冷车急加速时发动机坐车并有放炮等异常现象,最重要的是以上诸多的故障,等车热后一切都消失了。
2、故障可能的原因:
第一是:节气门过脏,进气道、喷油嘴和进气门上的积碳过多造成的故障,现在参差不齐的燃油品质和拥堵的城市路况都是造成积碳形成的原因。首先是燃油,汽油在储存、运输过程中,容易和空气发生氧化反应,生成胶状物质,或者汽油本身胶质的含量就很高,后者的现象比较多。这些胶质随着汽油通过车辆的燃油供给系统进入燃烧室内部,然后和汽油一同燃烧,就会使燃油供给系统中的喷油嘴、进气道、进气门背部、火花塞、燃烧室、活塞环槽等部位产生很多积碳。其次是拥堵的城市路况,使车辆始终处于走走停停的状态,发动机不能高速运转,燃油或窜入燃烧室的润滑油也不能完全燃烧,未燃烧的部分油料在高温和氧化的作用下形成胶质,粘附在发动机内部的零件上,再经过高温作用形成积碳。发动机内部的积碳过多时,冷启动时喷油头喷出的汽油会被积碳大量吸收,导致冷启动时的混合气过稀,使得启动困难。发动机工作产生积碳是不可避免的,您需要及时定期地到服务站进行清洗积碳的工作。
第二是:没有按时定期地给您的爱车做保养,过脏的机油、过脏的空滤、汽滤和磨损间隙过大的火花塞都会造成冷启动故障。
第三是:冷却液温度传感器有故障也会造成以上的故障。
总之,若您的车出现了以上的故障,建议您尽快去修理,修理得越早修理的费用就会越低
进气系统负责将外界空气顺利引入发动机进口,进入风扇和压气机。其基本结构组成是进气道控制装置、放气门和辅助进气门、附面层吸除装置和防止外来物进入的防护装置等。作为发动机的基本组成,进气道设计影响发动机的空气流量,从而影响发动机有效推力;进气流畅的畸变影响发动机工作特性。
对于进气道的基本要求是其总压损失小,外阻力要小,能够完成减速增压的任务,能够在所有飞行条件和发动机工作状态下,为发动机提供均匀的气流。
军用战斗机发动机的进气道
现代战斗机的特点是飞行速度和高度变化范围大。歼击机还要经常在大迎角、大侧滑角状态下飞行。在一切飞行状态下进气道都应保证为发动机提供可靠的进气流。战斗机发动机的安装位置多在后部,进气道相对较长,其设计难度大。
总压恢复系数的定义是进气道出口气流的总压和未受扰动气流的总压之比。总压恢复系数是进气道内流损失程度的度量,总压恢复系数越大,气流在压气机的增压比越高。总压恢复系数降低1%,推力就要下降15%-2%,耗油率提高03%-05%。
另外,在亚音速扩散通道处设有放气门,将多余的空气放掉,不使进气道处于亚临界溢流状态。同时,为了解决起飞状态进气口面积过小的问题,还设置有在低速能被吸开的辅助进气口。
在超音速条件下,不可调进气道只在设计状态下能与发动机协调工作,这时进气道处于最佳临界状态。在非设计状态下,进气道与发动机的工作可能不协调。当发动机需要空气量超过进气道通过能力时,进气道处于低效率的超临界状态。当发动机需要空气量低于进气道通过能力时,进气道将处于亚临界溢流状态。过分的亚临界状态使阻力增加,并引起进气道喘振。
为了使进气道在非设计状态下能与发动机协调工作(即进气道与发动机匹配),必须应用可调节进气道。常用的方法是调节喉部面积和斜板角度,使进气道的通过能力与发动机的要求一致。
军用超音速进气道布局
军用超音速进气道,除了早期的头部进气以外,现代战斗机最常见的进气道布局是两侧进气和腹部进气。
头部进气:二代单发战斗机多采用此种进气道。特点是进气效率高,缺点是占据了宝贵的机头位置,无法在战斗机头部安装大口径雷达。
腹部进气:三代战斗机多采用此种进气道,如美国F-16、我国歼10、欧洲EF-2000等。特点是进气效率高,有利的预压缩。
两侧进气:新一代飞机超音速进气道设计概念中,包括后掠双斜面超音速进气道(CARET)和无附面层隔道超音速进气道(DSI)。其典型代表是美国战机F-18超黄蜂、中国台湾IDF和中国战机枭龙等。
另外还有出于隐身考量的背部进气方式,例如美国隐身轰炸机B2和F117,负有突击打击任务的隐身无人机X-47B以及需要越境收集情报地无人机RQ-170等,均未提升生存能力而牺牲进气效率的合理工程折中。
民用运输机发动机进气道
民用发动机多采用机翼吊舱安装形式,进气道很短,主要考虑低速时进气效率,以及正常飞行时利用扩展通道适当地减速增压。短舱内风扇叶片前周向设有边界层吸收多孔壁,吸除低能边界层,保证高能气流进入发动机。
直升机用发动机进气口
直升机用发动机安装进气口
粒子
分离器,保证发动机进气的清洁。某些军用直升机的排气口还装有换热冷却器的红外抑制装置,以减少战场上受到热敏武器攻击的机会。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)