1、沉淀法
优点:反应时间短,工艺过程简单、操作方便和易于工业化。
缺点:纯度低,颗粒半径大,适合制备氧化物。
2、溶胶-凝胶法
优点:化学均匀性好、颗粒细、纯度高、设备简单,粉体活性高。
缺点:原材料较贵,颗粒间烧结性差,干燥时收缩性大,易出现团聚问题。
3、微乳液法
优点:粒度分布窄、粒径可控和分散性好。
缺点:分子间隙大。
4、高温水热法
优点:粒子纯度高、分散性好、晶形好且可控制,生产成本低。
缺点:设备要求高,技术难度大,安全性能差。
扩展资料
纳米材料的制备方法
1、物理法
物理法有两大类:粉碎法、构筑法。
粉碎法有两种方法:干式粉碎法和湿式粉碎法。
构筑法有六种方法:气体蒸发法、活化氢-熔融金属反应法、溅射法、真空沉积法、加热蒸发法、混合等离子法。
2、化学法
化学法有两大类:气相反应法、气相反应法。
气相反应法有三种方法:气相分解法、气相合成法、气-固反应法。
液相反应法有六种方法:沉淀法、高温水热法、溶胶-凝胶法、氧化还原法、冻结干燥法、喷雾法。
而沉淀法又可以将其分为三种:共沉淀法、化合物沉淀法、水解沉淀法。
烃类氧化反应优点:有高反应活性的氧化降解有机污染物的处理方法。
烃类氧化反应缺点:反应慢,有误差。
首先说“烃”分为1脂肪烃、2芳香烃,其中脂肪烃又可以分为11开链烃12脂环烃等;芳烃又可分为21单环芳烃22稠环芳烃,简单的烃由于C原子采取sp3,sp2,sp三种杂化方式,其电子效应一般为σ-p。
烃取碳中之火
氢去头以成字。烃的三大副族以分子的饱和程度来区分。烷(alkanes)是饱和烃类,无法再接纳氢了。烯(alkenes)是少了一分子氢的烃,故加氢便产生烷;一个烯分子可以有多于一处的不饱和双键。故这类型化合物包括二烯、三烯等。比烯更缺氢的烃称为炔(alkynes),它们含有三键。
-烃类
高温水蒸气电解(High Temperature Steam Electrolysis,简称HTSE)是一种利用高温下的水蒸气电解制氢的技术,其优缺点如下:
优点:
高效能:HTSE在高温下进行,热效率更高,能耗更低,相比常温下的水电解,能源利用率提高了20% ~ 40%。
高产氢量:HTSE可实现单电池产氢量较大,且装置紧凑,空间占用率低,产氢量高。
良好的动态响应性:HTSE可实现瞬时启停,能够适应电力系统需求的灵活变化。
可与其他能源技术协同发展:HTSE能够利用化石能源产生的废热,如核电站产生的余热,提高能源利用效率。
缺点:
设备成本高:高温下的操作需要使用高温材料,如氧化锆等材料,成本较高。
运行稳定性较差:高温下操作的电解池材料易受腐蚀,运行稳定性相对较差。
氧气产生难以处理:由于HTSE同时会产生氧气,因此需要单独处理和排放氧气,增加了系统成本和复杂度。
能源密度较低:由于需要加热水蒸气到高温,能源密度较低,需要大量的能源投入。
钽及钽合金具有高熔点、良好的耐蚀性能、优异的高温强度、良好的加工性能、可焊接性能、较低的塑/脆转变度及优异的动态力学性能等优点,使其广泛应用于电子、武器、化工、航空航天工业与空间核动力系统等行业 是在1600 ~1 800 环境下工作的理想结构材料。虽然钽及钽合金拥有优异的高温力学性能 ,但是其高温下抗氧化性能较差 ,金属钼在500 以上便会发生加速氧化生成Ta205 由于以上特性这使得钽及钽合金的应用受到严重制约。要想扩大其应用范围 提升钽及钽合金的耐高温抗氧化性能具有十分重要的意义。钽及钽合金的耐高温抗氧化保护主要有两种方法" ①表面涂层耐高温抗氧化保护 ②合金化耐高温抗氧化保护。
合金化法虽然能提升钽及钽合金的抗氧化性能 ,但前提条件是合金化元素用量须达到临界值以上才能对基体起到保护作用 ,同时 对基体的其它性能会产生较大影响 ,尤其是对基体高温机械性能的影响较大。
表面涂层可以同时具有较低的氧气渗透能力、良好的化学与物理相容性和稳定性、低的挥发性、良好的热膨胀系数匹配性和结合能力、高温自愈合能力及不能影响钽合金基材原有的良好机械性能等优点 是解决钽合金高温力学性能与抗氧化性能问题的最佳方法。
迄今为止 已开展研究的钽及钽合金材料的表面高温抗氧化涂层体系主要有贵金属高温抗氧化涂层、陶瓷高温抗氧化涂层以及复合抗氧化涂层,下面分别概述钽及钽合金的各类高温抗氧化涂层的研究新进展。
(一)金属高温抗氧化涂层
许多贵金属如Ir、PL、Rh、HI等都具有高熔点特性 其中 金属Ir熔点高达2410 因其高温氧渗透系数和氧扩散系数较低 所以具有优异的高温抗氧化性能 ,但其氧化物的蒸气压较高 为避免金属Ir直接暴露在高温大气环境中 需要在金属Ir外层添加其它成分涂层。国外学者VLTerentieva等2在钽合金基材上制备的Ir-Si-Al抗氧化涂层在1650 氧化气氛下工作200h后氧化增重量为69mg/cm²而Ir-Al涂层在1700 氧化气氛下工作120h 后氧化增重量仅为426mg/cm²。由于贵金属涂层的成本很高,目前仅在实验室条件下进行少量实验 尚未推广。国外学者WSWorrel等制备的Mo-Si-Hr抗氧化涂层可以承受1790 氧化气氛3h 涂层无明显变化P。该抗氧化涂层在高温氧化气流冲刷实验条件下表现出良好的抗热震和抗冲刷性能。研究结果表明 ,该抗氧化涂层为Hf。z0s MonmuoSi的耐火相结构 其周围有产生裂纹 而产生的裂纹又被MoSi、SiHI3-s及HISi;完全密封 因此 涂层能够在高温下阻挡氧化气氛的渗透 进而提高了涂层的高温抗氧化性能。在Ta-10W表面Royal公司运用熔合料浆法制备Al-Sn涂层4涂层厚度75μm 涂层1500 下防护寿命37h 在阿金纳火箭二次推进系统的73kg和907kg两种推力室被成功地应用,涂层正常累计工作时间6 250s和2000s。
贵金属材料涂层拥有良好的抗腐蚀能力和延展性能克服基体高温蠕变造成的应力变形和弹塑性变形。目前 通常采用CVD法在难熔金属表面制备贵金属抗氧化涂层但该技术目前尚存在技术瓶颈。
(二) 陶瓷高温抗氧化涂层
当前 陶瓷涂层是抗氧化涂层体系的研究热点 ,硅化物涂层因其具有良好的热稳定性(在1200 时氧扩散系数为10-"g/(cm's)2200 时氧扩散系数为10-1g/(cm's)而备受关注 高温环境中基体表面形成的SiO能有效阻止氧向涂层和基体内部扩散而且在高温下SiO,具有良好的流动性 ,可以使涂层产生的缺陷自愈合 同时 还能够承受一定程度的变形 因此 能有效地保护钽及钽合金材料避免氧化。
当下 硅化物涂层中研究的热点是MoSi、SiN;和SiC 等高温抗氧化陶瓷涂层。通常 陶瓷涂层与基体之间的热膨胀的差异,是陶瓷涂层产生微裂纹缺陷的主要原因 ,致使陶瓷涂层的抗氧化性能下降。国外学者MV Moore等为了解决钽及钽合金材料基体与MoSi之间的热膨胀匹配问题 在MoSi;涂层中添加了少量的Si 获得的涂层在1650 下经过200h氧化后 氧化增重仅为08%,氧化增重速率保持在253 10g/(cm²·s)的较低水平。学者HYiroshi研究表明 采用改良包埋法工艺制备的高致密度Si;N。涂层 ,可以在1610 下对钽及钽合金材料完成约18h有效保护81。学者VVVilasi等门采用PCVD法制备的B(Si)N陶瓷涂层可以在1670 的对钽及钽合金进行有效的抗氧化防护。学者AWRodionova等2将HfB,和Si粉混合后喷涂在钽及钽合金材料表面 制备的HIB,抗氧化涂层可在2100 环境下使用 检测数据表明 ,该涂层在1850 下经过2h氧化后 其氧化速率为128 10-g/(cm²·s)。此外 ,学者Andrew等为改善陶瓷抗氧化涂层的韧性 在钽及钽合金材料基体上采用PVD法制备Mo-W成分的涂层 再进行Si和Ge的固相渗透最终制备成( Mo ,W)(Si Ge)的抗氧化涂层。
(三)复合涂层
复合涂层是陶瓷涂层与玻璃涂层结合使用的一种耐高温抗氧化涂层 ,它不仅可以在高温环境下工作 而且还具备涂层微裂纹自愈合能力。通常选用MoSi,或Si作为抗氧化涂层的过渡层或粘接层以缓解涂层与基体间的热应力 ,外层密封层一般选用耐高温玻璃或高温氧化物。例如 国外学者RPSkowronski等研究的MoSi扩散层/CVD-MoSi阻挡层/莫来石密封层涂层 Ir-Si/致密Ir阻挡层/SrZrO;(Al0;)耐蚀层的复合涂层学者Sekigawa等制备的Si( CVD)/Ir(CVD或等离子喷涂)/Y203(等离子喷涂)复合涂层团;学者0Yamamoto等制备的Si/Y SiO;涂层 都具备了较好的高温抗氧化性能。特别是Ir阻挡层/SrZrO3(Al2O3)复合高温抗氧化涂层还具有1750 环境下长时间的抗氧化防护能力。此外 学者YSekigawa等制备的Ir-Si混合层/致密Ir阻挡层SrZrO3(Al2O3)耐蚀层的复合涂层在1950 环境下抗氧化时间仅21min。分析其原因主要是在于PVD法制备的I阻挡层与Ir-Ta层之间结合强度不良导致裂纹产生 同时 又由于SrZrO3结晶过大致使缺陷产生 导致高温抗氧化性能下降。学者THiroshi5等研制的Ti(CVD)/Ir(CVD或等离子喷涂)/Y203(等离子喷涂)复合抗氧化涂层在1960 环境下氧化25min 氧化增重为64%制备的Ir/ZrO/Y,0;涂层在1850 下氧化35 min后,氧化增重为41%。上世纪90年代初俄国复合材料科研生产联合体研制了MoSi2+HaSi复合防护涂层 其采用的制备工艺为料浆喷涂一高温熔烧—包渗硅化法 涂层高温抗氧化性能在1800 抗氧化时间达到100h具备了长时间的抗氧化防护能力。目前国内在Ta-12W合金表面首先制备出底层经烧结后在制备面层经高温烧结后,合金表面形成硅化物涂层 涂层在1800 抗氧化时间达到9h 室温到1800 热震寿命151次。
钽及钽合金材料基体与涂层材料之间存在着不可避免的热膨胀差异 ,也是导致涂层产生裂纹的主要原因。钽及钽合金材料涂层通过前述密封层和梯度涂层的制备可以消除涂层裂纹。梯度涂层可以使得涂层与基体两相浓度以及多相涂层之间组成呈连续分布 消除了各界面间的应力 ,并且表面无裂纹 ,最终达到高温抗氧化目的。
(四)钽及钽合金材料抗氧化涂层发展趋势
钽及钽合金材料作为高温结构材料应用的关键部件 在航空、航天、核工业以及武器领域的应用前景日趋明朗。因此 钽及钽合金的抗氧化涂层技术也向着耐高温、长寿命、抗冲刷等方向发展。
①添加合金元素改善钽及钽合金性能。使氧化性能和机械性能之问取得平衡 满足材料服役环境的需要。
②大力发展复合涂层制备技术。采用多种表面涂层技术相结合 ,从工艺上实现涂层的复合结构 提高对涂层制备过程中工艺参数的控制能力。
③新涂层工艺的开发 复合涂层内层与外层之间 涂层与基体之间的物理化学结合研究将是今后研究工作的重点之一。
④降低成本、简化制作工艺、缩短合成周期也将是今后抗氧化涂层的发展方向之一。
(文章来源于网络 侵权必删)
高级氧化技术是近年来水处理领域兴起的新技术,通常指在环境温度和压力下通过产生具有高反应活性的氧化降解有机污染物的处理方法。高级氧化技术的关键是产生高活性的羟基自由基,一般采用加入氧化剂、催化剂或借助紫外光、超声波等多种途径产生。按所用的氧化剂及催化条件的不同,高级氧化技术通常包括试剂法及试剂法、组合类臭氧法、半导体光催化氧化法、超声化学氧化法等。但无论是哪种高级氧化体系,羟基自由基都是氧化剂的主体。高级氧化技术就是不断地提高羟基自由基生成率和利用率的过程。羟基自由基反应是高级氧化技术的根本特点。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)